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Preface

In a dynamical system, transients are temporal evolutions preceding the asymptotic
dynamics. Transient dynamics can be more relevant than the asymptotic states of
the system in terms of the observation, modeling, prediction, and control of the sys-
tem. As a result, transients are important to dynamical systems arising from a wide
range of disciplines such as physics, chemistry, biology, engineering, economics,
and even social sciences. Research on nonlinear dynamical systems has revealed
that sustained chaos, as characterized by a random-like yet structured dynamics
with sensitive dependence on initial conditions, is ubiquitous in nature. A question
is, then, can chaos be transient?

A common perception, as conveyed in many existing books on nonlinear dynam-
ics, is that chaos is an asymptotic property that manifests itself only after a long
observation. Indeed, standard characteristics of chaos, such as the Lyapunov expo-
nents that measure the exponential separation rates of nearby trajectories and hence
quantify the degree of the sensitivity to initial conditions, are defined in the infinite
time limit. These features seem to be incompatible with the possibility of chaotic
transients.

Research on nonlinear dynamics has shown, however, that the essential feature of
chaos is the existence of so-called chaotic sets in the phase space, and quantitative
characterization of chaos is meaningful with respect to the dynamics on such sets
only. Since this does not imply that trajectories from random initial conditions would
necessarily approach these sets asymptotically, transient chaos can arise. Transient
chaos is associated with the existence of nonattracting chaotic sets. Research has
also revealed that transient chaos is in fact more common and possibly richer than
sustained or permanent chaos, since the latter can be regarded merely as a limit of
transient chaos when the average lifetime of the underlying chaotic set becomes
infinite. Transient chaos thus plays a similar role in the realm of complex dynamics
to that of a weakly unstable equilibrium state in regular dynamics. In fact, transient
chaos can be regarded as a kind of metastable state. The concept of transient chaos
is ideally suited to the description of nonequilibrium processes.

The aim of this book is to give an overview, based on the results of nearly three
decades of intensive research, of transient chaos. One belief that motivates us to
write this book is that transient chaos may not have been appreciated even within
the nonlinear-science community, let alone other scientific disciplines. During the
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vi Preface

course of research and interactions with various scientific communities, we have
become increasingly convinced that knowledge of transient chaos can be particu-
larly important and useful as we witness a proliferation of applications in various
branches of science and engineering based on or motivated by nonlinear dynamics.

We shall show in this book that the basic concepts required to understand tran-
sient chaos are actually fairly easily generalized from concepts of standard nonlinear
dynamics. One special emphasis will be on the fact that certain interesting dynami-
cal phenomena can be understood only in the framework of transient chaos.

That transient chaos can arise in a broad array of fields can be illustrated by the
following examples:

• Chemical reactions in closed containers can lead to thermal equilibrium only.
However, the transients can be chaotic if one begins sufficiently far from equilib-
rium states.

• Certain epidemiological data, e.g., on the spread of chickenpox, can be consis-
tently and meaningfully interpreted only in terms of transient chaos.

• The so-called shimmy (an irregular dancing motion) of the front wheels of mo-
torcycles and airplanes, which can lead to disastrous incidents, turns out to be a
manifestation of transient chaos.

• Satellite encounters and the escapes from major planets are chaotic transients.
• The trapping of advected material or pollutant around obstacles, often seen in the

wake of pillars or piers, is a consequence of transient chaos.
• In nanostructures, today a cutting-edge field of science and engineering, the clas-

sical dynamics of electrons bear the signature of transient chaos.

This book should be regarded as a research monograph and is intended for
graduate students and researchers in science and engineering who are interested in
understanding and applying this extended concept of chaotic dynamics to their re-
spective areas of research. Preliminary knowledge of sustained chaos, e.g., chaotic
attractors, Lyapunov exponents, fractals, periodic orbits, stable and unstable mani-
folds, is assumed. These concepts can be found in almost any existing textbook on
chaotic dynamics.1

Our Book not only gives an introduction to the novel concepts needed for under-
standing and for properly treating transient chaos, but also provides an overview of
various transient-chaos-related phenomena. The book is organized as follows.

Part I: Basics of Transient Chaos. The first part covers the basic concepts, notions,
ideas, theories, and algorithms required for understanding transient chaos.

• Chapter 1: Introduction to Transient Chaos. This chapter is devoted to a prelim-
inary acquaintance with transient chaos, where basic properties of nonattracting
chaotic sets are presented. To underline the relevance of transient chaos, a brief
presentation of a number of experiments is given, which also illustrate different
aspects of the applicability.

1 The textbooks [564, 773] also provide an elementary treatment of transient chaos.
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• Chapter 2: Transient Chaos in Low-Dimensional Systems. Dynamics from a
one-dimensional map mimic those along the unstable manifold of, for exam-
ple, a two-dimensional invertible map associated with a three-dimensional flow.
Many fundamental insights into transient chaos can be gained by investigating
one- and two-dimensional dynamical systems.

• Chapter 3: Crises. Transient chaos often precedes the birth of permanent chaos.
Attractor destructions, explosions, and merging are often accompanied by tran-
sient chaos. Dynamical properties of transient chaos are partially inherited by the
enlarged attractor. Transient chaos thus provides the backbone of the motion on
composed attractors. Periodic windows, in spite of their name, are in fact param-
eter regions in which transient chaos is typically present.

• Chapter 4: Noise and Transient Chaos. In systems subject to external random
forces, the attractor and the associated dynamics depend on the noise intensity.
The phenomenon that a dynamical system with simple periodic attractors be-
comes chaotic in the presence of noise is noise-induced chaos. It is due to the
transient chaotic dynamics coexisting with the periodic attractors in the noise-
free system, which become stabilized by noise. This chapter presents an extensive
treatment of the effects of noise on dynamical systems exhibiting transient chaos,
which is physically important because noise is inevitable in any realistic dynam-
ical systems.

Part II: Physical Manifestations of Transient Chaos. This part presents physical
manifestations of transient chaos in various natural systems. A striking aspect
of transient chaos is that it can lead to fundamental difficulties in predictabil-
ity. Chaotic scattering, the manifestation of transient chaos in open Hamiltonian
systems, will also be described both in classical and in quantum mechanics.

• Chapter 5: Fractal Basin Boundaries. If two or more periodic or chaotic attrac-
tors coexist, a trajectory may wander for a long time before approaching one
of the attractors asymptotically. When there is transient chaos on the boundaries
separating the basins of attraction, prediction of the final (asymptotic) state of the
system may not be possible. There can also be situations in which the boundaries
are severely interwoven (riddled basins), so that the motions on the boundaries
dominate the dynamics. Fractal basin boundaries or riddled basins cause a fun-
damental difficulty in predicting the asymptotic state of the system.

• Chapter 6: Chaotic Scattering. For scattering processes in open conservative sys-
tems the only way chaos can appear is in the form of transients, as a consequence
of the asymptotic freedom of the incoming and outgoing motions. Physical tra-
jectories are usually trapped in a scattering region of the configuration space for a
finite amount of time before leaving the system. Applications range from chemi-
cal reactions to celestial mechanics.

• Chapter 7: Quantum Chaotic Scattering and Conductance Fluctuations in
Nanostructures. This chapter deals with signatures of chaotic scattering when
the same system is treated quantum-mechanically in the semiclassical regime.
Scattering-matrix elements exhibit random fluctuations as some physical pa-
rameters of the system change. Depending on whether the classical scattering
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is hyperbolic or nonhyperbolic, statistical properties of the fluctuations can be
quite distinct. One area in which quantum chaotic scattering finds significant
applications is electronic transport in semiconductor nanostructures.

Part III: High-Dimensional Transient Chaos. Although low-dimensional transient
chaos for which the underlying nonattracting chaotic sets have only one posi-
tive Lyapunov exponent is relatively well understood, high-dimensional transient
chaos generated by chaotic sets with multiple positive Lyapunov exponents re-
mains a forefront area of research in nonlinear dynamics. This part summarizes
what is known so far about high-dimensional transient chaos.

• Chapter 8: Transient Chaos in Higher Dimensions. The increase in the unstable
dimension from dimension one represents a highly nontrivial extension in terms
of what has been known about transient chaos. Topics treated include the di-
mension formulas, algorithms for computing high-dimensional chaotic saddles,
and chaotic scattering in physical systems with three degrees of freedom. In
high-dimensional dynamical systems, transients can differ from those in low-
dimensional systems in that the average lifetime is often extremely long before
the system settles into a final attractor, which is usually nonchaotic. The presence
of such transients implies that observation of the actual attractors of the system
is practically impossible. The basic scaling law characterizing the so-called su-
perpersistent chaotic transients and the effect of noise are treated.

• Chapter 9: Transient Chaos in Spatially Extended Systems. In a spatially ex-
tended system, transient lifetime often grows with the system size, and this
growth can be as fast as exponential, or even faster. The presence of such super-
long transients implies that the observed spatiotemporal behavior is not related
to chaotic attractors. Certain phenomena such as pipe turbulence may thus turn
out to exist on finite time scales only. An overview of transient chaos in spatially
extended dynamical systems and open issues is presented in this chapter.

Part IV: Applications of Transient Chaos. This part focuses on different aspects of
applications of transient chaos in physical, chemical, biological, and engineering
systems. A physical context in which transient chaos is ubiquitous is fluid sys-
tems. Another broad area of application is control and maintenance of transient
chaos for desirable system performance. The collection and analysis of transient
chaotic time series for probing the underlying system are also applicable in many
areas of science and engineering.

• Chapter 10: Chaotic Advection in Fluid Flows. The passive advection of tracer
particles (e.g., small dye droplets) in open hydrodynamical flows with uniform
inflow and outflow velocities turns out to be an appealing application of chaotic
scattering. The unstable manifold of the nonattracting chaotic set becomes a di-
rect physical observable in such cases as this manifold is traced out by particles
or pollutants while being advected downstream. These manifolds form the back-
bone of possible chemical and biological reactions taking place in the flow. The
transient-chaos-based approach to advection in fluid flows can have significant
applications in engineering and environmental sciences.
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• Chapter 11: Controlling Transient Chaos and Applications. We demonstrate in
this chapter that transient chaos can be controlled by small perturbations. As
in the control of permanent chaos, an unstable orbit on the chaotic set can be
stabilized. A different form of control is to convert transient chaos into perma-
nent chaos. Applications presented include voltage collapse in electrical-power
systems and prevention, population control in ecology, and digital-information
encoding.

• Chapter 12: Transient Chaotic Time Series Analysis. For transient chaos, only
short time series are available, which makes the application of the methods de-
veloped in data analysis nontrivial. This chapter is devoted to basic issues in
transient chaotic time series analysis, which include delay-coordinate embed-
ding, and estimation of fractal dimension and Lyapunov exponents.

The main text is closed by a few final remarks. In the appendices, we treat a
number of technical issues such as multifractal spectra, open random baker maps,
semiclassical theory of chaotic scattering, and scattering cross sections.

To preview the applicability of the subject, we give in Table 1 a list of applications
of transient chaos in various disciplines, all of which will be treated (although not
in the same depth) in different chapters, including those outside of Part IV of this
book.

We try to give as broad as possible an overview. The field is, however, actively
developing, and full coverage of the literature is hardly possible by now. The selec-
tion of the material is therefore unavoidably biased, influenced by the authors’ own
experience.

We wish to thank all of our of colleagues with whom we had an opportunity for an
exchange of ideas on transient chaos. We are particularly grateful to our coworkers
for collaborative research. A particularly long record of joint publications binds both
of us to C. Grebogi. We thank E.G. Altmann, G. Csernák, A. Csordás, B. Eckhardt,
U. Feudel, M. Gruiz, G. Haller, D. Hensley, I.M. Jánosi, C. Jung, G. Károlyi,
Z. Kaufmann, A.P.S. de Moura, G. Stépán, and K.G. Szabó for insightful com-
ments on different chapters of the book during its preparation. E.G. Altmann, Y. Do,
M. Gruiz, I. Mezić, Sz. Hadobás, and M. Pattantyús-Ábrahám helped us by prepar-
ing some of the figures. In addition, YCL would like to thank Dr. Arje Nachman, at
the Air Force office of Scientific Research, for his wonderful support for research on
nonlinear dynamics and chaos. TT is grateful to the Hungarian Science Foundation
for its support by grant NK72037. We would like to express our thanks to the staff
of Springer Science and Media.

Phoenix and Budapest, 2009 Ying-Cheng Lai
Tamás Tél
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Table 1 Applications of transient chaos in different disciplines

Discipline Subject Chapters

Mathematics Continued fraction 2
Transfer operators 2
Almost invariant sets 2,10
Snapshot attractors and saddles, random maps 4,10
Leaked dynamics 2,10

Astronomy Escape of celestial bodies 6
Statistical physics Poincaré recurrences 2,6,7

Random systems and noise 2,4,11
Lobe dynamics 6,10
Transport processes 6,7,10

Optics Dielectric cavities 6,7
Lasers 6,12

Quantum mechanics Open quantum systems 7
Quantum echoes 7
Fractal Weyl law 7

Nanoscience Quantum dots 7
Graphene 7
Microfluidics 10

Fluid dynamics Stirring and mixing 10
Vortex dynamics 10
von Kármán vortex street 8,10
Turbulence 9

Engineering Shimmying wheels 2
Voltage collapse 11
Encoding digital information 11

Chemistry Classical molecular reactions 6,8
Reactions in open flows 10
Reaction–diffusion systems 9

Biology Population and plankton dynamics 6,10,11
Epidemiology and ecology 4
Food chains 11
Species extinction 11

Environmental sciences Spreading of pollutants 10
Lagrangian coherent structures 10
Convection in the Earth’s mantle 10
Advection of finite-size particles 10
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Part I
Basics of Transient Chaos



Chapter 1
Introduction to Transient Chaos

In numerical or experimental investigations one never has infinitely long time
intervals at one’s disposal. In fact, what is needed for the observation of chaos is
a well-defined separation of time scales. Let t0 denote the internal characteristic
time of the system. In continuous-time problems, t0 can be the average turnover
time of trajectories on a Poincaré map in the phase space. In a driven system, it
is the driving period. In discrete-time dynamics, t0 can be the time step itself.

Suppose one observes signals that appear random for an average lifetime τ . Since
chaos is characterized by a sensitive dependence on initial conditions, which is
meaningful only on sufficiently long time scales, the appearance of chaotic signals
requires that τ be much greater than the internal characteristic time:

τ � t0 . (1.1)

The difference between sustained and transient chaos lies in the actual value of τ:
for the former, τ is infinite, but it is finite for the latter. As a matter of practicality,
one cannot exclude the possibility that a system apparently exhibiting a chaotic at-
tractor may turn out to be transiently chaotic if a much longer period of observation
is allowed. It is therefore useful to consider an additional time scale: the observa-
tion time TO. The sustained or transient nature of chaos then depends on how τ is
compared with TO. We can speak of transient chaos if

τ < TO . (1.2)

In the numerical investigation of attractors, a general habit is to discard a long
sequence of the trajectory in order to concentrate on the asymptotic properties.
A much richer dynamics may be observed, however, if one follows the trajecto-
ries from the beginning, i.e., if transients are not thrown out. One often finds then
complex dynamics over some time, different from the dynamics governed by the
attractor. The lifetime of a chaotic transient depends on the initial condition. An ex-
ample can be seen in Fig. 1.1, where transiently chaotic trajectories are shown from
the Hénon map [325, 564] at a parameter set where the attractor is a limit cycle.

Such signals can also be observed in experiments. An example is shown in
Fig. 1.2, where the measured quantity is the temperature difference between two

Y.-C. Lai and T. Tél, Transient Chaos: Complex Dynamics on Finite-Time Scales,
Applied Mathematical Sciences 173, DOI 10.1007/978-1-4419-6987-3 1,
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Fig. 1.1 Transient chaotic signals from the Hénon map xn+1 = 1 − ax2
n + byn, yn+1 = xn for

parameters a = 1.25 and b = 0.3, with a period-7 attractor. For clear visualization, only every
seventh iterate is shown. (a) Trajectory initiated at x0 = 0.738816, y0 = 0.893088 exhibits chaotic
behavior over 441 iterates. (b) The initial condition is shifted by 2 ·10−19 in the x direction and the
length of the chaotic transient is only 126

Fig. 1.2 Transient chaotic signal of the temperature difference observed between two points of
an experimental loop of fluid heated from below with a constant heat flux (see Sect. 1.3 for more
details). In this run, chaotic oscillations last up to nearly 40 min [823] (with kind permission from
Elsevier Science)
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points in a fluid loop. Over some time chaotic temperature oscillations are observed,
which are accompanied by chaotic velocity oscillations of the laminar flow in the
loop, and then, rather suddenly, a crossover takes place towards a nearly constant
temperature difference corresponding to a uniform rotation of the fluid motion.
(For a list of other representative experiments, see Sect. 1.3.)

Based on these and many other examples, one concludes that transiently chaotic
signals (whose precise characterization will be discussed in Sect. 1.2) have the fol-
lowing characteristic properties:

1. For a fixed initial condition the signal appears chaotic up to certain time and then
switches over, often quite abruptly, into a different, often nonchaotic, behavior
that governs all the rest of the signal. The average lifetime, τ , can be obtained
from an ensemble of such observations, although for individual observations,
the actual lengths of transients depend sensitively on initial conditions: nearby
trajectories typically have drastically different lifetimes.

2. The probability distribution, P(t), of finding lifetimes longer than t is a smooth
function, which satisfies P(t) → 0 for t → ∞.

3. There exist infinitely long transients. Mathematically, however, the set of ini-
tial conditions leading to infinite transients has zero volume in the phase space
(has Lebesgue measure zero). Physically, this means that such infinite tran-
sients cannot be realized by initial conditions chosen randomly. In fact, for a
typical (i.e., randomly chosen) initial condition, the transient lifetime is finite.
Nonetheless, it is the presence of the measure-zero set of the initial conditions
with infinite transients which causes the random distribution of the transient life-
times for typical initial conditions.

4. It is known [564] that in a parameter region where chaotic attractors arise,
periodic windows are dense. That is, for a specific parameter value that leads to
a chaotic attractor, an arbitrarily small perturbation in the parameter can lead to
a periodic attractor. In this sense, chaotic attractors are not structurally stable.
Transient chaos is, however, robust against small parameter perturbations.

Similar to the fact that sustained chaotic signals are due to chaotic attractors
in the phase space, there exist chaotic invariant sets that are responsible for tran-
siently chaotic signals. Globally, such a chaotic set does not attract trajectories from
its neighborhood, and hence it is nonattracting. Nonattracting chaotic sets (chaotic
saddles or repellers; see Sect. 1.1.2) are therefore the phase-space objects that un-
derly transient chaos. We thus accept the following definition: transient chaos is the
form of chaos due to nonattracting chaotic sets in the phase space.

This chapter serves as a “first acquaintance” with transient chaos. The basic
properties of nonattracting chaotic sets will be described. The average lifetime and
the escape rate from these sets will then be introduced. Different methods for nu-
merically constructing nonattracting chaotic sets will be given. The construction of
the natural probability distribution on these sets will also be discussed, and an im-
portant related distribution, the conditionally invariant measure (c-Measure), will be
introduced, from which characterizing quantities such as the Lyapunov exponents
of the transients and dimensions of the nonattracting chaotic sets can be defined
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and calculated. To underline the scientific relevance of transient chaos, a list of
experiments taken from different disciplines will be presented, which also illustrate
different aspects of transient chaos. Finally, a brief history of transient chaos will
be given.

1.1 Basic Notions of Transient Chaos

1.1.1 Dynamical Systems

Dynamical systems are usually described by a set of ordinary differential equations:

dx
dt

= F(x, p), (1.3)

where x(t) is the vector characterizing the state of the system at time t and p repre-
sents a set of parameters. Alternatively, discrete-time dynamical systems, or maps,
of the form

xn+1 = f(xn, p) (1.4)

can be investigated, where xn is the state vector at discrete time n. Unless otherwise
stated, the map is assumed to be autonomous, i.e., f does not depend explicitly on n.
Maps can always be deduced from flows (1.3) by taking an appropriately defined
Poincaré surface of section or stroboscopic map [564], the latter corresponding to
repeatedly taking snapshots of the system at the multiples of some characteristic
time t0. Using such maps, the phase-space dimension is reduced effectively by one,
facilitating visualization and analysis. In fact, Poincaré or stroboscopic maps have
been used commonly in numerical and laboratory experiments on transient chaos
(see Sect. 1.3). In order to have a consistent terminology, maps will be used for the
rest of the chapter to illustrate the basic dynamical properties of transient chaos, but
the main results apply also to flows (see also [398]).

1.1.2 Saddles and Repellers

The actual form of a nonattracting chaotic set depends on whether the dynamics is
invertible. A dynamical system is invertible if its motion can be uniquely followed
when time is reversed. This does not imply, however, that the time-reversed dy-
namics can actually occur in reality (although this is true for Hamiltonian systems,
which are invariant under time reversal if no external magnetic field or Corio-
lis effect is present). Dynamical systems described by differential equations are
typically invertible due to the uniqueness of solutions. Invertible dynamical sys-
tems are thus physically relevant. Noninvertible systems such as those described
by one-dimensional maps can, however, be quite useful models for understanding
specific features of transient chaos, and we shall consider them as well.
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In an invertible dynamical system, a typical nonattracting chaotic set repels
trajectories only along some special hypersurface in the phase space, which is called
the unstable manifold. Along a different invariant hypersurface, or the stable man-
ifold, the set can actually attract nearby trajectories. Usually, the local phase space
at a point in the chaotic set can be decomposed into the stable and the unstable
subspaces. For this reason, nonattracting chaotic sets in invertible dynamical sys-
tems are called chaotic saddles. Because differential equations are, in general,
invertible, and many real-life phenomena are described by differential equations,
transient chaos in experiments is typically related to chaotic saddles.

In contrast, for noninvertible dynamical systems in which the inverse is not
unique, nonattracting chaotic sets are often chaotic repellers, objects that are re-
pellent in all possible directions of the phase space. Chaotic repellers possess only
unstable manifolds. These considerations are summarized in Table 1.1. The geomet-
rical appearances of chaotic saddles and chaotic repellers can be quite different, as
Fig. 1.3 illustrates.

The dynamical difference between chaotic repellers and saddles is that long-lived
trajectories can start only from a neighborhood of the repeller, but for saddles

Table 1.1 Types of typical
nonattracting chaotic sets in
nonlinear dynamical systems

Dynamics Nonattracting chaotic set

Invertible Chaotic saddle
Noninvertible Chaotic repeller
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Fig. 1.3 Comparison of a chaotic saddle and a chaotic repeller. (a) A chaotic saddle from a
periodically kicked harmonic oscillator. On a stroboscopic plane the position xn and the veloc-
ity yn of the oscillator evolve according to the map [773] xn+1 = yn, yn+1 = 1− 3.2y2

n − 0.49xn.
(b) A chaotic repeller of the quadratic map zn+1 = zn

2 +0.2 in the complex plane z = x+ iy, which
is in fact a Julia set [824]. The saddle in (a) appears as a fractal set of points, which is in fact the
direct product of two Cantor-like sets, while the repeller in (b) is a complicated but nonetheless
continuous curve in the plane
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they can also start from a neighborhood of the stable manifold, a typically much
larger set. If a chaotic repeller and saddle coexist,1 transient chaos is primarily gov-
erned by the chaotic saddle.

Because a nonattracting chaotic set is invariant, trajectories starting from points
on the set never leave the set and in fact exhibit chaotic motion for infinitely long
time. However, because the Lebesgue measure of the set is zero, the probability
that a randomly chosen point of the phase space is in the set is zero. What is
observable is not the nonattracting set but a a small neighborhood of it. In par-
ticular, trajectories can originate from points in the vicinity of the set and can then
stay in the neighborhood of the set for a long but finite amount of time, and they
eventually leave the nonattracting chaotic set. These are the trajectories that gener-
ate transiently chaotic signals. The phenomenon of transient chaos thus illustrates
that the existence of a set of Lebesgue measure zero can be observed via finite-time
properties. As a consequence, we shall also see that the fractal features of a nonat-
tracting chaotic set are different from those of a chaotic attractor.

A related point is that the natural measure, a special invariant distribution char-
acterizing the dynamics on a nonattracting chaotic set, not only exists but can
be obtained approximately in numerical or actual experiments. In particular, the
distribution can be approximately specified on a small neighborhood of the set.
The approximate natural measure can then be used to perform ensemble averages of
physical quantities of interest, similar to the situation with chaotic attractors. Since
the distribution is only approximate, any ensemble average will contain errors, but
they can be controlled.

Transient chaotic dynamics can also be classified according to whether the
process is dissipative or conservative. In a strictly dissipative system where the
local phase-space volume contracts everywhere, the asymptotic states of the sys-
tem are attractors that may be regular, but transient chaos provides a “platform” for
approaching the attractors. In such a case the transient dynamics before the final
state of the system is reached is chaotic. In dissipative systems, transient chaos ap-
pears in the form of chaotic transients. In conservative or Hamiltonian systems, the
phase-space volume is constant under time evolution. As a result, there are no attrac-
tors, but some simple asymptotic states of the system can still be defined. Consider,
for example, a particle-scattering experiment in which the underlying dynamics is
Hamiltonian. Particles coming from far away approach the scattering region, and af-
ter a finite amount of time, they leave the region and escape to “infinity.” There can,
however, be qualitatively different exit routes to infinity. In this case, the different
exit routes can be regarded as asymptotic states (but not attractors) of the system.
The dynamics in the scattering region can, however, be regular or chaotic, where
the latter, i.e., transient chaos in Hamiltonian systems, defines the phenomenon of
chaotic scattering. Hamiltonian systems are invertible, so the nonattracting set un-
derlying chaotic scattering is typically a saddle.

1 For instance, in the time-reversed dynamics of an invertible system possessing a chaotic attractor
and a coexisting chaotic saddle.
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It should be noted that nonchaotic transients may also exist in dynamical
systems. An example is provided by trajectories that approach an attractor but are
far away from any nonattracting chaotic set. These transients are typically short and
do not exhibit chaotic features, although the actual asymptotic state may be chaotic.
Thus, transients to chaos can be quite different from chaotic transients, since the
latter, but not the former, are due to an underlying nonattracting chaotic set.

1.1.3 Types of Transient Chaos

According to the type of attractor(s) with which a nonattracting chaotic set coex-
ists, we can distinguish two main types of transient chaos. The first type is for the
case in which the coexisting attractor is simple, e.g., a periodic attractor. While the
asymptotic behavior of the system is relatively simple, the transients are chaotic.
Transient chaos arising in situations in which there is an attractor at infinity, and in
open Hamiltonian systems in which attractors are replaced by different exit routes
also exhibit this type of transient chaos.

The second type occurs when a nonattracting chaotic set coexists with a chaotic
attractor. In this case, there are two distinct forms of chaotic behavior. A signal
from the system typically exhibits one form of chaotic behavior, the one due to the
nonattracting set, on time scale τ , and then switches over to another form of chaos
asymptotically. A common situation is that the motion determined by the nonat-
tracting set is more chaotic than that due to the chaotic attractor (for more detail see
Fig. 1.16 and Chap. 3). Thus, focusing on the asymptotic properties will “miss” the
dominant chaotic part of the full complex dynamics that contains important infor-
mation about the underlying dynamical system.

1.2 Characterizing Transient Chaos

Having introduced the basic concepts of transient chaos in a qualitative manner,
we now discuss its quantitative characterization. A natural question is whether
there is actually chaos in the seemingly chaotic signals observed over finite time
scales. There are different levels of characterization of increasing complexity, as
follows:

1. Measurement of the lifetime distribution, the escape rate, and the average life-
time.

2. Construction of nonattracting chaotic sets in the phase space.
3. Construction of invariant measures on the chaotic set.
4. Determination of dynamical invariants such as the Lyapunov exponents and the

fractal dimensions of the nonattracting chaotic set and its natural measure.
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Following this hierarchy, one can find criteria to address the question of whether
the system is indeed chaotic and if so, to calculate some measure of the strength of
chaoticity. In the following we discuss these levels of characterization.

1.2.1 Escape Rate

In transient chaos, typical trajectories, i.e., trajectories initiated from random initial
conditions, escape any neighborhood of the nonattracting chaotic set. A quantity
measuring how quickly this occurs is the escape rate [824]. To define the escape
rate, imagine distributing a large number N0 of initial points according to some
initial density ρ0 in a phase-space region R that does not contain any attractor
or asymptotic state of the system. The density ρ0 is often chosen to be uniform,
and the geometry of R can be chosen to be simple, e.g., a rectangle in a two-
dimensional phase space. Many trajectories from the initial points may come close
to the nonattracting chaotic set at some later time. We define a restraining region Γ
as a bounded, compact region containing the nonattracting set. Once a point leaves
the restraining region, it cannot return to it. After visiting a neighborhood of the
set, almost all trajectories eventually leave Γ . Let N(n) denote the number of trajec-
tories remaining inside Γ after n steps, and choose N0 to be sufficiently large that
N(n) � 1. As n is increased, one observes in general an exponential decay in the
number of trajectory points that are still in Γ (surviving points) [373, 596, 843]:

N(n) ∼ e−κn for n � 1, (1.5)

where κ is called the escape rate.2 A small value of κ implies weak “repulsion” of
typical trajectories by the nonattracting chaotic set. The escape rate turns out to be
independent of the distribution ρ0 of the initial conditions, of its support R, and of
the choice of the restraining region Γ . The escape rate κ is thus a property solely
of the nonattracting chaotic set. However, the prefactor of the exponential form in
(1.5), and the behavior of the system preceding the exponential decay do depend on
details such as the choices of ρ0, R, and Γ .

A practical issue concerns about the choice of the support R of the initial density.
In a noninvertible system, R should overlap with the chaotic repeller, while in an in-
vertible system it is sufficient to choose R so that it overlaps with the stable manifold
of the chaotic saddle. In any case, if an exponential decay is found, its rate should
be given by the escape rate κ . In practice, the initial density is often distributed on
the restraining region, implying R = Γ .

In a realistic physical system, the exponential decay can be observed with high
accuracy after a finite, often short, time n∗, i.e.,

N(n) = Ne−κn for n ≥ n∗, (1.6)

2 There are situations in which the decay follows a power law for certain types of nonhyperbolic
chaotic sets, which will be treated in Sect. 2.4 and Chap. 6. Such decays cannot be characterized
by escape rates.
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Fig. 1.4 Survival in the Hénon map xn+1 = 1− ax2
n + byn, yn+1 = xn for parameters a = 2.0 and

b = 0.3. Number N(n) of surviving trajectory points in the square defined by Γ : |xn|, |yn| ≤ 1.0,
obtained from N0 = 106 initial points distributed uniformly in the same square (R = Γ ). The fitted
dashed line has slope approximately −0.36, giving κ ≈ 0.36. The value of n∗ is approximately 4.
The survival probability P(n) is approximately N(n)/N0

where the value of n∗ and the prefactor N may also depend on ρ0, R, and Γ .3

An example is shown in Fig. 1.4, where we see that the value of n∗ is relatively
small.

The definition of the escape rate indicates that the number of surviving points
is decreased by a factor of 1/e after about 1/κ time steps. This implies that most
trajectories do not live longer than 1/κ in the restraining region. It is thus reasonable
to estimate the average lifetime τ of the chaotic transient as

τ ≈ 1
κ

. (1.7)

Since the escape rate can be obtained by following the decay law over a finite
time interval, cf. (1.5), transient chaos of short average lifetime may be difficult to
identify. A condition for the practical observability of transient chaos is thus that κ
be small.

In a more general context, for any initial distribution on R and choice of Γ , we can
define the probability P(n) of finding survival times larger than n ≥ 1. The survival
probability P(n) is thus the probability of finding initial points that have not escaped
Γ up to time n, which can be approximated by N(n)/N0 for large N0. In view of
(1.6), the decay of P(n) is exponential:

P(n) = ge−κn for n ≥ n∗. (1.8)

3 The prefactor N yields what the number of initial points would be if the decay were exponential
from the very beginning. Therefore N is different from N0.
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A related probability is the escape-time distribution, p(n), the probability that a
particle escapes region Γ exactly in the nth iterate. This quantity can be estimated
as [N(n− 1)−N(n)]/N0 and is therefore the “density” of the cumulative distribu-
tion P(n). We have

P(n) =
∞

∑
n′=n+1

p(n′). (1.9)

Being the “derivative” of an exponential function, the long-time behavior of p(n) is
also exponential and can be written in the form of (1.8) (with a different n∗, but the
same escape rate).4

The average lifetime τ is defined as the average escape time, i.e.,

τ ≡ n̄ =
∞

∑
n=1

np(n). (1.10)

Since the distribution is not exponential for n < n∗, the exact average lifetime τ
does depend on the choices of ρ0, R, and Γ . Note that the estimate (1.7) does not
reflect this property.5 Since the average lifetime depends on many details, the escape
rate κ is a more appropriate characteristic of the decay process than τ . The escape
rate is a unique property of the underlying nonattracting chaotic set, in contrast to
the average lifetime, which also contains information about, e.g., the initial distri-
bution of particles. While the values of τ and 1/κ are typically different even for
slow decays, their scaling properties in terms of, for example, parameter changes
are usually the same.

There can be situations in which two (or more) nonattracting chaotic sets coex-
ist with different escape rates κ1 and κ2. In such a case, the number of surviving
trajectory points in a given restraining region Γ is the sum of two exponentials for
large n:

N(n) ∼ N1e−κ1n + N2e−κ2n, (1.11)

and the prefactors Ni depend on the choices of ρ0, R, and Γ .
It should be emphasized that the existence of a positive escape rate κ for

transients does not at all imply their chaoticity. One should also measure, for ex-
ample, the Lyapunov exponents on time scale 1/κ [714] and check whether at least
one of the exponents is positive. A complication is that even simple nonattracting
sets, for instance a single, regular saddle point (also called a hyperbolic point) are
at least partially repelling. Trajectories deviate from them exponentially. Regular

4 For continuous-time systems, (1.5)–(1.8) remain valid under the transform n → t . The escape-
time distribution becomes then a probability density, and the sum in (1.9) is replaced by an integral.
The escape rate in the corresponding continuous-time system is κ/t0, where t0 denotes the internal
characteristic time mentioned in the introduction to this chapter. Analogously, the average lifetime
can be estimated as t0/κ .
5 Equation (1.7) is a rough estimate, since even in the ideal case of n∗ = 1, when p(n) =
(exp (κ)− 1)exp (−κn), we obtain τ = (1− exp (−κ))−1 from (1.10) [147], which is consistent
with (1.7) for κ � 1 only.
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Fig. 1.5 Lifetime function:
dependence of the lifetime n
on the initial position x along
the interval defined by
y = −1.5 and |x| ≤ 1 in the
Hénon map at the parameters
of Fig. 1.4. (For the
corresponding phase-space
patterns, see Figs. 1.7 and
1.9.) The fractal irregularity
of this lifetime function is a
sign of transient chaos
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nonattracting sets are therefore characterized by a positive Lyapunov exponent,
although the dynamics about them are not chaotic. The positivity of at least one
Lyapunov exponent is thus not sufficient for the chaotic behavior of transients. This
is why we accept the definition, used throughout the book, that transient chaos is the
dynamics associated with nonattracting chaotic sets.

To determine whether the transients are truly chaotic, one therefore needs more
information than the mere positivity of the Lyapunov exponent. Qualitatively, the
visual appearance of the signal can be helpful: about chaotic nonattracting sets
trajectories should be complicated. This is, nonetheless, only a hint. A property
uniquely indicating the chaotic nature of the transients is the irregular dependence
of lifetimes on initial conditions, as illustrated by Fig. 1.5. Suppose one starts tra-
jectories along a smooth curve in the phase space that intersects a chaotic repeller
or the stable manifold of a chaotic saddle. One then finds that for some points the
lifetimes are large. In principle, points of infinitely large lifetimes belong to a fractal
subset of initial conditions, since these must be points of the chaotic repeller or of
the saddle’s stable manifold. A fingerprint in a finite-accuracy numerical simulation
is large lifetimes separated by small values in between.

1.2.2 Constructing Nonattracting Chaotic Sets

Repellers are straightforward to construct, since they are the attractors of the in-
verted dynamical systems. Noninvertibility is generally due to the existence of more
than one inverted branch. When following the time-reversed dynamics, all possible
inverses should be taken into account.

For an invertible dynamical system, the calculation of chaotic saddles is more
delicate. While such a system can be inverted, the inverted dynamics still results in a
chaotic saddle. This feature can in fact be viewed as an illustration of the robustness
of the hyperbolic structure that is often seen for chaotic saddles. Roughly, a chaotic
saddle is the set of intersections between the stable and the unstable manifolds, and
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in hyperbolic cases, the angles at the intersecting points are bounded away from
zero. In what follows, we will describe an intuitive numerical procedure for calcu-
lating chaotic saddles, which serves to further illustrate their dynamical structures.
More practical numerical methods will then be introduced.

1.2.2.1 Horseshoe Construction

The intuitive method is based on the observation that a chaotic saddle has typically
embedded within itself a dense set of unstable periodic orbits, a property of any
chaotic set. Imagine that we choose an unstable periodic orbit in an invertible two-
dimensional map and plot its stable and unstable manifolds, which are the curves
along which the orbit is attracting in the direct and in the inverted dynamics, re-
spectively. If these curves cross each other once at a point (a homoclinic point),
they must do so infinitely many times, since the images and the preimages of such
an intersection are of the same type. All the homoclinic points form a homoclinic
orbit. Since it belongs simultaneously to the stable and the unstable manifolds of
the original periodic orbit, a homoclinic orbit approaches asymptotically, but can
never reach, the periodic orbit. As a result, the stable and unstable manifolds exhibit
a complex, intertwined structure, as shown schematically in Fig. 1.6. The horse-
shoe structure of the manifolds and the existence of homoclinic orbits have been
known since the works of Smale [300, 721]. Thus, mathematically, chaotic saddles
are closed, bounded, and invariant sets with dense orbits. They are the “soul” of
chaotic dynamics [721]. Similar to the formation of homoclinic orbits, the stable
(unstable) manifold of a periodic orbit can intersect with the unstable (stable) man-
ifold of a different orbit, forming a heteroclinic orbit. The stable and the unstable
manifolds of different periodic orbits of a chaotic saddle are usually close to each
other in the phase space, and all the resulting homoclinic and heteroclinic orbits
belong to the chaotic saddle.

Fig. 1.6 Horseshoe
structure: schematic
illustration of horseshoes
formed by the stable and the
unstable manifolds of a fixed
point (period-1 orbit) denoted
by the dot. The set of
intersection points
(homoclinic points) between
the manifolds belongs to the
chaotic saddle
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Fig. 1.7 A horseshoe
construction: a few branches
of the stable and the unstable
manifolds of the fixed point
H+ of the Hénon map
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The above discussion suggests the following procedure for numerically calculat-
ing a chaotic saddle. One first finds a simple hyperbolic orbit, such as a fixed point
or a periodic orbit of low period, and then calculates its stable and unstable mani-
folds. In particular, the unstable (stable) manifold can be obtained by distributing a
large number of initial points in a small neighborhood of the hyperbolic orbit and
iterating them under the forward (inverted) dynamics. The set of intersecting points
between the manifolds is part of the chaotic saddle. Since in practice, only a finite
number of branches of the manifolds can be constructed, the intersections provide
an approximate representation of the saddle. If the number of initial points used in
the calculation is reasonably large, the fractal nature of the saddle and its stable and
unstable manifolds can be revealed. An example is shown in Fig. 1.7. In general,
the appearance of a fractal geometry along both the stable and the unstable mani-
folds and the existence of a horseshoe type of structure are indications that a chaotic
saddle exists in the phase space of interest. Note that if the manifolds of the hyper-
bolic orbit chosen do not intersect each other, the orbit does not belong to a chaotic
saddle. In this case, it is necessary to choose a different periodic orbit to start with.

1.2.2.2 Ensemble Method

The idea of this method, introduced by Kantz and Grassberger [380], is to follow
an ensemble of trajectories and select the pieces that remain in the vicinity of the
saddle. In particular, one first chooses a region R close to the suspected chaotic
saddle but not containing any attractor, distributes uniformly a large number N0

of points in R, and iterates these initial conditions under the forward dynamics.
A criterion is needed for deciding when a trajectory is away from the saddle, which
can simply be that the trajectory moves out of a restraining region Γ surrounding the
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saddle (regions R and Γ can be the same as the respective ones used for computing
the escape rate). Another criterion can be [380] to calculate the effective Lyapunov
exponents over a finite number of time steps and examine whether they are close
to the corresponding exponents characterizing an attractor. In the case of a point
attractor, it is simply the negativity of all local Lyapunov exponents that can be used
as an indicator of the trajectory’s having left the saddle. All trajectories leaving the
saddle earlier than n0 steps are discarded, and trajectories of lifetime longer than
or equal to n0 are kept. The choice of the value of n0 can be somewhat arbitrary,
but some large value should be chosen if the lifetime τ of the chaotic saddle is
large. (Experience indicates that choosing n0 a few multiples of 1/κ is proper.)
One can then select long-lived trajectories in the neighborhood of the saddle to
approximate it. For example, if the desirable number of trajectories whose lengths
are not less than n0 is M0, the number N0 of initial points should be of the order of
n0M0 exp(κn0), which can be a few orders of magnitude larger than M0. To ensure
that trajectories close to the saddle are selected, the long-lived trajectories need to be
truncated at both the beginning and the end. For example, for a trajectory of length
larger than n0, one can discard the first n1 and the last n2 points so that the resulting
trajectory is close to the saddle but not close to its stable and unstable manifolds,
respectively, where n1 and n2 are each a fraction of n0. A representative example is
shown in Fig. 1.8.
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Fig. 1.8 Chaotic saddle in the Hénon map (a = 2.0, b = 0.3) obtained by the ensemble method,
where N0 = 106 initial points are distributed uniformly in the interval R = (| y0 |< 0.5, x0 = 0).
The restraining region is Γ =| xn |≤ 1.2. The first 10 and the last 20 steps of long-lived trajectories
are discarded (n0 = 30). Observe that the pattern is practically the same as the one formed by the
set of homoclinic points in Fig. 1.7. The direct product structure of two Cantor-like sets is a generic
characteristic of chaotic saddles of two-dimensional maps


