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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and 
scholars the opportunity of assembling and commenting upon major classical works in 
probability and statistics, and honors the work of distinguished scholars in probability and 
statistics. Each volume contains the original papers, original commentary by experts 
on the subject’s papers, and relevant biographies and bibliographies. 

Springer is committed to maintaining the volumes in the series with free access 
on SpringerLink, as well as to the distribution of print volumes. The full text of the 
volumes is available on SpringerLink with the exception of a small number of articles 
for which links to their original publisher is included instead. These publishers have 
graciously agreed to make the articles freely available on their websites. The goal is 
maximum dissemination of this material. 

The subjects of the volumes have been selected by an editorial board consisting of 
Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sörensen, and Jon Wellner.

v



vi

Donald Burkholder



Preface

This book is a celebration of the writing of Donald Burkholder and of the explosions 
of martingale theory and its reach in the last forty-five years, both spearheaded by 
Burkholder. It contains reprints of most of Burkholder’s publications and lists of his 
publications and students, two commentaries on his work, one by Gilles Pisier and the 
other by Rodrigo Bañuelos and Burgess Davis, and a brief biographical introduction. 
We are grateful to Jim Pitman and to Springer-Verlag. Together they made this book as 
well as many other selected or collected works possible. We thank Rodrigo Bañuelos 
and Gilles Pisier for their contributions. We also thank our very capable editor at 
Springer, John Kimmel.

April 2010  Burgess Davis and Renming Song
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Introduction

When martingales are studied by Don Burkholder good things happen. Maybe the way 
he proves a theorem turns out to be so important in a subject seemingly far from prob-
ability that a person involved in it asks, “Who is this guy Burkholder?”—overheard 
by someone who decidedly did know who Burkholder was outside an AMS special 
session on control theory. Or a technique, the Burkholder-Gundy good-l method, is 
developed which is so fundamental that a good part of the mathematical world now 
uses it. The simple definition of martingale, at least when molded by Burkholder, 
seems to capture an essence which is at least part of what makes many mathematical 
objects tick.

Don Burkholder was born in 1927 and grew up on his family’s farm, close to 
Octavia, Nebraska. He played on the Octavia High School basketball team, where, 
according to Don, if you were male and wanted to play you probably could since the 
school was that small. Don’s team once made it to the county finals.

Don graduated from high school with the other three members of his class in 1945. 
He attended Earlham College, an excellent small liberal arts college in Indiana, and 
while there, seriously considered becoming a poet. Fortunately, at least for readers of 
this volume, he did not choose this career.

He met his fellow student and future wife Jean at Earlham, and they married in 
1950, the year they both graduated. They had a daughter Kathleen, now deceased, and 
have two sons, William of Palo Alto, California and Peter of Bloomington, Indiana, 
and one grandchild.

Jean was very active in the community and served on the Urbana school board for 
twenty-two years. When she left that job, hundreds of people turned out at the recep-
tion in her honor. Don and Jean now live in Urbana, Illinois, within walking distance 
of the University of Illinois campus.

Don went to graduate school at the University of North Carolina to study under 
the great mathematical statistician, Wassily Hoeffding. He joined the Mathematics 
Department of the University of Illinois at Urbana-Champaign (UIUC) in 1955, where 
he has remained ever since.

Early in his career, Don did some very nice work in statistics, but as time passed 
his focus turned toward probability. A young professor working in Joseph Doob’s 
Department would naturally become very familiar with martingales. In 1966, Don wrote 
the paper, Martingale Transforms, and the rest, as they say, is history, although in this 
case it is history in progress because the influence of his work continues to expand.

Don was promoted to Professor of Mathematics in 1964 and was named a CAS 
Professor at the Center for Advanced Study at UIUC in 1978. He retired in 1998 
and is now Professor Emeritus of Mathematics at the Center for Advanced Study. 

xvii
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He has lectured widely, and given an invited lecture to the International Congress of 
Mathematicians, as well as the Institute of Mathematical Statistics Wald Lecture, a 
Mordell Lecture at Cambridge University, a Zygmund Lecture at the University of 
Chicago, and lecture series at Saint-Flour and CIGMA. He is a fellow of the Institute 
of Mathematical Statistics, of the Society of Industrial and Applied Mathematics, and 
of the American Academy of Arts and Sciences.

Don was elected a member of the United States National Academy of Sciences in 
1992. He has served as editor of the Annals of Mathematical Statistics and as president 
of the Institute of Mathematical Statistics.

Don likes to read and he loves to walk. If you were at a meeting with Don and he 
suggested going for a walk, he was not talking about a stroll. He walked fast and far.

His mathematical career was unusually long lived. He did some of his deepest and 
most original work in his late fifties. Until just a few years ago he continued to do quite 
a lot of refereeing. He has said that once, when feeling overworked, he urged an editor 
who had sent him a paper to review to please send the paper on to a referee who was 
under eighty.

Don is unfailingly courteous and thoughtful. He has helped many mathematicians, 
and even as he rose to the top of his profession, he remained open and encouraging to 
those around him.
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DONALD BURKHOLDER'S WORK IN MARTINGALES AND ANALYSIS 

RODRIGO BANUELOS AND BURGESS DAVIS 

1. INTRODUCTION 

The two mathematicians who have most advanced martingale theory in the last seventy years are 
Joseph Doob and Donald Burkholder. Martingales as a remarkably flexible tool are used throughout 
probability and its applications to other areas of mathematics. They are central to modern stochastic 
analysis. And martingales, which can be defined in terms of fair games, lie at the core of mathemat
ical finance. Burkholder's research has profoundly advanced not only martingale theory but also, via 
martingale connections, harmonic and functional analysis. 

The work of Burkholder and Gundy on martingales in the late sixties and early seventies, which 
followed Burkholder's seminal 1966 paper Martingale Transforms [29], led to applications in analysis 
which revolutionized parts of this subject. Burkholder's outstanding work in the geometry of Banach 
spaces, described by Gilles Pisier in this volume, arose from his extension of martingale inequalities to 
settings beyond Hilbert spaces where the square function approach used in [29] fails. His work in the 
eighties and nineties on martingale inequalities with emphasis on identifying best constants has become 
of great importance recently in the investigations of two well known open problems. One of these 
concerns optimal Lp bounds for a singular integral operator (the two dimensional Hilbert transform) 
and their ramifications in quasiconformal mappings. The other relates to a longstanding conjecture in 
the calculus of variations dealing with rank-one convex and quasiconvex functions. These conjectures, 
which have received much attention in recent years largely due to the beautiful and original techniques 
developed by Burkholder in his work on sharp martingale inequalities, come from fields which on the 
surface are far removed from martingales. 

We will describe in some detail a remarkable technique discovered by Burkholder and Gundy, which 
shows how certain integral inequalities between two nonnegative functions on a measure space follow 
from inequalities involving only parts of their distribution. This seemingly simple but incredibly elegant 
technique, often, and here, referred to as "the good-A method," revolutionized the way probabilists 
and analysts think of norm comparison problems. It is now widely used in areas of mathematics which 
involve integrals and operators. 

It is interesting to note that since 1973, Burkholder has written only two papers with a co-author and 
that he has written more than one paper only with Richard Gundy. The papers [56] of Burkholder and 
Gundy and [59] of Burkholder, Gundy, and Silverstein are exceptionally important. The results of [56] 
include the good-A inequalities and fundamental integral inequalities comparing the maximal function 
and the square function, or quadratic variation, of martingales having controlled jumps or continuous 
paths. A very large share of the extensive applications of these kinds of martingale inequalities, both 
in probability and other areas of mathematics, involve continuous path martingales. The paper [59] 
strikingly improved and completed work of Hardy and Littlewood on the characterization of the Hardy 
Hp spaces via the integrability of certain maximal functions. While probabilistic techniques had al
ready gained the respect of many analysts studying harmonic functions and potential theory, due in part 
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to earlier work of Doob, Kakutani, Wiener and others, this landmark paper had a profound influence 
in harmonic analysis and propelled many analysts to learn probability. 

The next section begins with a brief introduction to the good-A method, in the context of its original 
application to martingales. We then trace the rest of the development of the theory of martingale square 
functions and transforms in the late sixties and early seventies, pioneered by Burkholder. We follow 
this with a discussion of [59] and the subsequent study of Hp theory by a number of researchers, and 
much more on the surprisingly rich good-A inequalities. In the final sections we discuss Burkholder's 
later work on sharp martingale inequalities and some of the remarkable spread of his ideas over other 
areas of mathematics. 

2. MARTINGALE INEQUALITIES 

Brownian motion stopped at a stopping time is a continuous martingale, and the continuous martin
gale inequalities of [56] follow from their validity just for stopped Brownian motions. We will elaborate 
on this later. We will use B = {Bt\ t > 0} to denote standard Brownian motion. This means that 
B is a stochastic process with continuous paths, that its increment Bt — Bs over the interval [s, t] has 
a normal distribution with mean 0 and variance t — s, that its increments over each of a collection of 
disjoint intervals are independent, and that Bo = 0. We recall that if the random variable r is a stopping 
time for B then r > 0 and if P(r > s) > 0 and t > s, the conditional distribution, given r > s, of 
Bt — Bs is normal with mean zero and variance t — s. The maximal function of B up to the stopping 
time r will be denoted by B* = sup{|£>s|: 0 < s < r}. The following theorem is from [56]. 

Theorem 2.1. Let § be a continuous nondecreasing function on [0, oo) satisfying 3>(0) = 0 and 
3>(2A) < K$(\), A > 0, for some constant K. Then there are positive constants c and C, which 
depend only on K, such that for any stopping time r for B, 

(2.1) cE^(^) < E$(B*) < CE<5>(y/r). 

Remark 2.1. Two important examples of functions <& satisfying this "moderate" growth property are 
<£(x) = xv, 0 < p < oo, and $(x) = x + x l n + ( x ) . 

To illustrate the good-A method used by Burkholder and Gundy in [56], we give a direct proof of the 
left hand side of (2.1) in the case $>(x) = x which gives c = y ^ . This proof, which requires virtually 
no specialized knowledge, is a slight alteration of the proof in [56], as it uses summation rather than 
integration. Later, in Theorems 4.land 4.2, we present a general form of the good-A method, together 
with inequalities for stopped Brownian motion, which imply Theorem 2.1. 

Denote the integers by Z. Let a^ > 0, k e Z, satisfy l i rm^-oo a^ = 0 and a^i < 2afc. For 
0 < r < 1, let J(r) = {k: a^+ i > raj-}. If k is in J(r), but none of k + i, for 1 < i < m, are in J(r), 
then 

f > + 8 < a , + 1 ( l + r + r 2 + . . . r ™ - 1 ) < 
= 1 

1 

which implies 

(2.2) J2 a*^TT7Z)a* 
keJ(r) kez 

The k in J(r) are the "good" k. Now nonnegative random variables X satisfy 

(2.3) EX < Y^ 2 f cP(X > 2k) < 2EX. 
fcez 

2 

2 



If N is a standard normal random variable then, using tables or that the density of TV is bounded by 
^ , w e g e t P ( | 7 V | < ^ < j2, so for an event A, 

(2.4) \N\ > —,A 1 ' - 10' 
> - , ifP(A) > - . 
- 6 ' v J ~ 4 

Let Ak = {^F > 2k}, k e Z, and let J = {k: P(Ak+1) > P(Ak) 
4 }. The left hand side of (2.3), and 

(2.2) with r 

(2.5) 

l / 2anda f c = 2kP(Ak)9 give 

E^<^keJ2kP(Ak). 

Since 2B* > \Ba - Bb\, ifO<a<b<t,2B*> \B22(k+i) - B22k\ on Ak+1. With (2.4) this gives 

P ( 2 0 ^ > 2k) > P(2B; > ^2kV3,Ak^) > \p(Ak), k e J, 

which with the right side of (2.3) and (2.5) yields 

2E20BZ > V P(20Bt > 2fc)2fc > - V P ( 4 ) 2 f c > —Ey^. 
feez keJ 

As noted in [31], Skorohod and others had before [56] proved the inequalities (2.1) for the case 
$(#) = x

p, p > 2, and P. W. Millar [120], using results of [29], extended these to all p > 1. Also A. 
A. Novikov [130], working independently of [56], used stochastic calculus to study questions raised by 
Millar's paper and proved some interesting results related to those of [56]. 

The growth condition on <£> involving K of Theorem 2.1 is necessary for the truth of either of 
the inequalities in (2.1), in the sense that if ^ is a continuous nondecreasing function which does 
not satisfy this condition for any K there are stopping times r for B such that (either) one of E§(B*), 
E$(y/r) is finite and the other is infinite. 

Next we turn to discrete time martingales. After a very brief history of martingales before Doob 
we provide an overview of the work of the late sixties and seventies involving the martingale square 
function. More general results, with proofs and extensive references, may be found in Burkholder's 
Wald Memorial Lecture paper [31]. We have tried to be true to the spirit if not the letter of the papers 
we describe. 

Paul Levy defined martingales without the name, which was given by Doob. Before martingales 
were formally defined, several probabilists other than Levy, and several analysts, worked on objects 
that were martingales. For example, R.E.A.C. Paley [138] proved an inequality for the Haar system 
which is a special case of the results of Burkholder in his 1966 paper. (See [42] for a sharp version 
of the Paley result.) Although the definition of martingales was made by a probabilist, there is no 
reason it couldn't have come from an analyst instead. Sequences of piecewise constant functions on the 
Lebesgue unit interval which are martingales seem now a natural generalization of Haar series, and are 
in a distributional sense all of the discrete (as described in the next paragraph) martingales. Of course, 
there's nothing like hindsight to clarify thinking. In another direction Courant, Fredricks, and Lewy 
in 1928 [70] used ideas related to martingale ideas, although without randomness, to study harmonic 
functions, in the paper which introduced the finite element method for numerical approximation of 
solutions of partial differential equations. 

We begin with a description of martingales when time is discrete and the random variables which 
compose them are discrete, that is, have a discrete distribution. A sequence of discrete random variables 
{Di, i > 0}, is a martingale difference sequence if each Di has finite expectation and if for n > 0, 

(2.6) E(Dn\Di = ai,0<i<n) 0, i f P ( A 
3 

«i,0 < i < n) > 0. 
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