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The XIXth International Workshop on
Operator Theory and its Applications. II

Joseph A. Ball, Vladimir Bolotnikov, J. William Helton,
Leiba Rodman and Ilya M. Spitkovsky

Abstract. Information about the workshop and comments about the second
volume of proceedings is provided.

Mathematics Subject Classification (2000). 35-06, 37-06, 45-06, 93-06, 47-06.

Keywords. Operator theory, differential and difference equations, system
theory, mathematical physics.

The Nineteenth International Workshop on Operator Theory and its Applications
– IWOTA 2008 – took place in Williamsburg, Virginia, on the campus of the Col-
lege of William and Mary, from July 22 till July 26, 2008. It was held in conjunction
with the 18th International Symposium on Mathematical Theory of Networks and
Systems (MTNS) in Blacksburg, Virginia (Virginia Tech, July 28–August 1, 2008)
and the 9th Workshop on Numerical Ranges and Numerical Radii (July 19–July 21,
2008) at the College of William and Mary. The organizing committee of IWOTA
2008 (Ball, Bolotnikov, Helton, Rodman, Spitkovsky) served also as editors of the
proceedings.

IWOTA 2008 celebrated the work and career of Israel Gohberg on the occa-
sion of his 80th birthday, which actually fell on August 23, 2008. We are pleased
to present this volume as a tribute to Israel Gohberg.

IWOTA 2008 was a comprehensive, inclusive conference covering many as-
pects of theoretical and applied operator theory. More information about the work-
shop can be found on its web site

http://www.math.wm.edu/~vladi/IWOTA/IWOTA2008.htm

There were 241 participants at IWOTA 2008, representing 30 countries, in-
cluding 29 students (almost exclusively graduate students), and 20 young re-
searchers (those who received their doctoral degrees in the year 2003 or later). The
scientific program included 17 plenary speakers and 7 invited speakers who gave
overview of many topics related to operator theory. The special sessions covered
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Israel Gohberg at IWOTA 2008, Williamsburg, Virginia

a broad range of topics: Matrix and operator inequalities; hypercomplex opera-
tor theory; the Kadison–Singer extension problem; interpolation problems; ma-
trix completions; moment problems; factorizations; Wiener–Hopf and Fredholm
operators; structured matrices; Bezoutians, resultants, inertia theorems and spec-
trum localization; applications of indefinite inner product spaces; linear operators
and linear systems; multivariable operator theory; composition operators; matrix
polynomials; indefinite linear algebra; direct and inverse scattering transforms for
integrable systems; theory, computations, and applications of spectra of operators.

We gratefully acknowledge support of IWOTA 2008 by the National Science
Foundation Grant 0757364, as well as by the individual grants of some organizers,
and by various entities within the College of William and Mary: Department of
Mathematics, the Office of the Dean of the Faculty of Arts and Sciences, the Office
of the Vice Provost for Research, and the Reves Center for International Studies.
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One plenary speaker has been sponsored by the International Linear Algebra So-
ciety. The organization and running of IWOTA 2008 was helped tremendously by
the Conference Services of the College of William and Mary.

The present volume is the second of two volumes of proceedings of IWOTA
2008. Here, papers on systems, differential and difference equations, and mathe-
matical physics are collected. All papers are refereed. The first volume contains
papers on operator theory, linear algebra, and analytic functions, as well as a
commemorative article dedicated to Israel Gohberg.

August 2009

Added on December 14, 2009:

With deep sadness the editors’ final act in preparing this volume is to record
that Israel Gohberg passed away on October 12, 2009, aged 81. Gohberg was a
great research mathematician, educator, and expositor. His visionary ideas inspired
many, including the editors and quite a few contributors to the present volume.

Israel Gohberg was the driving force of iwota. He was the first and the only
President of the Steering Committee. In iwota, just as in his other endeavors,
Gohberg’s charisma, warmth, judgement and stature lead to the lively community
we have today.

He will be dearly missed.

The Editors: Joseph A. Ball, Vladimir Bolotnikov, J. William Helton,
Leiba Rodman, Ilya M. Spitkovsky.
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Exact Solutions to the
Nonlinear Schrödinger Equation

Tuncay Aktosun, Theresa Busse, Francesco Demontis
and Cornelis van der Mee

Dedicated to Israel Gohberg on the occasion of his eightieth birthday

Abstract. A review of a recent method is presented to construct certain exact
solutions to the focusing nonlinear Schrödinger equation on the line with a
cubic nonlinearity. With motivation by the inverse scattering transform and
help from the state-space method, an explicit formula is obtained to express
such exact solutions in a compact form in terms of a matrix triplet and by
using matrix exponentials. Such solutions consist of multisolitons with any
multiplicities, are analytic on the entire xt-plane, decay exponentially as x →
±∞ at each fixed t, and can alternatively be written explicitly as algebraic
combinations of exponential, trigonometric, and polynomial functions of the
spatial and temporal coordinates x and t. Various equivalent forms of the
matrix triplet are presented yielding the same exact solution.

Mathematics Subject Classification (2000). Primary: 37K15; Secondary: 35Q51,
35Q55.

Keywords. Nonlinear Schrödinger equation, exact solutions, explicit solutions,
focusing NLS equation, NLS equation with cubic nonlinearity, inverse scat-
tering transform.

1. Introduction

Our goal in this paper is to review and further elaborate on a recent method [3, 4]
to construct certain exact solutions to the focusing nonlinear Schrödinger (NLS)
equation

iut + uxx + 2|u|2u = 0, (1.1)

Communicated by J.A. Ball.
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with a cubic nonlinearity, where the subscripts denote the corresponding partial
derivatives.

The NLS equation has important applications in various areas such as wave
propagation in nonlinear media [15], surface waves on deep waters [14], and signal
propagation in optical fibers [9–11]. It was the second nonlinear partial differential
equation (PDE) whose initial value problem was discovered [15] to be solvable
via the inverse scattering transform (IST) method. Recall that the IST method
associates (1.1) with the Zakharov-Shabat system

dϕ(λ, x, t)
dx

=

[
−iλ u(x, t)

−u(x, t)∗ iλ

]
ϕ(λ, x, t), (1.2)

where u(x, t) appears as a potential and an asterisk is used for complex conju-
gation. By exploiting the one-to-one correspondence between the potential u(x, t)
and the corresponding scattering data for (1.2), that method amounts to determin-
ing the time evolution u(x, 0) �→ u(x, t) in (1.1) with the help of solutions to the
direct and inverse scattering problems for (1.2). We note that the direct scattering
problem for (1.2) consists of determining the scattering coefficients (related to the
asymptotics of scattering solutions to (1.2) as x → ±∞) when u(x, t) is known for
all x. On the other hand, the inverse scattering problem for (1.2) is to construct
u(x, t) when the scattering data is known for all λ.

Even though we are motivated by the IST method, our goal is not to solve
the initial value problem for (1.1). Our aim is rather to construct certain exact
solutions to (1.1) with the help of a matrix triplet and by using matrix exponen-
tials. Such exact solutions turn out to be multisolitons with any multiplicities.
Dealing with even a single soliton with multiplicities has not been an easy task in
other methods; for example, the exact solution example presented in [15] for a one-
soliton solution with a double pole, which is obtained by coalescing two distinct
poles into one, contains a typographical error, as pointed out in [13].

In constructing our solutions we make use of the state-space method [6] from
control theory. Our solutions are uniquely constructed via the explicit formula
(2.6), which uses as input three (complex) constant matrices A, B, C, where A
has size p×p, B has size p×1, and C has size 1×p, with p as any positive integer.
We will refer to (A, B, C) as a triplet of size p. There is no loss of generality in
using a triplet yielding a minimal representation [3, 4, 6], and we will only consider
such triplets. As seen from the explicit formula (2.6), our solutions are well defined
as long as the matrix F (x, t) defined in (2.5) is invertible. It turns out that F (x, t)
is invertible if and only if two conditions are met on the eigenvalues of the constant
matrix A; namely, none of the eigenvalues of A are purely imaginary and that no
two eigenvalues of A are symmetrically located with respect to the imaginary axis.
Our solutions given by (2.6) are globally analytic on the entire xt-plane and decay
exponentially as x → ±∞ for each fixed t ∈ R as long as those two conditions on
the eigenvalues of A are satisfied.
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In our method [3, 4] we are motivated by using the IST with rational scatter-
ing data. For this purpose we exploit the state-space method [6]; namely, we use
a matrix triplet (A, B, C) of an appropriate size in order to represent a rational
function vanishing at infinity in the complex plane. Recall that any rational func-
tion R(λ) in the complex plane that vanishes at infinity has a matrix realization
in terms of a matrix triplet (A, B, C) as

R(λ) = −iC(λI − iA)B, (1.3)

where I denotes the identity matrix. The smallest integer p in the size of the triplet
yields a minimal realization for R(λ) in (1.3). A minimal realization is unique up
to a similarity transformation. The poles of R(λ) coincide with the eigenvalues of
(iA).

The use of a matrix realization in the IST method allows us to establish the
separability of the kernel of a related Marchenko integral equation [1, 2, 4, 12]
by expressing that kernel in terms of a matrix exponential. We then solve that
Marchenko integral equation algebraically and observe that our procedure leads
to exact solutions to the NLS equation even when the input to the Marchenko
equation does not necessarily come from any scattering data. We refer the reader
to [3, 4] for details.

The explicit formula (2.6) provides a compact and concise way to express our
exact solutions. If such solutions are desired to be expressed in terms of exponen-
tial, trigonometric (sine and cosine), and polynomial functions of x and t, this can
also be done explicitly and easily by “unpacking” matrix exponentials in (2.6). If
the size p in the matrices A, B, C is larger than 3, such expressions become long;
however, we can still explicitly evaluate them for any matrix size p either by hand
or by using a symbolic software package such as Mathematica. The power of our
method is that we can produce exact solutions via (2.6) for any positive integer p.
In some other available methods, exact solutions are usually tried to be produced
directly in terms of elementary functions without using matrix exponentials, and
hence any concrete examples that can be produced by such other methods will be
relatively simple and we cannot expect those other methods to produce our exact
solutions when p is large.

Our method is generalizable to obtain similar explicit formulas for exact
solutions to other integrable nonlinear PDEs where the IST involves the use of
a Marchenko integral equation [1, 2, 4, 12]. For example, a similar method has
been used [5] for the half-line Korteweg-de Vries equation, and it can be applied
to other equations such as the modified Korteweg-de Vries equation and the sine-
Gordon equation. Our method is also generalizable to the matrix versions of such
integrable nonlinear PDEs. For instance, a similar method has been applied in the
third author’s Ph.D. thesis [8] to the matrix NLS equation in the focusing case
with a cubic nonlinearity.

Our method also easily handles nonsimple bound-state poles and the time
evolution of the corresponding bound-state norming constants. In the literature,
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nonsimple bound-state poles are usually avoided due to mathematical complica-
tions. We refer the reader to [13], where nonsimple bound-state poles were investi-
gated and complications were encountered. A systematic treatment of nonsimple
bound states has recently been given in the second author’s Ph.D. thesis [7].

The organization of our paper is as follows. Our main results are summarized
in Section 2 and some explicit examples are provided in Section 3. For the proofs,
further results, details, and a summary of other methods to solve the NLS equation
exactly, we refer the reader to [3, 4].

2. Main results

In this section we summarize our method to construct certain exact solutions to
the NLS equation in terms of a given triplet (A, B, C) of size p. For the details
of our method we refer the reader to [3, 4]. Without any loss of generality, we
assume that our starting triplet (A, B, C) corresponds to a minimal realization in
(1.3). Let us use a dagger to denote the matrix adjoint (complex conjugate and
matrix transpose), and let the set {aj}m

j=1 consist of the distinct eigenvalues of A,
where the algebraic multiplicity of each eigenvalue may be greater than one and
we use nj to denote that multiplicity. We only impose the restrictions that no aj

is purely imaginary and that no two distinct aj values are located symmetrically
with respect to the imaginary axis on the complex plane. Let us set λj := iaj so
that we can equivalently state our restrictions as that no λj will be real and no
two distinct λj values will be complex conjugates of each other. Our method uses
the following steps:

(i) First construct the constant p × p matrices Q and N that are the unique
solutions, respectively, to the Lyapunov equations

Q A + A†Q = C†C, (2.1)

AN + N A† = BB†. (2.2)

In fact, Q and N can be written explicitly in terms of the triplet (A, B, C) as

Q =
1
2π

∫
γ

dλ (λI + iA†)−1C†C(λI − iA)−1, (2.3)

N =
1
2π

∫
γ

dλ (λI − iA)−1BB†(λI + iA†)−1, (2.4)

where γ is any positively oriented simple closed contour enclosing all λj in such
a way that all λ∗j lie outside γ. The existence and uniqueness of the solutions to
(2.1) and (2.2) are assured by the fact that λj �= λ∗j for all j = 1, 2, . . . , m and
λj �= λ∗k for k �= j.

(ii) Construct the p × p matrix-valued function F (x, t) as

F (x, t) := e2A†x−4i(A†)2t + Q e−2Ax−4iA2tN. (2.5)
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(iii) Construct the scalar function u(x, t) via

u(x, t) := −2B†F (x, t)−1C†. (2.6)

Note that u(x, t) is uniquely constructed from the triplet (A, B, C). As seen from
(2.6), the quantity u(x, t) exists at any point on the xt-plane as long as the matrix
F (x, t) is invertible. It turns out that F (x, t) is invertible on the entire xt-plane as
long as λj �= λ∗j for all j = 1, 2, . . . , m and λj �= λ∗k for k �= j.

Let us note that the matrices Q and N given in (2.3) and (2.4) are known
in control theory as the observability Gramian and the controllability Gramian,
respectively, and that it is well known in control theory that (2.3) and (2.4) satisfy
(2.1) and (2.2), respectively. In the context of system theory, the invertibility of
Q and N is described as the observability and the controllability, respectively. In
our case, both Q and N are invertible due to the appropriate restrictions imposed
on the triplet (A, B, C), which we will see in Theorem 1 below.

Our main results are summarized in the following theorems. For the proofs
we refer the reader to [3, 4]. Although the results presented in Theorem 1 follow
from the results in the subsequent theorems, we state Theorem 1 independently
to clearly illustrate the validity of our exact solutions to the NLS equation.

Theorem 1. Consider any triplet (A, B, C) of size p corresponding to a minimal
representation in (1.3), and assume that none of the eigenvalues of A are purely
imaginary and that no two eigenvalues of A are symmetrically located with respect
to the imaginary axis. Then:

(i) The Lyapunov equations (2.1) and (2.2) are uniquely solvable, and their so-
lutions are given by (2.3) and (2.4), respectively.

(ii) The constant matrices Q and N given in (2.3) and (2.4), respectively, are
selfadjoint; i.e., Q† = Q and N † = N. Furthermore, both Q and N are
invertible.

(iii) The matrix F (x, t) defined in (2.5) is invertible on the entire xt-plane, and the
function u(x, t) defined in (2.6) is a solution to the NLS equation everywhere
on the xt-plane. Moreover, u(x, t) is analytic on the entire xt-plane and it
decays exponentially as x → ±∞ at each fixed t ∈ R.

We will say that two triplets (A, B, C) and (Ã, B̃, C̃) are equivalent if they
yield the same potential u(x, t) through (2.6). The following result shows that, as
far as constructing solutions via (2.6) is concerned, there is no loss of generality is
choosing our starting triplet (A, B, C) of size p so that it corresponds to a minimal
representation in (1.3) and that all eigenvalues aj of the matrix A have positive
real parts.

Theorem 2. Consider any triplet (Ã, B̃, C̃) of size p corresponding to a minimal
representation in (1.3), and assume that none of the eigenvalues of Ã are purely
imaginary and that no two eigenvalues of Ã are symmetrically located with re-
spect to the imaginary axis. Then, there exists an equivalent triplet (A, B, C) of
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size p corresponding to a minimal representation in (1.3) in such a way that all
eigenvalues of A have positive real parts.

The next two results given in Theorems 3 and 4 show some of the advantages
of using a triplet (A, B, C) where all eigenvalues of A have positive real parts.
Concerning Theorem 2, we remark that the triplet (A, B, C) can be obtained from
(Ã, B̃, C̃) and vice versa with the help of Theorem 5 or Theorem 6 given below.

Theorem 3. Consider any triplet (A, B, C) of size p corresponding to a minimal
representation in (1.3). Assume that all eigenvalues of A have positive real parts.
Then:

(i) The solutions Q and N to (2.1) and (2.2), respectively, can be expressed in
terms of the triplet (A, B, C) as

Q =
∫ ∞

0

ds [Ce−As]†[Ce−As], N =
∫ ∞

0

ds [e−AsB][e−AsB]†. (2.7)

(ii) Q and N are invertible, selfadjoint matrices.
(iii) Any square submatrix of Q containing the (1, 1)-entry or (p, p)-entry of Q is

invertible. Similarly, any square submatrix of N containing the (1, 1)-entry
or (p, p)-entry of N is invertible.

Theorem 4. Consider a triplet (Ã, B̃, C̃) of size p corresponding to a minimal
representation in (1.3) and that all eigenvalues aj of the matrix Ã have positive
real parts and that the multiplicity of aj is nj for j = 1, 2, . . . , m. Then, there exists
an equivalent triplet (A, B, C) of size p corresponding to a minimal representation
in (1.3) in such a way that A is in a Jordan canonical form with each Jordan block
containing a distinct eigenvalue aj and having −1 in the superdiagonal entries,
and the entries of B consist of zeros and ones. More specifically, we have

A =

⎡⎢⎢⎢⎣
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
B1

B2

...
Bm

⎤⎥⎥⎥⎦ , C =
[
C1 C2 . . . Cm

]
, (2.8)

Aj :=

⎡⎢⎢⎢⎢⎢⎣
aj −1 0 . . . 0
0 aj −1 . . . 0
0 0 aj . . . 0
...

...
...

. . .
...

0 0 0 . . . aj

⎤⎥⎥⎥⎥⎥⎦ , Bj :=

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ , Cj :=
[
cj(nj−1) . . . cj1 cj0

]
,

where Aj has size nj ×nj , Bj has size nj ×1, Cj has size 1×nj, and the (complex)
constant cj(nj−1) is nonzero.

We will refer to the specific form of the triplet (A, B, C) given in (2.8) as a
standard form.
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The transformation between two equivalent triplets can be obtained with
the help of the following two theorems. First, in Theorem 5 below we consider
the transformation where all eigenvalues of A are reflected with respect to the
imaginary axis. Then, in Theorem 6 we consider transformations where only some
of the eigenvalues of A are reflected with respect to the imaginary axis.

Theorem 5. Assume that the triplet (A, B, C) of size p corresponds to a minimal
realization in (1.3) and that all eigenvalues of A have positive real parts. Consider
the transformation

(A, B, C, Q, N, F ) �→ (Ã, B̃, C̃, Q̃, Ñ , F̃ ), (2.9)

where (Q, N) corresponds to the unique solution to the Lyapunov system in (2.1)
and (2.2), the quantity F is as in (2.5),

Ã = −A†, B̃ = −N−1B, C̃ = −CQ−1, Q̃ = −Q−1, Ñ = −N−1,

and F̃ and ũ are as in (2.5) and (2.6), respectively, but by using (Ã, B̃, C̃, Q̃, Ñ)
instead of (A, B, C, Q, N) on the right-hand sides. We then have the following:

(i) The matrices Q̃ and Ñ are selfadjoint and invertible. They satisfy the respec-
tive Lyapunov equations{

Q̃Ã + Ã†Q̃ = C̃†C̃,

ÃÑ + ÑÃ† = B̃B̃†.
(2.10)

(ii) The quantity F is transformed as F̃ = Q−1FN−1. The matrix F̃ is invertible
at every point on the xt-plane.

To consider the case where only some of eigenvalues of A are reflected with
respect to the imaginary axis, let us again start with a triplet (A, B, C) of size p
and corresponding to a minimal realization in (1.3), where the eigenvalues of A
all have positive real parts. Without loss of any generality, let us assume that we
partition the matrices A, B, C as

A =

[
A1 0

0 A2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, (2.11)

so that the q×q block diagonal matrix A1 contains the eigenvalues that will remain
unchanged and A2 contains the eigenvalues that will be reflected with respect to
the imaginary axis on the complex plane, the submatrices B1 and C1 have sizes
q × 1 and 1 × q, respectively, and hence A2, B2, C2 have sizes (p − q) × (p − q),
(p − q) × 1, 1 × (p − q), respectively, for some integer q not exceeding p. Let us
clarify our notational choice in (2.11) and emphasize that the partitioning in (2.11)
is not the same partitioning used in (2.8). Using the partitioning in (2.11), let us
write the corresponding respective solutions to (2.1) and (2.2) as

Q =

[
Q1 Q2

Q3 Q4

]
, N =

[
N1 N2

N3 N4

]
, (2.12)
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where Q1 and N1 have sizes q× q, Q4 and N4 have sizes (p− q)× (p− q), etc. Note
that because of the selfadjointness of Q and N stated in Theorem 1, we have

Q†1 = Q1, Q†2 = Q3, Q†4 = Q4, N †
1 = N1, N †

2 = N3, N †
4 = N4.

Furthermore, from Theorem 3 it follows that Q1, Q4, N1, and N4 are all invertible.

Theorem 6. Assume that the triplet (A, B, C) partitioned as in (2.11) corresponds
to a minimal realization in (1.3) and that all eigenvalues of A have positive real
parts. Consider the transformation (2.9) with (Ã, B̃, C̃) having similar block rep-
resentations as in (2.11), (Q, N) as in (2.12) corresponding to the unique solution
to the Lyapunov system in (2.1) and (2.2),

Ã1 = A1, Ã2 = −A†2, B̃1 = B1 − N2N
−1
4 B2, B̃2 = −N−1

4 B2,

C̃1 = C1 − C2Q
−1
4 Q3, C̃2 = −C2Q

−1
4 ,

and Q̃ and Ñ partitioned in a similar way as in (2.12) and given as

Q̃1 = Q1 − Q2Q
−1
4 Q3, Q̃2 = −Q2Q

−1
4 , Q̃3 = −Q−1

4 Q3, Q̃4 = −Q−1
4 ,

Ñ1 = N1 − N2N
−1
4 N3, Ñ2 = −N2N

−1
4 , Ñ3 = −N−1

4 N3, Ñ4 = −N−1
4 ,

and F̃ and ũ as in (2.5) and (2.6), respectively, but by using (Ã, B̃, C̃, Q̃, Ñ) instead
of (A, B, C, Q, N) on the right-hand sides. We then have the following:

(i) The matrices Q̃ and Ñ are selfadjoint and invertible. They satisfy the respec-
tive Lyapunov equations given in (2.10).

(ii) The quantity F is transformed according to

F̃ =

[
I −Q2Q

−1
4

0 −Q−1
4

]
F

[
I 0

−N−1
4 N3 −N−1

4

]
,

and the matrix F̃ is invertible at every point on the xt-plane.

(iii) The triplets (A, B, C) and (Ã, B̃, C̃) are equivalent; i.e., ũ(x, t) = u(x, t).

3. Examples

In this section we illustrate our method of constructing exact solutions to the NLS
equation with some concrete examples.

Example 1. The well-known “n-soliton” solution to the NLS equation is obtained
by choosing the triplet (A, B, C) as

A = diag{a1, a2, . . . , an}, B† =
[
1 1 . . . 1

]
, C =

[
c1 c2 . . . cn

]
,

where aj are distinct (complex) nonzero constants with positive real parts, B
contains n entries, and the quantities cj are complex constants. Note that diag is
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used to denote the diagonal matrix. In this case, using (2.5) and (2.7) we evaluate
the (j, k)-entries of the n × n matrix-valued functions Q, N, and F (x, t) as

Njk =
1

aj + a∗k
, Qjk =

c∗j ck

a∗j + ak
, Fjk = δjke2a∗

j x−4i(a∗
j )2t +

n∑
s=1

c∗jcs e−2asx−4ia2
st

(a∗j + as)(as + a∗k)
,

where δjk denotes the Kronecker delta. Having obtained Q, N, and F (x, t), we
construct the solution u(x, t) to the NLS equation via (2.6) or equivalently as the
ratio of two determinants as

u(x, t) =
2

detF (x, t)

∣∣∣∣∣ 0 B†

C† F (x, t)

∣∣∣∣∣ . (3.1)

For example, when n = 1, from (3.1) we obtain the single soliton solution

u(x, t) =
−8c∗1(Re[a1])2 e−2a∗

1x+4i(a∗
1)2t

4(Re[a1])2 + |c1|2 e−4x(Re[a1])+8t(Im[a2
1])

,

where Re and Im denote the real and imaginary parts, respectively. From (1.1)
we see that if u(x, t) is a solution to (1.1), so is eiθu(x, t) for any real constant θ.
Hence, the constant phase factor eiθ can always be omitted from the solution to
(1.1) without any loss of generality. As a result, we can write the single soliton
solution also in the form

u(x, t) = 2 Re[a1] eiβ(x,t)sech
(

2 Re[a1](x − 4t Im[a1]) − log
( |c1|

2Re[a1]

))
,

where it is seen that u(x, t) has amplitude 2 Re[a1] and moves with velocity 4 Im[a1]
and we have

β(x, t) := 2xIm[a1] + 4t Re[a2
1].

Example 2. For the triplet (A, B, C) given by

A =

[
2 0

0 −1

]
, B =

[
1

1

]
, C =

[
1 −1

]
, (3.2)

we evaluate Q and N explicitly by solving (2.1) and (2.2), respectively, as

N =

[
1/4 1

1 −1/2

]
, Q =

[
1/4 −1

−1 −1/2

]
,

and obtain F (x, t) by using (2.5) as

F (x, t) =

⎡⎢⎣e4x−16it − e2x−4it +
1
16

e−4x−16it 1
4

e−4x−16it +
1
2

e2x−4it

−1
4

e−4x−16it − 1
2

e2x−4it e−2x−4it − e−4x−16it +
1
4

e2x−4it

⎤⎥⎦ .

Finally, using (2.6), we obtain the corresponding solution to the NLS equation as

u(x, t) =
8e4it(9e−4x + 16e4x) − 32e16it(4e−2x + 9e2x)

−128 cos(12t) + 4e−6x + 16e6x + 81e−2x + 64e2x
. (3.3)
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It can independently be verified that u(x, t) given in (3.3) satisfies the NLS equa-
tion on the entire xt-plane.

With the help of the results stated in Section 2, we can determine triplets
(Ã, B̃, C̃) that are equivalent to the triplet in (3.2).

The following triplets all yield the same u(x, t) given in (3.3):

(i) Ã =
[
2 0
0 1

]
, B̃ =

[
9/α1

−4/α2

]
, C̃ =

[
α1 α2

]
,

where α1 and α2 are arbitrary (complex) nonzero parameters. Note that both
eigenvalues of Ã are positive, whereas only one of the eigenvalues of A in (3.2)
is positive.

(ii) Ã =
[
−2 0
0 1

]
, B̃ =

[
16/(9α3)
−4/(9α4)

]
, C̃ =

[
α3 α4

]
,

where α3 and α4 are arbitrary (complex) nonzero parameters. Note that the
eigenvalues of Ã in this triplet are negatives of the eigenvalues of A given in
(3.2).

(iii) Ã =
[
2 0
0 −1

]
, B̃ =

[
1/α5

−1/α6

]
, C̃ =

[
α5 α6

]
,

where α5 and α6 are arbitrary (complex) nonzero parameters. Note that Ã
here agrees with A in (3.2).

(iv) Ã =
[
−2 0
0 −1

]
, B̃ =

[
16/α7

−9/α8

]
, C̃ =

[
α7 α8

]
,

where α7 and α8 are arbitrary (complex) nonzero parameters. Note that both
eigenvalues of Ã are negative.

(v) Equivalent to (3.2) we also have the triplet (Ã, B̃, C̃) given by

Ã =

⎡⎣ α9 α10

(1 − α9)(α9 − 2)
α10

3 − α9

⎤⎦,

B̃ =

[
5α2

10α11 + α10α12 − 5α9α10α12

14α10α11 − 5α9α10α11 + 10α12 − 15α9α12 + 5α2
9α12

]
α2

10α
2
11 + 3α10α11α12 − 2α9α10α11α12 + 2α2

12 − 3α9α2
12 + α2

9α
2
12

,

C̃ =
[
α11 α12

]
,

where α9, . . . , α12 are arbitrary parameters with the restriction that
α10α11α12 �= 0, which guarantees that the denominator of B̃ is nonzero;
when α10 = 0 we must have α11α12 �= 0 and choose α9 as 2 or 1. In fact, the
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minimality of the triplet (Ã, B̃, C̃) guarantees that B̃ is well defined. For ex-
ample, the triplet is not minimal if α11α12 = 0. We note that the eigenvalues
of Ã are 2 and 1 and that Ã here is similar to the matrix Ã in the equivalent
triplet given in (i).

Other triplets equivalent to (3.2) can be found as in (v) above, by exploiting
the similarity for the matrix Ã given in (ii), (iii), and (iv), respectively, and by
using (1.3) to determine the corresponding B̃ and C̃ in the triplet.
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Abstract. The connection between the standard H∞-problem in control the-
ory and Nevanlinna-Pick interpolation in operator theory was established in
the 1980s, and has led to a fruitful cross-pollination between the two fields
since. In the meantime, research in H∞-control theory has moved on to the
study of robust control for systems with structured uncertainties and to var-
ious types of multidimensional systems, while Nevanlinna-Pick interpolation
theory has moved on independently to a variety of multivariable settings. Here
we review these developments and indicate the precise connections which sur-
vive in the more general multidimensional/multivariable incarnations of the
two theories.
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13F25, 47A56, 47A63, 93B52, 93D15.

Keywords. Model-matching problem, Youla-Kučera parametrization of sta-
bilizing controllers, H∞-control problem, structured singular value, struc-
tured uncertainty, Linear-Fractional-Transformation model, stabilizable, de-
tectable, robust stabilization, robust performance, frequency domain, state
space, Givone-Roesser commutative/noncommutative multidimensional lin-
ear system, gain-scheduling, Finsler’s lemma.

1. Introduction

Starting in the early 1980s with the seminal paper [139] of George Zames, there
occurred an active interaction between operator theorists and control engineers in
the development of the early stages of the emerging theory of H∞-control. The
cornerstone for this interaction was the early recognition by Francis-Helton-Zames
[65] that the simplest case of the central problem of H∞-control (the sensitivity

Communicated by L. Rodman.
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minimization problem) is one and the same as a Nevanlinna-Pick interpolation
problem which had already been solved in the early part of the twentieth century
(see [110, 105]). For the standard problem of H∞-control it was known early on
that it could be brought to the so-called Model-Matching form (see [53, 64]). In
the simplest cases, the Model-Matching problem converts easily to a Nevanlinna-
Pick interpolation problem of classical type. Handling the more general problems
of H∞-control required extensions of the theory of Nevanlinna-Pick interpolation
to tangential (or directional) interpolation conditions for matrix-valued functions;
such extensions of the interpolation theory were pursued by both engineers and
mathematicians (see, e.g., [26, 58, 90, 86, 87]). Alternatively, the Model-Matching
problem can be viewed as a Sarason problem which is suitable for application of
Commutant Lifting theory (see [125, 62]). The approach of [64] used an additional
conversion to a Nehari problem where existing results on the solution of the Nehari
problem in state-space coordinates were applicable (see [69, 33]). The book of
Francis [64] was the first book on H∞-control and provides a good summary of
the state of the subject in 1987.

While there was a lot of work emphasizing the connection of the H∞-problem
with interpolation and the related approach through J-spectral factorization ([26,
90, 91, 86, 87, 33, 24]), we should point out that the final form of the H∞-theory
parted ways with the connection with Nevanlinna-Pick interpolation. When cal-
culations were carried out in state-space coordinates, the reduction to Model-
Matching form via the Youla-Kučera parametrization of stabilizing controllers
led to inflation of state-space dimension; elimination of non-minimal state-space
nodes by finding pole-zero cancellations demanded tedious brute-force calcula-
tions (see [90, 91]). A direct solution in state-space coordinates (without reduc-
tion to Model-Matching form and any explicit connection with Nevanlinna-Pick
interpolation) was finally obtained by Ball-Cohen [24] (via a J-spectral factor-
ization approach) and in the more definitive coupled-Riccati-equation form of
Doyle-Glover-Khargonekar-Francis [54]. This latter paper emphasizes the parallels
with older control paradigms (e.g., the Linear-Quadratic-Gaussian and Linear-
Quadratic-Regulator problems) and obtained parallel formulas for the related H2-
problem. The J-spectral factorization approach was further developed in the work
of Kimura, Green, Glover, Limebeer, and Doyle [87, 70, 71]. A good review of the
state of the theory to this point can be found in the books of Zhou-Doyle-Glover
[141] and Green-Limebeer [72].

The coupled-Riccati-equation solution however has now been superseded by
the Linear-Matrix-Inequality (LMI) solution which came shortly thereafter; we
mention specifically the papers of Iwasaki-Skelton [78] and Gahinet-Apkarian [66].
This solution does not require any boundary rank conditions entailed in all the ear-
lier approaches and generalizes in a straightforward way to more general settings
(to be discussed in more detail below). The LMI form of the solution is particu-
larly appealing from a computational point of view due to the recent advances in
semidefinite programming (see [68]). The book of Dullerud-Paganini [57] gives an
up-to-date account of these latest developments.
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Research in H∞-control has moved on in a number of different new direc-
tions, e.g., extensions of the H∞-paradigm to sampled-data systems [47], nonlinear
systems [126], hybrid systems [23], stochastic systems [76], quantum stochastic sys-
tems [79], linear repetitive processes [123], as well as behavioral frameworks [134].
Our focus here will be on the extensions to robust control for systems with struc-
tured uncertainties and related H∞-control problems for multidimensional (N -
D) systems – both frequency-domain and state-space settings. In the meantime,
Nevanlinna-Pick interpolation theory has moved on to a variety of multivariable
settings (polydisk, ball, noncommutative polydisk/ball); we mention in particular
the papers [1, 49, 113, 3, 35, 19, 20, 21, 22, 30].

As the transfer function for a multidimensional system is a function of sev-
eral variables, one would expect that the same connections familiar from the 1-
D/single-variable case should also occur in these more general settings; however,
while there had been some interaction between control theory and several-variable
complex function theory in the older area of systems over rings (see [83, 85, 46]),
to this point, with a few exceptions [73, 74, 32], there has not been such an interac-
tion in connection with H∞-control for N -D systems and related such topics. With
this paper we wish to make precise the interconnections which do exist between
the H∞-theory and the interpolation theory in these more general settings. As we
shall see, some aspects which are taken for granted in the 1-D/single-variable case
become much more subtle in the N -D/multivariable case. Along the way we shall
encounter a variety of topics that have gained attention recently, and sometimes
less recently, in the engineering literature.

Besides the present Introduction, the paper consists of five sections which we
now describe:

(1) In Section 2 we lay out four specific results for the classical 1-D case;
these serve as models for the type of results which we wish to generalize to the
N -D/multivariable settings.

(2) In Section 3 we survey the recent results of Quadrat [117, 118, 119, 120,
121, 122] on internal stabilization and parametrization of stabilizing controllers in
an abstract ring setting. The main point here is that it is possible to parametrize
the set of all stabilizing controllers in terms of a given stabilizing controller even
in settings where the given plant may not have a double coprime factorization –
resolving some issues left open in the book of Vidyasagar [136]. In the case where
a double-coprime factorization is available, the parametrization formula is more
efficient. Our modest new contribution here is to extend the ideas to the setting
of the standard problem of H∞-control (in the sense of the book of Francis [64])
where the given plant is assumed to have distinct disturbance and control inputs
and distinct error and measurement outputs.

(3) In Section 4 we look at the internal-stabilization/H∞-control problem for
multidimensional systems. These problems have been studied in a purely frequency-
domain framework (see [92, 93]) as well as in a state-space framework (see [81, 55,
56]). In Subsection 4.1, we give the frequency-domain formulation of the problem.
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When one takes the stable plants to consist of the ring of structurally stable ra-
tional matrix functions, the general results of Quadrat apply. In particular, for
this setting stabilizability of a given plant implies the existence of a double co-
prime factorization (see [119]). Application of the Youla-Kučera parametrization
then leads to a Model-Matching form and, in the presence of some boundary rank
conditions, the H∞-problem converts to a polydisk version of the Nevanlinna-Pick
interpolation problem. Unlike the situation in the classical single-variable case,
this interpolation problem has no practical necessary-and-sufficient solution crite-
rion and in practice one is satisfied with necessary and sufficient conditions for the
existence of a solution in the more restrictive Schur-Agler class (see [1, 3, 35]).

In Subsection 4.2 we formulate the internal-stabilization/H∞-control prob-
lem in Givone-Roesser state-space coordinates. We indicate the various subtleties
involved in implementing the state-space version [104, 85] of the double-coprime
factorization and associated Youla-Kučera parametrization of the set of stabiliz-
ing controllers. With regard to the H∞-control problem, unlike the situation in
the classical 1-D case, there is no useable necessary and sufficient analysis for so-
lution of the problem; instead what is done (see, e.g., [55, 56]) is the use of an
LMI/Bounded-Real-Lemma analysis which provides a convenient set of sufficient
conditions for solution of the problem. This sufficiency analysis in turn amounts
to an N -D extension of the LMI solution [78, 66] of the 1-D H∞-control problem
and can be viewed as a necessary and sufficient analysis of a compromise problem
(the “scaled” H∞-problem).

While stabilization and H∞-control problems have been studied in the state-
space setting [81, 55, 56] and in the frequency-domain setting [92, 93] separately,
there does not seem to have been much work on the precise connections between
these two settings. The main point of Subsection 4.3 is to study this relationship;
while solving the state-space problem implies a solution of the frequency-domain
problem, the reverse direction is more subtle and it seems that only partial results
are known. Here we introduce a notion of modal stabilizability and modal detectabil-
ity (a modification of the notions of modal controllability and modal observability
introduced by Kung-Levy-Morf-Kailath [88]) to obtain a partial result on relat-
ing a solution of the frequency-domain problem to a solution of the associated
state-space problem. This result suffers from the same weakness as a correspond-
ing result in [88]: just as the authors in [88] were unable to prove that minimal
(i.e., simultaneously modally controllable and modally observable) realizations for
a given transfer matrix exist, so also we are unable to prove that a simultaneously
modally stabilizable and modally detectable realization exists. A basic difficulty
in translating from frequency-domain to state-space coordinates is the failure of
the State-Space-Similarity theorem and related Kalman state-space reduction for
N -D systems. Nevertheless, the result is a natural analogue of the corresponding
1-D result.

There is a parallel between the control-theory side and the interpolation-
theory side in that in both cases one is forced to be satisfied with a compromise
solution: the scaled-H∞ problem on the control-theory side, and the Schur-Agler
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class (rather than the Schur class) on the interpolation-theory side. We include
some discussion on the extent to which these compromises are equivalent.

(4) In Section 5 we discuss several 1-D variations on the internal-stabilization
and H∞-control problem which lead to versions of the N -D/multivariable prob-
lems discussed in Section 4. It was observed early on that an H∞-controller has
good robustness properties, i.e., an H∞-controller not only provides stability of the
closed-loop system associated with the given (or nominal) plant for which the con-
trol was designed, but also for a whole neighborhood of plants around the nominal
plant. This idea was refined in a number of directions, e.g., robustness with respect
to additive or multiplicative plant uncertainty, or with respect to uncertainty in a
normalized coprime factorization of the plant (see [100]). Another model for an un-
certainty structure is the Linear-Fractional-Transformation (LFT) model used by
Doyle and coworkers (see [97, 98]). Here a key concept is the notion of structured
singular value μ(A) for a finite square matrix A introduced by Doyle and Safonov
[52, 124] which simultaneously generalizes the norm and the spectral radius de-
pending on the choice of uncertainty structure (a C∗-algebra of matrices with a
prescribed block-diagonal structure); we refer to [107] for a comprehensive survey.
If one assumes that the controller has on-line access to the uncertainty parameters
one is led to a gain-scheduling problem which can be identified as the type of mul-
tidimensional control problem discussed in Section 4.2 – see [106, 18]; we survey
this material in Subsection 5.1. In Subsection 5.2 we review the purely frequency-
domain approach of Helton [73, 74] toward gain-scheduling which leads to the
frequency-domain internal-stabilization/H∞-control problem discussed in Section
4.1. Finally, in Section 5.3 we discuss a hybrid frequency-domain/state-space model
for structured uncertainty which leads to a generalization of Nevanlinna-Pick in-
terpolation for single-variable functions where the constraint that the norm be
uniformly bounded by 1 is replaced by the constraint that the μ-singular value be
uniformly bounded by 1; this approach has only been analyzed for very special
cases of the control problem but does lead to interesting new results for oper-
ator theory and complex geometry in the work of Bercovici-Foias-Tannenbaum
[38, 39, 40, 41], Agler-Young [5, 6, 7, 8, 9, 10, 11, 12, 13], Huang-Marcantognini-
Young [77], and Popescu [114].

(5) The final Section 6 discusses an enhancement of the LFT-model for struc-
tured uncertainty to allow dynamic time-varying uncertainties. If the controller is
allowed to have on-line access to these more general uncertainties, then the so-
lution of the internal-stabilization/H∞-control problem has a form completely
analogous to the classical 1-D case. Roughly, this result corresponds to the fact
that, with this noncommutative enhanced uncertainty structure, the a priori up-
per bound μ̂(A) for the structured singular value μ(A) is actually equal to μ(A),
despite the fact that for non-enhanced structures, the gap between μ and μ̂ can
be arbitrarily large (see [133]). In this precise form, the result appears for the
first time in the thesis of Paganini [108] but various versions of this type of result
have also appeared elsewhere (see [37, 42, 60, 99, 129]). We discuss this enhanced
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noncommutative LFT-model in Subsection 6.1. In Subsection 6.2 we introduce a
noncommutative frequency-domain control problem in the spirit of Chapter 4 of
the thesis of Lu [96], where the underlying polydisk occurring in Section 4.1 is now
replaced by the noncommutative polydisk consisting of all d-tuples of contraction
operators on a fixed separable infinite-dimensional Hilbert space K and the space
of H∞-functions is replaced by the space of scalar multiples of the noncommuta-
tive Schur-Agler class introduced in [28]. Via an adaptation of the Youla-Kučera
parametrization of stabilizing controllers, the internal-stabilization/H∞-control
problem can be reduced to a Model-Matching form which has the interpretation
as a noncommutative Sarason interpolation problem. In the final Subsection 6.3,
we show how the noncommutative state-space problem is exactly equivalent to the
noncommutative frequency-domain problem and thereby obtain an analogue of
the classical case which is much more complete than for the commutative-variable
case given in Section 4.3. In particular, if the problem data are given in terms
of state-space coordinates, the noncommutative Sarason problem can be solved
as an application of the LMI solution of the H∞-problem. While there has been
quite a bit of recent activity on this kind of noncommutative function theory (see,
e.g., [14, 22, 75, 82, 115, 116]), the noncommutative Sarason problem has to this
point escaped attention; in particular, it is not clear how the noncommutative
Nevanlinna-Pick interpolation problem studied in [22] is connected with the non-
commutative Sarason problem.

Finally we mention that each section ends with a “Notes” subsection which
discusses more specialized points and makes some additional connections with
existing literature.

2. The 1-D systems/single-variable case

Let C[z] be the space of polynomials with complex coefficients and C(z) the quo-
tient field consisting of rational functions in the variable z. Let RH∞ be the
subring of stable elements of C(z) consisting of those rational functions which are
analytic and bounded on the unit disk D, i.e., with no poles in the closed unit
disk D. We assume to be given a plant G =

[
G11 G12
G21 G22

]
: W ⊕U → Z ⊕ Y which is

given as a block matrix of appropriate size with entries from C(z). Here the spaces
U , W , Z and Y have the interpretation of control-signal space, disturbance-signal
space, error-signal space and measurement-signal space, respectively, and consist
of column vectors of given sizes nU , nW , nZ and nY , respectively, with entries
from C(z). For this plant G we seek to design a controller K : Y → U , also given
as a matrix over C(z), that stabilizes the feedback system Σ(G, K) obtained from
the signal-flow diagram in Figure 1 in a sense to be defined precisely below.

Note that the various matrix entries Gij of G are themselves matrices with
entries from C(z) of compatible sizes (e.g., G11 has size nZ × nW) and K is a
matrix over C(z) of size nU × nY .
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Figure 1. Feedback with tap signals

The system equations associated with the signal-flow diagram of Figure 1 can
be written as ⎡⎣I −G12 0

0 I −K
0 −G22 I

⎤⎦⎡⎣z
u
y

⎤⎦ =

⎡⎣G11 0 0
0 I 0

G21 0 I

⎤⎦⎡⎣w
v1

v2

⎤⎦ . (2.1)

Here v1 and v2 are tap signals used to detect stability properties of the internal
signals u and y. We say that the system Σ(G, K) is well posed if there is a well-
defined map from

[
w
v1
v2

]
to
[ z

u
y

]
. It follows from a standard Schur complement

computation that the system is well posed if and only if det(I − G22K) �= 0, and
that in that case the map from

[
w
v1
v2

]
to
[ z

u
y

]
is given by⎡⎣z

u
y

⎤⎦ = Θ(G, K)

⎡⎣w
v1

v2

⎤⎦
where

Θ(G,K) :=

⎡⎣I −G12 0
0 I −K
0 −G22 I

⎤⎦−1 ⎡⎣G11 0 0
0 I 0

G21 0 I

⎤⎦
=

⎡⎣G11 + G12K(I − G22K)−1G21 G12[I + K(I − G22K)−1G22] G12K(I − G22K)−1

K(I − G22K)−1G21 I + K(I − G22K)−1G22 K(I − G22K)−1

(I − G22K)−1G21 (I − G22K)−1G22 (I − G22K)−1

⎤⎦
=

⎡⎣G11 + G12(I − KG22)
−1KG21 G12(I − KG22)

−1 G12(I − KG22)
−1K

(I − KG22)
−1KG21 (I − KG22)

−1 (I − KG22)
−1K

[I + G22(I − KG22)
−1K]G21 G22(I − KG22)

−1 I + G22(I − KG22)
−1K

⎤⎦ .

(2.2)

We say that the system Σ(G, K) is internally stable if Σ(G, K) is well posed and,
in addition, if the map Θ(G, K) maps RH∞

W ⊕RH∞
U ⊕RH∞

Y into RH∞
Z ⊕RH∞

U ⊕
RH∞

Y , i.e., stable inputs w, v1, v2 are mapped to stable outputs z, u, y. Note that
this is the same as the condition that the entries of Σ(G, K) be in RH∞.

We say that the system Σ(G, K) has performance if Σ(G, K) is internally
stable and in addition the transfer function Tzw from w to z has supremum-norm
over the unit disk bounded by some tolerance which we normalize to be equal to 1:

‖Tzw‖∞ := sup{‖Tzw(λ)‖ : λ ∈ D} ≤ 1.
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Here ‖Tzw(λ)‖ refers to the induced operator norm, i.e., the largest singular value
for the matrix Tzw(λ). We say that the system Σ(G, K) has strict performance if in
addition ‖Tzw‖∞ < 1. The stabilization problem then is to describe all (if any exist)
internally stabilizing controllers K for the given plant G, i.e., all K ∈ C(z)nU×nY so
that the associated closed-loop system Σ(G, K) is internally stable. The standard
H∞-problem is to find all internally stabilizing controllers which in addition achieve
performance ‖Tzw‖∞ ≤ 1. The strictly suboptimal H∞-problem is to describe all
internally stabilizing controllers which also achieve strict performance ‖Tzw‖∞ < 1.

2.1. The model-matching problem

Let us now consider the special case where G22 = 0, so that G has the form
G =

[
G11 G12
G21 0

]
. In this case well-posedness is automatic and Θ(G, K) simplifies to

Θ(G, K) =

⎡⎣ G11 + G12KG21 G12 G12K
KG21 I K
G21 0 I

⎤⎦ .

Thus internal stability for the closed-loop system Σ(G, K) is equivalent to stability
of the four transfer matrices G11, G12, G21 and K. Hence internal stabilizability
of G is equivalent to stability of G11, G12 and G21; when the latter holds a given
K internally stabilizes G if and only if K itself is stable.

Now assume that G11, G12 and G21 are stable. Then the H∞-performance
problem for G consists of finding stable K so that ‖G11 + G12KG21‖∞ ≤ 1. Fol-
lowing the terminology of [64], the problem is called the Model-Matching Problem.
Due to the influence of the paper [125], this problem is usually referred to as the
Sarason problem in the operator theory community; in [125] it is shown explicitly
how the problem can be reduced to an interpolation problem.

In general control problems the assumption that G22 = 0 is an unnatural
assumption. However, after making a change of coordinates using the Youla-Kučera
parametrization or the Quadrat parametrization, discussed below, it turns out that
the general H∞-problem can be reduced to a model-matching problem.

2.2. The frequency-domain stabilization and H∞ problem

The following result on characterization of stabilizing controllers is well known
(see, e.g., [64] or [136, 137] for a more general setting).

Theorem 2.1. Suppose that we are given a rational matrix function G =
[

G11 G12
G21 G22

]
of size (nZ + nY) × (nW + nU ) with entries in C(z) as above. Assume that G is
stabilizable, i.e., there exists a rational matrix function K of size nU × nY so that
the nine transfer functions in (2.2) are all stable. Then a given rational matrix
function K stabilizes G if and only if K stabilizes G22, i.e., Θ(G, K) in (2.2) is


