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Abstract. The aim of this expository paper is to discuss various aspects of the
Hopkins-Levitzki Theorem (H-LT), including the Relative H-LT, the Absolute
or Categorical H-LT, the Latticial H-LT, as well as the Krull dimension-like
H-LT.
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1. Introduction

In this expository paper we present a survey of the work done in the last forty
years on various extensions of the Classical Hopkins-Levitzki Theorem: Relative,
Absolute or Categorical, Latticial, and Krull dimension-like.

We shall also illustrate a general strategy which consists on putting a module-
theoretical theorem in a latticial frame, in order to translate that theorem to
Grothendieck categories and module categories equipped with hereditary torsion
theories.
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awarded by the Consiliul Naţional al Cercetării Ştiinţifice ı̂n Învăţământul Superior (CNCSIS),
România.
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The (Molien-)Wedderburn-Artin Theorem

One can say that the Modern Ring Theory begun in 1908, when Joseph Henry
Maclagan Wedderburn (1882–1948) proved his celebrated Classification Theorem
for finitely dimensional semi-simple algebras over a field F (see [49]). Before that,
in 1893, Theodor Molien or Fedor Eduardovich Molin (1861–1941) proved the
theorem for F = C (see [36]).

In 1921, Emmy Noether (1882–1935) considers in her famous paper [42], for
the first time in the literature, the Ascending Chain Condition (ACC)

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

for ideals in a commutative ring R.
In 1927, Emil Artin (1898–1962) introduces in [17] the Descending Chain

Condition (DCC)

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·
for left/right ideals of a ring and extends the Wedderburn Theorem to rings satis-
fying both the DCC and ACC for left/right ideals, observing that both ACC and
DCC are a good substitute for finite dimensionality of algebras over a field:

The (Molien-)Wedderburn-Artin Theorem. A ring R is semi-simple if and
only if R is isomorphic to a finite direct product of full matrix rings over skew-
fields

R � Mn1(D1)× · · · ×Mnk
(Dk).

Recall that by a semi-simple ring one understands a ring R which is left (or
right) Artinian and has Jacobson radical or prime radical zero. Since 1927, the
(Molien-)Wedderburn-Artin Theorem became a cornerstone of the Noncommuta-
tive Ring Theory.

In 1929, Emmy Noether observes (see [43, p. 643]) that the ACC in Artin’s
extension of the Wedderburn Theorem can be omitted: Im II. Kapitel werden die
Wedderburnschen Resultate neu gewonnen und weitergefürt, . . . . Und zwar zeigt
es sich das der “Vielfachenkettensatz” für Rechtsideale oder die damit identische
“Minimalbedingung” (in jeder Menge von Rechtsidealen gibt es mindestens ein –
in der Menge – minimales) als Endlichkeitsbedingung ausreicht (Die Wedderburn-
schen Schlußweissen lassen sich übertragen wenn “Doppelkettensatz” vorausgesezt
wird. Vgl. E. Artin [17]).

It took, however, ten years until it has been proved that always the DCC in
a unital ring implies the ACC.

The Classical Hopkins-Levitzki Theorem (H-LT)

One of the most lovely result in Ring Theory is the Hopkins-Levitzki Theorem,
abbreviated H-LT. This theorem, saying that any right Artinian ring with identity
is right Noetherian, has been proved independently in 1939 by Charles Hopkins
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[27]1 (1902–1939) for left ideals and by Jacob Levitzki [31]2 (1904–1956) for right
ideals. Almost surely, the fact that the DCC implies the ACC for one-sided ideals
in a unital ring was unknown to both E. Noether and E. Artin when they wrote
their pioneering papers on chain conditions in the 1920’s.

An equivalent form of the H-LT, referred in the sequel also as the Classical
H-LT , is the following one:
Classical H-LT. Let R be a right Artinian ring with identity, and let MR be a
right module. Then MR is an Artinian module if and only if MR is a Noetherian
module.

Proof. The standard proof of this theorem, as well as the original one of Hopkins
[27, Theorem 6.4] for M = R, uses the Jacobson radical J of R. Since R is right
Artinian, J is nilpotent and the quotient ring R/J is a semi-simple ring. Let n be a
positive integer such that Jn = 0, and consider the descending chain of submodules
of MR

M ⊇ MJ ⊇ MJ2 ⊇ · · · ⊇ MJn−1 ⊇MJn = 0.

Since the quotients MJk/MJk+1 are killed by J , k = 0, 1, . . . , n − 1, each
MJk/MJk+1 becomes a right module over the semi-simple ring R/J , so each
MJk/MJk+1 is a semi-simple (R/J)-module.

Now, observe that MR is Artinian (resp. Noetherian) ⇐⇒ all MJk/MJk+1

are Artinian (resp. Noetherian) R (or R/J)-modules. Since a semi-simple module
is Artinian if and only if it is Noetherian, it follows that MR is Artinian if and
only if it is Noetherian, which finishes the proof. �

Extensions of the H-LT

In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s the (Classical)
H-LT has been generalized and dualized as follows:
1957 Fuchs [21] shows that a left Artinian ring A, not necessarily unital, is

Noetherian if and only if the additive group of A contains no subgroup
isomorphic to the Prüfer quasi-cyclic p-group Zp∞ .

1In fact, he proved that any left Artinian ring (called by him MLI ring) with left or right identity
is left Noetherian (see Hopkins [27, Theorems 6.4 and 6.7]).
2The result is however, surprisingly, neither stated nor proved in his paper, though in the litera-
ture, including our papers, the Hopkins’ Theorem is also wrongly attributed to Levitzki. Actually,
what Levitzki proved was that the ACC is superfluous in most of the main results of the original
paper of Artin [17] assuming both the ACC and DCC for right ideals of a ring. This is also
very clearly stated in the Introduction of his paper: “In the present note it is shown that the
maximum condition can be omitted without affecting the results achieved by Artin.” Note that
Levitzki considers rings which are not necessarily unital, so anyway it seems that he was even
not aware about DCC implies ACC in unital rings; this implication does not hold in general in
non unital rings, as the example of the ring with zero multiplication associated with any Prüfer
quasi-cyclic p-group Zp∞ shows. Note also that though all sources in the literature, including
Mathematical Reviews, indicate 1939 as the year of appearance of Levitzki’s paper in Compositia

Mathematica, the free reprint of the paper available at http://www.numdam.org indicates 1940 as
the year when the paper has been published.
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1972 Shock [46] provides necessary and sufficient conditions for a non unital
Artinian ring and an Artinian module to be Noetherian; his proofs avoid
the Jacobson radical of the ring and depend primarily upon the length of
a composition series.

1976 Albu and Năstăsescu [9] prove the Relative H-LT, i.e., the H-LT relative
to a hereditary torsion theory, but only for commutative unital rings, and
conjecture it for arbitrary unital rings.

1978–1979 Murase [37] and Tominaga and Murase [48] show, among others, that
a left Artinian ring A, not necessarily unital, is Noetherian if and only
J/AJ is finite (where J is the Jacobson radical of R) if and only if the
largest divisible torsion subgroup of the additive group of A is 0.

1979 Miller and Teply [35] prove the Relative H-LT for arbitrary unital rings.
1979–1980 Năstăsescu [38], [39] proves the Absolute or Categorical H-LT , i.e., the

H-LT for an arbitrary Grothendieck category.
1980 Albu [3] proves the Absolute Dual H-LT for commutative Grothendieck

categories.
1982 Faith [20] provides another module-theoretical proof of the Relative H-LT,

and gives two interesting versions of it: Δ-Σ and counter .
1984 Albu [4] establishes the Latticial H-LT for upper continuous modular lat-

tices.
1996 Albu and Smith [12] prove the Latticial H-LT for arbitrary modular lat-

tices.
1996 Albu, Lenagan, and Smith [7] establish a Krull dimension-like extension

of the Classical H-LT and Absolute H-LT.
1997 Albu and Smith [13] extend the result of Albu, Lenagan, and Smith [7]

from Grothendieck categories to upper continuous modular lattices, using
the technique of localization of modular lattices they developed in [12].

In the sequel we shall be discussing in full detail all the extensions of the HL-T
for unital rings listed above.

2. The Relative H-LT

The next result is due to Albu and Năstăsescu [9, Théorème 4.7] for commutative
rings, conjectured for noncommutative rings by Albu and Năstăsescu [9, Problème
4.8], and proved for arbitrary unital rings by Miller and Teply [35, Theorem 1.4].

Theorem 2.1. (Relative H-LT). Let R be a ring with identity, and let τ be a
hereditary torsion theory on Mod-R. If R is a right τ-Artinian ring, then every
τ-Artinian right R-module is τ-Noetherian.

Let us mention that the module-theoretical proofs available in the literature
of the Relative H-LT, namely the original one in 1979 due to Miller and Teply
[35, Theorem 1.4], and another one in 1982 due to Faith [20, Theorem 7.1 and
Corollary 7.2], are very long and complicated.
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The importance of the Relative H-LT in investigating the structure of some
relevant classes of modules, including injectives as well as projectives, is revealed
in Albu and Năstăsescu [10] and Faith [20], where the main body of both these
monographs deals with this topic.

We are now going to explain all the terms occurring in the statement above.

Hereditary torsion theories

The concept of torsion theory for Abelian categories has been introduced by S.E.
Dickson [19] in 1966. For our purposes, we present it only for module categories in
one of the many equivalent ways that can be done. Basic torsion-theoretic concepts
and results can be found in Golan [23] and Stenström [47].

All rings considered in this paper are associative with unit element 1 �= 0,
and modules are unital right modules. If R is a ring, then Mod-R denotes the
category of all right R-modules. We often write MR to emphasize that M is a
right R-module; L(MR), or just L(M), stands for the lattice of all submodules of
M . The notation N �M means that N is a submodule of M .

A hereditary torsion theory on Mod-R is a pair τ = (T , F) of nonempty
subclasses T and F of Mod-R such that T is a localizing subcategory of Mod-R
in the Gabriel’s sense [22] (this means that T is a Serre class of Mod-R which
is closed under direct sums) and F = {FR |HomR(T, F ) = 0, ∀T ∈ T }. Thus,
any hereditary torsion theory τ = (T , F) is uniquely determined by its first
component T . Recall that a nonempty subclass T of Mod-R is a Serre class if for
any short exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in Mod-R, one has
X ∈ T ⇐⇒ X ′ ∈ T & X ′′ ∈ T , and T is closed under direct sums if for any family
(Xi)i∈I , I arbitrary set, with Xi ∈ T , ∀ i ∈ I, it follows that

⊕
i∈I Xi ∈ T .

The prototype of a hereditary torsion theory is the pair (A,B) in Mod-Z,
where A is the class of all torsion Abelian groups, and B is the class of all
torsion-free Abelian groups.

Throughout this paper τ = (T , F) will be a fixed hereditary torsion theory
on Mod-R. For any module MR we denote

τ(M) :=
∑

N�M, N∈T
N.

Since T is a localizing subcategory of Mod-R, it follows that τ(M) ∈ T , and we
call it the τ -torsion submodule of M . Note that, as for Abelian groups, we have

M ∈ T ⇐⇒ τ(M) = M and M ∈ F ⇐⇒ τ(M) = 0.

The members of T are called τ -torsion modules, while the members of F are
called τ -torsion-free modules .

For any N � M we denote by N the submodule of M such that N/N =
τ(M/N), called the τ -closure or τ -saturation of N (in M). One says that N is
τ -closed or τ -saturated if N = N, or equivalently, if M/N ∈ F , and the set of all
τ -closed submodules of M is denoted by Satτ (M). It is well known that Satτ (M)
is an upper continuous modular lattice. Note that though Satτ (M) is a subset of
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the lattice L(M) of all submodules of M , it is not a sublattice, because the sum
of two τ -closed submodules of M is not necessarily τ -closed.

Definition 2.2. A module MR is said to be τ -Noetherian (resp. τ -Artinian) if
Satτ (M) is a Noetherian (resp. Artinian) poset. The ring R is said to be τ -
Noetherian (resp. τ -Artinian) if the module RR is τ -Noetherian (resp. τ -Artinian).

Recall that a partially ordered set, shortly poset, (P,�) is called Noetherian
(resp. Artinian) if it satisfies the ACC (resp. DCC), i.e., if there is no strictly
ascending (resp. descending) chain x1 < x2 < · · · (resp. x1 > x2 > · · · ) in P .

Relativization

The Relative H-LT nicely illustrates a general direction in Module Theory, namely
the so-called Relativization. Roughly speaking, this topic deals with the following
matter:

Given a property P in the lattice L(MR) investigate
the property P in the lattice Satτ (MR).

Since about forty years Module Theorists were dealing with the following problem:

Having a theorem T on modules, is its relativization τ-T true?

As we mentioned just after the statement of the Relative H-LT, its known module-
theoretical proofs are very long and complicated; so, the relativization of a result
on modules is not always a simple job, and as this will become clear with the next
statement, sometimes it may be even impossible.

Theorem 2.3. (Metatheorem). The relativization T � τ-T of a theorem T in
Module Theory is not always true/possible.

Proof. Consider the following lovely theorem (see Lenagan [30, Theorem 3.2]):

T : If R has right Krull dimension then the prime radical N(R) is nilpotent.

The relativization of T is the following:

τ -T: If R has right τ-Krull dimension then the τ-prime radical Nτ (R) is
τ-nilpotent.

Recall that Nτ (R) is the intersection of all τ -closed two-sided prime ideals of R,
and a right ideal I of R is said to be τ -nilpotent if In ∈ T for some integer n > 0.

The truth of the relativization τ -T of T has been asked by Albu and Smith
[11, Problem 4.3]. Surprisingly, the answer is “no” in general, even if R is (left
and right) Noetherian, by Albu, Krause, and Teply [6, Example 3.1]. This proves
our Metatheorem.

However, τ -T is true for any ring R and any ideal invariant hereditary
torsion theory τ , including any commutative ring R and any τ (see Albu, Krause,
and Teply [6, Section 6]). �
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3. The Absolute (or Categorical) H-LT

The next result is due to Năstăsescu, who actually gave two different short nice
proofs: [38, Corollaire 1.3] in 1979, based on the Loewy length, and [39, Corollaire
2] in 1980, based on the length of a composition series.

Theorem 3.1. (Absolute H-LT). Let G be a Grothendieck category having an
Artinian generator. Then any Artinian object of G is Noetherian.

Recall that a Grothendieck category is an Abelian category G, with exact
direct limits (or, equivalently, satisfying the axiom AB5 of Grothendieck), and
having a generator G (this means that for every object X of G there exist a set
I and an epimorphism G(I) � X). A family (Uj)j∈J of objects of G is said to
be a family of generators of G if ⊕j∈JUj is a generator of G. The Grothendieck
category G is called locally Noetherian (resp. locally Artinian) if it has a family of
Noetherian (resp. Artinian) generators. Also, recall that an object X ∈ G is said
to be Noetherian (resp. Artinian) if the lattice Sub(X) of all subobjects of X is
Noetherian (resp. Artinian).

Note that J.E. Roos [45] has produced in 1969 an example of a locally Ar-
tinian Grothendieck C category which is not locally Noetherian; thus, the so-called
Locally Absolute H-LT fails. Even if a locally Artinian Grothendieck category C
has a family of projective Artinian generators, then it is not necessarily locally
Noetherian, as an example due to Menini [33] shows. However, the Locally Ab-
solute H-LT is true if the family of Artinian generators of C is finite (because in
this case C has an Artinian generator), as well as if the Grothendieck category C
is commutative, by Albu and Năstăsescu [9, Corollaire 4.38] (see Section 6 for the
definition of a commutative Grothendieck category).

Quotient categories and the Gabriel-Popescu Theorem

Clearly, for any ring R with identity element, the category Mod-R is a Grothendieck
category. A procedure to construct new Grothendieck categories is by taking the
quotient category Mod-R/T of Mod-R modulo any of its localizing subcategories
T . The construction of the quotient category of Mod-R/T , or more generally, of
the quotient category A/C of any locally small Abelian category A modulo any
of its Serre subcategories C is quite complicated and goes back to Serre’s “langage
modulo C” (1953), Grothendieck (1957), and Gabriel (1962) [22].

Recall briefly this construction. The objects of the category A/C are the same
as those of A, while the morphisms in this category are defined not so simple: for
every objects X, Y of A, one sets

HomA/C(X, Y ) := lim−→
(X′,Y ′)∈IX,Y

HomA(X ′, Y/Y ′),

where IX,Y := {(X ′, Y ′) |X ′ � X, Y ′ � Y, X/X ′ ∈ C, Y ′ ∈ C } is considered as
an ordered set in an obvious manner, and with this order it is actually a directed
set (it is indeed a set because the given Abelian category A was supposed to be
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locally small, i.e., the class of all subobjects of every object of A is a set). Then
A/C is an Abelian category, and there exists a canonical covariant exact functor

T : A −→ A/C
defined as follows: for every objects X, Y of A and every f ∈ HomA(X, Y )
one sets T (X) := X and T (f) := the image of f in the inductive limit. It
turns out that the exact functor T annihilates C (i.e., “kills” each X ∈ C),
and, as for quotient modules, the pair (A/C, T ) is universal for exact functors,
which annihilate C, from A into Abelian categories. Moreover, the given Serre
subcategory C of A is a localizing subcategory of A if and only if the functor T
has a right adjoint, and in this case the quotient category A/C is a Grothendieck
category if A is so. In particular, for any unital ring R, the quotient category
Mod-R/T of Mod-R modulo any of its localizing subcategories T is a Grothen-
dieck category.

Roughly speaking, the renowned Gabriel-Popescu Theorem, discovered ex-
actly forty five years ago, states that in this way we obtain, up to an equivalence
of categories, all the Grothendieck categories. More precisely,

Theorem 3.2. (The Gabriel-Popescu Theorem). For any Grothendieck cat-
egory G there exist a unital ring R and a localizing subcategory T of Mod-R
such that G � Mod-R/T .

Notice that the ring R and the localizing subcategory T of Mod-R can
be obtained in the following (noncanonical) way: Let U be any generator of the
Grothendieck category G, and let RU be the ring EndG(U) of endomorphims of
U . If SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint
TU , TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Take now as R any such RU and as T such a Ker(TU ).

The reader is referred to Albu and Năstăsescu [10], Gabriel [22], and Sten-
ström [47] for the concepts, constructions, and facts presented in this subsection.

Absolutization

Let τ = (T , F) be a hereditary torsion theory on Mod-R. Then, because T is a
localizing subcategory of Mod-R one can form the quotient category Mod-R/T .
Denote by

Tτ : Mod-R −→ Mod-R/T
the canonical functor from the category Mod-R to its quotient category Mod-R/T .

Proposition 3.3. (Albu and Năstăsescu [10, Proposition 7.10]). With the notation
above, for every module MR there exists a lattice isomorphism

Satτ (M) � Sub(Tτ (M)).

In particular, M is a τ-Noetherian (resp. τ-Artinian) module if and only if Tτ (M)
is a Noetherian (resp. Artinian) object of Mod-R/T .
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Absolutization is a technique to pass from τ -relative results in Mod-R to
absolute properties in the quotient category Mod-R/T via the canonical functor
Tτ : Mod-R −→ Mod-R/T . This technique is, in a certain sense, opposite to
relativization, meaning that absolute results in a Grothendieck category G can be
translated, via the Gabriel-Popescu Theorem, into τ -relative results in Mod-R as
follows:

Let U be any generator of the Grothendieck category G, let RU be the
ring EndG(U) of endomorphims of U . As we have already mentioned above, if
SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint TU ,
TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Let now τU be the hereditary torsion theory (uniquely)
determined by the localizing subcategory Ker(TU ) of Mod-RU . Many properties
of an object X ∈ G can now be translated as τU -relative properties of the right
RU -module SU (X); e.g., X ∈ G is an Artinian (resp. Noetherian) object if and
only if SU (X) is a τU -Artinian (resp. τU -Noetherian) right RU -module. Observe
that this relativization strongly depends on the choice of the generator U of G.

As mentioned before, the two module-theoretical proofs available in the lit-
erature of the Relative H-LT due to Miller and Teply [35] and Faith [20], are very
long and complicated. On the contrary, the two categorical proofs of the Absolute
H-LT due to Năstăsescu [38], [39] are very short and simple.

Using the interaction relativization ←→ absolutization, we shall prove in Sec-
tion 5 that Relative H-LT ⇐⇒ Absolute H-LT ; this means exactly that any of this
theorems can be deduced from the other one. In this way we can obtain two short
categorical proofs of the Relative H-LT.

However, some module theorists are not so comfortable with categorical
proofs of module-theoretical theorems: they cannot touch the elements of an object
because categories work only with objects and morphisms and not with elements
of an object.

Good news for those people: There exists an alternative, namely the latticial
setting . Why? If τ is a hereditary torsion theory on Mod-R and MR is any
module then Satτ (M) is an upper continuous modular lattice, and if G is a
Grothendieck category then the lattice Sub(X) of all subobjects of any object
X ∈ G is also an upper continuous modular lattice. Therefore, a strong reason to
study such kinds of lattices exists.

A latticial strategy

Let P be a problem, involving subobjects or submodules, to be investigated in
Grothendieck categories or in module categories with respect to hereditary torsion
theories. Our main strategy in this direction since more than twenty five years
consists of the following three steps:

I. Translate/formulate, if possible, the problem P to be investigated in a Gro-
thendieck category or in a module category equipped with a hereditary tor-
sion theory into a latticial setting.
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II. Investigate the obtained problem P in this latticial frame.
III. Back to basics, i.e., to Grothedieck categories and module categories equipped

with hereditary torsion theories.
The advantage to deal in such a way, is, in our opinion, that this is the most
natural and the most simple as well, because we ignore the specific context of
Grothendieck categories and module categories equipped with hereditary torsion
theories, focussing only on those latticial properties which are relevant in our given
specific categorical or relative module-theoretical problem P. The best illustration
of this approach is, as we will see later, that both the Relative H-LT and the
Absolute H-LT are immediate consequences of the so-called Latticial H-LT , which
will be amply discussed in Sections 4 and 5.

4. The latticial H-LT and latticial dual H-LT

The Classical/Relative/Absolute H-LT deals with the question when a particular
Artinian lattice L(MR)/Satτ (MR)/Sub(X) is Noetherian. Our contention is that
the natural setting for the H-LT and its various extensions is Lattice Theory, being
concerned as it is with descending and ascending chains in certain lattices. There-
fore we shall present in this section the Latticial H-LT which gives an exhaustive
answer to the following more general question:

When an arbitrary Artinian modular lattice is Noetherian?

The answer, given in an “if and only” form, is due to Albu and Smith [11, Theorem
1.9], and will be discussed in the next subsections.

Lattice background

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a last element denoted by 1, and (L,�,∧,∨, 0, 1), or more simply, just
L, will always denote such a lattice. We denote by M the class of all modular
lattices with 0 and 1. The opposite lattice of L will be denoted by L0 . We shall
use N to denote the set {0, 1, . . .} of all natural numbers.

Recall that a lattice L is called modular if

a ∧ (b ∨ c) = b ∨ (a ∧ c), ∀ a, b, c ∈ L with b � a.

A lattice L is said to be upper continuous if L is complete and

a ∧ (
∨
c∈C

c) =
∨
c∈C

(a ∧ c)

for every a ∈ L and every chain (or, equivalently, directed subset) C ⊆ L.
If x, y are elements in L with x � y, then y/x will denote the interval

[x, y] , i.e.,
y/x = { a ∈ L |x � a � y }.

An element e of L is called essential if e ∧ a �= 0 for all 0 �= a ∈ L . Dually, an
element s of L is called superfluous or small if s ∨ b �= 1 for all 1 �= b ∈ L, i.e.,
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if s is an essential element of L0. A composition series of a lattice L is a chain
0 = a0 < a1 < · · · < an = 1 in L which has no refinement, except by introducing
repetitions of the given elements ai, and the integer n is called the length of the
chain. If L is a modular lattice having a composition series, then we say that L is
a lattice of finite length, and in this case any two composition series of L have the
same length, called the length of L and denoted by l(L). A modular lattice is of
finite length if and only if L is both Noetherian and Artinian.

For all undefined notation and terminology on lattices, the reader is referred
to Crawley and Dilworth [18], Grätzer [26], and Stenström [47].

The H-LT and Dual H-LT for arbitrary modular lattices

In this subsection we present a very general form of the H-LT for an arbitrary
modular lattice, saying that an Artinian lattice L is Noetherian if and only if it
satisfies two conditions, one of which guaranteeing that L has a good supply of es-
sential elements and the second ensuring that there is a bound for the composition
lengths of certain intervals of L.

More precisely, consider the following two properties that a lattice L may
have (“E” for Essential and “BL” for Bounded Length):

(E) for all a � b in L there exists c ∈ L such that b ∧ c = a and b ∨ c is
an essential element of 1/a .

(BL) there exists a positive integer n such that for all x < y in L with y/0
having a composition series there exists cxy ∈ L with cxy � y, cxy �� x,
and l(cxy/0) � n .

Any pseudo-complemented modular lattice, in particular any upper continuous
modular lattice satisfies (E). Also, any Noetherian lattice satisfies (E).

The dual properties of (E) and (BL) are respectively:
(E0) for all a � b in L there exists c ∈ L such that a ∨ c = b and a ∧ c is a

superfluous element of b/0 .
(BL0) there exists a positive integer n such that for all x < y in L with 1/x

having a composition series there exists cxy in L with x � cxy, y �� cxy,
and l(1/cxy) � n .

The next result, due to Albu and Smith [12, Theorem 1.9] is the Latticial
H-LT for an arbitrary modular lattice, which, on one hand, is interesting in its
own right, being the most general form of the H-LT we know, and, on the other
hand is crucial in proving other versions of the H-LT.

Theorem 4.1. (Latticial H-LT). Let L be an Artinian modular lattice. Then L
is Noetherian if and only if L satisfies both conditions (E) and (BL).

Since the opposite of a modular lattice is again a modular lattice, it fol-
lows that the above result can be dualized as follows (see Albu and Smith [12,
Theorem 1.11]):

Theorem 4.2. (Latticial Dual H-LT). Let L be a Noetherian modular lattice.
Then L is Artinian if and only if L satisfies both conditions (E0) and (BL0).
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The condition (l∗) and lattice generation

The following condition for a lattice L has been considered in Albu [4]:

(l∗) there exists a positive integer n such that for all x < y in L there exists
cxy ∈ L with cxy � y, cxy �� x, cxy/0 Artinian, and l∗(cxy/0) � n.

If A is an Artinian lattice, then l∗(A) denotes the so-called reduced length of A,
that is l(1/a∗), where a∗ is the least element of the set { a ∈ A | 1/a is Noetherian},
see Albu [4, Lemma 0.3]. It is clear that for an Artinian lattice L, the condition
(l∗) implies the condition (BL).

Recall that if MR and UR are two modules, then the module M is said to be
U -generated if there exists a set I and an epimorphism U (I) �M . The fact that
M is U -generated can also be expressed as follows: for any proper submodule N
of M there exists a submodule P of M which is not contained in N , such that P
is isomorphic to a quotient of the module U . Further, M is said to be completely
U-generated in case every submodule of M is U -generated. These concepts have
been naturally extended in Albu [5] to posets as follows:

We say that a poset L is generated by a poset G, or is G-generated , if for
every a �= 1 in L there exist c ∈ L and g ∈ G such that c �� a and c/0 � 1/g .
The poset L is called completely generated by G or completely G-generated if for
every b ∈ L, the interval b/0 is G-generated, that is, for every a < b in L, there
exist c ∈ L and g ∈ G such that c � b, c �� a, and c/0 � 1/g.

Clearly, if the module M is (completely) U -generated, then the lattice L(MR)
is (completely) L(UR)-generated, but not conversely.

Note that if L and G are two Artinian lattices, and if L is completely
G-generated, then the lattice L satisfies the condition (l∗), and so, also the con-
dition (BL). This immediately implies the following version of the Latticial H-LT
(Theorem 4.1) in terms of lattice complete generation:

Theorem 4.3. If L is a modular Artinian lattice which is completely generated by
a modular Artinian lattice G , then L is Noetherian if and only if L satisfies (E).

The H-LT for upper continuous modular lattices

We present below a version in terms of condition (l∗), due to Albu [4, Corollary 1.8],
of the Latticial H-LT for modular lattices which additionally are upper continuous:

Theorem 4.4. (Latticial H-LT for upper continuous lattices). Let L be
an Artinian upper continuous modular lattice. Then L is Noetherian if and only if
L satisfies the condition (l∗).

Observe that Theorem 4.1 is an extension of Theorem 4.4 from upper con-
tinuous modular lattices to arbitrary modular lattices. More precisely, the upper
continuity from Theorem 4.4 is replaced by the less restrictive condition (E), while
the condition (l∗) by the condition (BL).
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5. Connections between various forms of the H-LT

In this section we are going to discuss the connections between the Classical
H-LT, Relative H-LT, Absolute H-LT , and Latticial H-LT, and to present the
Faith’s Δ-Σ and counter versions of the Relative H-LT.

Latticial H-LT =⇒ Relative H-LT

As mentioned above, the module-theoretical proofs available in the literature of
the Relative H-LT (namely, the original one in 1979 due to Miller and Teply [35],
and another one in 1982 due to Faith [20]) are very long and complicated. We
present below a very short proof based on the Latticial H-LT in terms of complete
generation (Theorem 4.3).

So, let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian, and let MR be a τ -Artinian module. The Relative H-LT states
that MR is a τ -Noetherian module.

Set G := Satτ (RR) and L := Satτ (MR). Then G and L are Artinian upper
continuous modular lattices. We have to prove that MR is a τ -Noetherian module,
i.e., L is a Noetherian lattice. By Theorem 4.3, it is sufficient to check that L is
completely G-generated, i.e., for every a < b in L, there exist c ∈ L and g ∈ G
such that c � b, c �� a, and c/0 � 1/g.

Since Satτ (M) � Satτ (M/τ(M)) we may assume, without loss of generality,
that M ∈ F . Let a = A < B = b in L = Satτ (MR). Then, there exists x ∈ B \A.
Set C := xR and I = AnnR(x). We have R/I � xR �M ∈ F , so R/I ∈ F , i.e.,
I ∈ Satτ (RR) = G. Using known properties of lattices of type Satτ (N), we deduce
that

[I, R] � Satτ (R/I) � Satτ (xR) � Satτ (xR) = Satτ (C) = [0, C],

where the intervals [I, R] and [0, C] are considered in the lattices G and L,
respectively. Then, if we denote c = C and g = I, we have c ∈ L, g ∈ G, c � b,
c �� a, and c/0 � 1/g, which shows that L is completely G-generated, as desired.

Absolute H-LT =⇒ Relative H-LT

We are going to show how the Relative H-LT can be deduced from the Absolute
H-LT. Let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian ring, and let MR be a τ -Artinian module. We pass from Mod-R
to the Grothendieck category Mod-R/T with the use of the canonical functor
Tτ : Mod-R −→ Mod-R/T . Since RR is a generator of Mod-R and Tτ is an exact
functor we deduce that Tτ (R) is a generator of Mod-R/T , which is Artinian by
Proposition 3.3. Now, again by Proposition 3.3, Tτ (M) is an Artinian object of
Mod-R/T , so, it is also Noetherian by the Absolute H-LT, i.e., M is τ -Noetherian,
and we are done.

Relative H-LT =⇒ Absolute H-LT

We prove that the Absolute H-LT is a consequence of the Relative H-LT. Let G
be a Grothendieck category having an Artinian generator U . Set RU := EndG(U),


