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Preface: Painlevé’s Problem

Let K be a compact subset of the complex plane. Call K removable for bounded
analytic functions, or more concisely removable, if for each open superset U of K
in the complex plane, each function that is bounded and analytic on U \ K extends
across K to be analytic on the whole of U . In 1888 Paul Painlevé became the first
to seriously investigate the nature of removable sets in his thesis [PAIN]. Because
of this the removable subsets of the complex plane are often referred to as Painlevé
null sets and the task of giving them a “geometric” characterization has come to be
known as Painlevé’s Problem. In addition to being an academic, Painlevé was also a
politician and statesman who served as War Minister and Prime Minister of France
at various times in his life. For more on this interesting and multifaceted individual
see Section 6 of Chapter 5 of [PAJ2].

The notion of “geometric” here is unavoidably vague and intuitive. On the one
hand, a necessary but not sufficient condition for such a characterization is that it
should make no reference to analytic functions. On the other hand, a sufficient but
not necessary condition for such a characterization is that it be couched in terms of
the cardinality of K or the topological, metric, or rectifiability properties of K . At
the very end of this book the following question will command our attention: Should
a characterization involving totally arbitrary measures be counted as “geometric”?

The goal of this book is to present a complete proof of the recent affirmative
resolution of a special case of Painlevé’s Problem known as Vitushkin’s Conjecture.
This conjecture states that a compact set with finite linear Hausdorff measure is
removable if and only if it intersects every rectifiable curve in a set of zero arclength
measure. We note in passing that arclength measure here can be replaced by linear
Hausdorff measure since the two have the same zero sets among subsets of rectifi-
able curves. More importantly, we note that the forward implication of Vitushkin’s
Conjecture is equivalent to an earlier conjecture about a still more special case
of Painlevé’s Problem known as Denjoy’s Conjecture. This conjecture states that
a compact subset of a rectifiable curve with positive arclength measure is non-
removable. So to prove Vitushkin’s Conjecture, we must also prove Denjoy’s
Conjecture.

To understand this book a prospective reader should have a firm grasp of the first
14 chapters of Walter Rudin’s Real and Complex Analysis, 3rd Edition (hereafter
referred to as [RUD]). Indeed, the author has somewhat eccentrically sought to make

ix



x Preface: Painlevé’s Problem

this book, when used in conjunction with [RUD], entirely self-contained. Thus any
standard result of analysis which is needed but is not contained in [RUD] is proved
in this book (e.g., Besicovitch’s Covering Lemma), and conversely, any standard
result of analysis which is needed and is contained in [RUD] is always given a
citation from [RUD] (e.g., Lebesgue’s Dominated Convergence Theorem). Another
eccentricity of the book is a deliberate exclusion of figures but an equally delib-
erate inclusion of verbal descriptions precise enough to enable an attentive reader
to reconstruct the excluded figures. To a great extent the author wrote this book to
convince himself of the truth of Vitushkin’s Conjecture “beyond a reasonable doubt”
and so has elected to err on the side of too much detail rather than too little. Finally,
the author believes his notation is fairly standard or obvious but has nevertheless
spelled out the meaning of a number of symbols upon first use and appended a
symbol glossary and list to the back of the book for the reader’s convenience.

We now turn to detailing the contents of the book, chapter by chapter.

Chapter 1 introduces and then proves various standard elementary results about
the notions of removability and analytic capacity. The analytic capacity of a compact
subset K of the complex plane is a nonnegative number γ (K ) which can be thought
of as a quantitative measure of removability/nonremovability since K is removable
if and only if γ (K ) = 0. This result does not solve Painlevé’s Problem since γ (K )

is not a geometric quantity – its definition (see Section 1.2) involves suping over a
space of bounded analytic functions!

Chapter 2 introduces the notions of s-dimensional Hausdorff measure Hs and
Hausdorff dimension dimH – these are not dealt with in [RUD] – and then relates
them to removability. It turns out that a result of Painlevé implies that a compact K is
removable whenever dimH(K ) < 1 and a result of Frostman implies that a compact
K is nonremovable whenever dimH(K ) > 1. So Painlevé’s Problem is reduced
to determining the removability of those compact K for which dimH(K ) = 1. At
the end of this chapter a natural conjecture presents itself which would finish off
Painlevé’s Problem if true. It is couched in terms of H1 but is summarily slain by a
counterexample!

Chapter 3 proves a special case of Garabedian duality needed for our proof of
Denjoy’s Conjecture. Analytic capacity, whose definition involves suping over a
space of bounded analytic functions, is an L∞ object. It has an L2 analog and
Garabedian duality asserts that these two capacities, one L∞ and the other L2, are
related in a manner that makes it clear that they vanish for the same sets. The impor-
tance of Garabedian duality is that it thus allows us to use Hilbert space methods to
study an L∞ problem – it is frequently easier to estimate an L2 norm than it is to
estimate an L∞ norm.

Chapter 4 introduces the notion of the Melnikov curvature of a measure and
the notion of a measure with linear growth. Garabedian duality is then used to
prove a result called Melnikov’s Lower Capacity Estimate. Given a compact set
supporting a nontrivial positive Borel measure with finite Melnikov curvature and
linear growth, this estimate gives a positive lower bound on the analytic capacity of
the set in terms of the Melnikov curvature, the linear growth bound, and the mass of
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the measure. Of course this quantitative result trivially implies a qualitative one: a
compact set which supports a nontrivial positive Borel measure with finite Melnikov
curvature and linear growth is nonremovable. A Fourier transform argument due to
Mark Melnikov and Joan Verdera is then given that shows that Lipschitz graphs
support many such measures. After some preliminaries dealing with arclength and
arclength measure, these two results combine to give a nice proof of Denjoy’s Con-
jecture. At the end of this chapter a natural conjecture presents itself which would
finish off Painlevé’s Problem if true. It is couched in terms of rectifiable curves
but meets the same fate as the earlier conjecture, i.e., it is summarily slain by a
counterexample!

Chapter 5 is a grab bag of the measure theory needed to carry us forward. Amaz-
ingly, up to this point in the book it has sufficed to just know that s-dimensional
Hausdorff measure is an outer measure defined on all subsets of the complex plane!
Not so for what follows where we must know that it is an honest-to-god measure
on a σ -algebra of subsets containing the Borel sets. The chapter has more in it than
one would expect. The reason is that measures in [RUD] are typically obtained via
the Riesz Representation Theorem and, in consequence, always put finite mass on
any compact set. This is a property that s-dimensional Hausdorff measure on the
complex plane has only when s = 2. So we cannot simply rely on [RUD] here for
our measure theory.

Chapter 6 has a proof of Vitushkin’s Conjecture modulo two difficult results. The
next two chapters, comprising roughly half the book, are taken up with proving these
results.

Chapter 7 has a proof of the first difficult result, a T (b) theorem due to Fedor
Nazarov, Sergei Treil, and Alexander Volberg for measures that need not satisfy a
doubling condition. The complexity of this proof precludes us from saying anything
enlightening about it just now.

Chapter 8 has a proof of the second difficult result, a curvature theorem for arbi-
trary measures due to Guy David and Jean-Christophe Léger. The complexity of this
proof precludes us from saying anything enlightening about it just now.

With the end of Chapter 8, the goal of this book, the presentation of a com-
plete proof of Vitushkin’s Conjecture, has been achieved. But Vitushkin’s Conjec-
ture, although a big part of Painlevé’s Problem, is not all of it. With the affirma-
tive resolution of Vitushkin’s Conjecture, Painlevé’s Problem has been reduced to
determining the removability of those compact sets K for which dimH(K ) = 1
but H1(K ) = ∞. A Postscript following Chapter 8 seeks to shed some light on
these sets. This Postscript deals with two items: first, the extension of Vitushkin’s
Conjecture to compact sets that are σ -finite for H1, and second, a conjecture due
to Melnikov which essentially says that the qualitative consequence of Melnikov’s
Lower Capacity Estimate mentioned a few paragraphs ago is reversible. Both of
these matters are resolved affirmatively with the aid of a quite recent and deep
theorem, which we state but do not prove, due to Xavier Tolsa.

In writing this book the author has found three useful sources on Hausdorff mea-
sure and dimension: [ROG], [FALC], and [MAT3]. These items have been listed
in order of increasing depth. For the purposes of this book [FALC] proved to be
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ideal. The author was also helped by several excellent survey articles dealing with
the status of Painlevé’s Problem and the various subproblems it has spawned. These
are, in chronological order: [MARSH], [VER], [MAT5], [MAT6], [DAV2], [DAV3],
[TOL4], and [PAJ3]. The author is also indebted to two books that are of a much
more comprehensive scope than this one but deal with Painlevé’s Problem: [GAR2],
from the pre-Melnikov-curvature era, and [PAJ2], from the post-Melnikov-curvature
era. Finally, it should be noted that [MAT3], a very comprehensive and deep book on
Hausdorff measure and rectifiability that appeared at the cusp between the two eras,
has an excellent chapter devoted to the status of Painlevé’s Problem at that time.
These sources also have superb and complete bibliographies. The bibliography of
this book, being restricted solely to those articles and books that the author found
necessary to cite, is spare by comparison.

The author would like to express his gratitude to the University of Tennessee at
Knoxville where, as a visitor during the 2002–2003 academic year, he was able to
present some of the material that made its way into this book in a faculty semi-
nar. At various times during the composition of Chapter 8, Jean-Christophe Léger
kindly responded to email inquiries about fine points of the proof of the curvature
theorem bearing his and David’s name. His responses were prompt, gracious, and,
most importantly, very helpful, thus earning the author’s heartfelt thanks. Last but
certainly not least, the author would like to thank his wife for many things, just one
of which is her making possible a leave of absence from teaching duties in order to
engage in the last push to the finish line with this book!

East Lansing, MI James J. Dudziak



Chapter 1
Removable Sets and Analytic Capacity

1.1 Removable Sets

For now and forevermore, let K be a compact subset of the complex plane C. This
will be restated for emphasis many times in what follows but just as often will be
tacitly assumed and not mentioned. For the sake of those readers who skip prefaces,
we repeat a definition: K is removable for bounded analytic functions, or more
concisely removable, if for each open superset U of K in C, each function that
is bounded and analytic on U \ K extends across K to be analytic on the whole
of U . These analytic extensions must be bounded on the whole of U since they
are continuous and so also bounded on K . Thus the definition may be equivalently
restated as follows: K is removable if for each open superset U of K in C, each
element of H∞(U\K ) extends to an element of H∞(U ). Of course, for any open set
V of C, H∞(V ) denotes the Banach algebra of all functions bounded and analytic
on V . What can we say about a removable K ?

First, a removable K must have no interior. For if there were a point z0 in the
interior of K, then the function z �→ 1/(z − z0) would be a function nonconstant,
bounded, and analytic on C\K which, by Liouville’s Theorem [RUD, 10.23], would
not extend analytically to all of C.

An immediate consequence of this first observation is that the analytic extension
of any element of H∞(U \ K ) to an element of H∞(U ) is unique and of the same
supremum norm, i.e., H∞(U \ K ) and H∞(U ) are isometrically isometric. This
explains the terminology: “removing” K from U has made no difference to H∞(U ).

Second, a removable K must have connected complement. For if C\K had more
than one component, then the function which is one on the unbounded component
and zero on all the bounded components would be a function nonconstant, bounded,
and analytic on C \ K which, by Liouville’s Theorem [ RUD, 10.23], would not
extend analytically to all of C.

Third, a removable K must be totally disconnected, i.e., a removable K can con-
tain no nontrivial connected subset. To see this we suppose otherwise and deduce a
contradiction. So let C be a nontrivial connected subset of a removable K . Replacing
C with its closure, we may assume that C is closed. Let U∞ be the component of
C
∗\C containing∞. Of course, C

∗ = C∪{∞} denotes the extended complex plane
(also known as the Riemann sphere). By our second observation, U∞ contains all

J.J. Dudziak, Vitushkin’s Conjecture for Removable Sets, Universitext,
DOI 10.1007/978-1-4419-6709-1_1, C© Springer Science+Business Media, LLC 2010
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2 1 Removable Sets and Analytic Capacity

of C
∗ \ K. It is an exercise in point-set topology, which we leave to the reader,

to show that C
∗ \ U∞ is a nontrivial connected subset of C

∗. Fix z0 ∈ C
∗ \ U∞

and set g(z) = 1/(z − z0). Then g(U∞) is a proper subregion of C for which
C
∗ \ g(U∞) = g(C∗ \ U∞) is connected. Hence, by the many equivalences to

simple connectivity and the Riemann Mapping Theorem [ RUD, 13.11 and 14.8],
there exists a one-to-one analytic mapping f of g(U∞) onto the open unit disc at
the origin. It follows that f ◦ g is a bounded analytic function on C \ K . By the
removability of K and Liouville’s Theorem [ RUD, 10.23], f ◦ g is constant on
C \ K, and so too on U∞ \ {∞} by the uniqueness property of analytic functions
[RUD, 10.18]. Clearly then, f does not map g(U∞) onto the open unit disc at the
origin. With this contradiction we are done.

As an aside, we note that the third observation subsumes the first two since any
totally disconnected K must have no interior and a connected complement. While
the first part of this assertion is trivial, the reader may find verifying the second part
one of those exercises in “mere” point-set topology that is a wee bit frustrating!

Turning to concrete examples, any single point is removable since bounded ana-
lytic functions can be analytically continued across isolated singularities. This asser-
tion is simple [RUD, 10.20], but it is instructive to reproduce its proof. So suppose
f is bounded and analytic on int B(z0; r) \ {z0}, a punctured open disc about z0.
Using the boundedness of f , one easily sees that (z − z0)

2 f (z) extended to be zero
at z0 is differentiable there with derivative zero. Thus (z − z0)

2 f (z) is analytic on
int B(z0; r) and so has a power series expansion there [RUD, 10.16]:

(z − z0)
2 f (z) = a0 + a1(z − z0)+ a2(z − z0)

2 + a3(z − z0)
3 + · · · .

Since this extension and its derivative vanish at z0, a0 = 0 trivially and a1 = 0
by [ RUD, 10.6]. Thus we may divide out a factor of (z − z0)

2 in the above to
conclude that f , extended to be a2 at z0, has the following power series expansion
on int B(z0; r):

f (z) = a2 + a3(z − z0)+ a4(z − z0)
2 + a5(z − z0)

3 + · · · .

But then, by [RUD, 10.6] again, our extended f is differentiable at z0 with derivative
a3 there, and so f has been extended analytically across z0.

Of course it follows that any finite set of points is removable. A little more non-
trivially, any countable compact set K is removable. One proof involves a transfinite
process which starting at K0 = K and any f0 ∈ H∞(U \ K ), generates transfi-
nite sequences {Kα} and { fα} by stripping an isolated point off Kβ after extend-
ing fβ across the isolated point when one is at a successor ordinal α = β + 1,
while intersecting all previous sets Kβ , β < α, and patching together all previous
extensions fβ , β < α, when one is at a limit ordinal α. Note that we always have
fα ∈ H∞(U \Kα). This process must break down at some ordinal α since K is not a
proper class. A little thought shows that this can only happen at a successor ordinal
α = β + 1 and only then when Kβ has no isolated points. Since any nonempty
countable compact subset of the plane must have an isolated point by the Baire
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Category Theorem [ RUD, 5.7], it follows that we must have some Kβ = ∅. But
then f has been extended to fβ ∈ H∞(U ) and so K is removable. We note in
passing that this ordinal β must be less than ω1, the first uncountable ordinal, since
K is countable. Those readers uncomfortable with transfinite induction/recursion
will be relieved to know that the removability of countable compact sets is a simple
corollary of Proposition 1.7 below whose proof does not use these tools from set
theory.

This is as far as one can go with topology and cardinality alone since the next
proposition shows that some uncountable, totally disconnected, compact subsets of
the complex plane are removable while others are not. The simplest such sets are
the linear Cantor sets. The standard middle-third’s Cantor set is removable, but not
all linear Cantor sets are. The next proposition shows this and indeed settles the
question of removability for all linear compact sets. It also shows that a nonanalytic
characterization of removability, if one is to be had, must involve metric notions
which measure the “size” of the set. Later we shall see that metric “size” alone does
not always suffice and that in certain situations the “rectifiability structure” of the
set is decisive.

Proposition 1.1 Let K be a linear compact subset of C. Then K is removable if and
only if the linear Lebesgue measure of K is zero.

Proof Without loss of generality, let the line in which K lies be the real line R.
Suppose that the linear Lebesgue measure of K is zero. Let U be any open super-

set of K in C and consider any f ∈ H∞(U \ K ). A very useful general fact, which
we shall employ many times in this book, is that given any open superset U in C of
any compact subset K of C, there always exists a cycle � in U \ K with winding
number 1 about every point of K and 0 about every point of C \U [RUD, proof of
13.5]. Letting � be such a cycle for the U and K now under consideration, set V
equal to the union of the collection of components of C\� which intersect K . Then
V is an open superset of K . Since the winding number of � about every point of V
is 1 [RUD, 10.10], V is a subset of U . Define a function g on V by

g(z) = 1

2π i

∫
�

f (ζ )

ζ − z
dζ.

Clearly g is analytic on V , so to show that f extends analytically across K it suffices
to show that f = g on V \ K .

Fixing z ∈ V \ K , let ε > 0 be smaller than the distance of K to (C \ V ) ∪ {z}.
Then, since K is compact and has linear Lebesgue measure zero, K can be covered
by a finite number of open intervals of the real axis whose lengths sum to less
than ε. By amalgamating intervals which intersect one another and then discarding
any intervals which miss K , we may assume that these intervals are pairwise dis-
joint and intersect K . Upon each such interval describes the counterclockwise circle
having that interval as a diameter. Let �ε be the cycle consisting of the circles so pro-
duced. Clearly the length of �ε is less than πε. Applying Cauchy’s Integral Theorem
[RUD, 10.35] to the cycle � − �ε in U \ K , one has that
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f (z) = 1

2π i

∫
�−�ε

f (ζ )

ζ − z
dζ = g(z)− 1

2π i

∫
�ε

f (ζ )

ζ − z
dζ.

The absolute value of the second integral above is at most

1

2π
· ‖ f ‖∞

dist(z, K )− ε
· πε

which converges to zero as ε does. Thus f (z) = g(z), and so K is removable.
Now suppose that the linear Lebesgue measure of K , denoted l, is positive.

Define a function h on C \ K by

h(z) = 1

2

∫
K

1

z − t
dt.

(As an aside, the factor of a half in the definition of h is not necessary for this proof;
however, we will be reusing h in the proof of Proposition 1.19 below and there it
will be necessary!) Clearly h is analytic on C \ K . Since as z →∞, h(z)→ 0 yet
zh(z)→ l/2 �= 0, h is nonconstant. For z = x + iy with y �= 0,

|Im h(z)| ≤ 1

2

∫
K

|y|
(x − t)2 + y2

dt <
1

2

∫ +∞

−∞
|y|

u2 + y2
du = π

2
.

In consequence, exp(ih) is a nonconstant element of H∞(C \ K ). By Liouville’s
Theorem [RUD, 10.23] such an element cannot be extended analytically to all of C.
Hence K is nonremovable. ��

Our next goal is to state and prove a number of equivalences for removability. To
do this however, we first need a few words about analyticity at∞ and a lemma.

Consider a function f analytic and bounded on {z ∈ C : |z| > R}, a punctured
neighborhood of ∞. Note that g(w) = f (1/w) is bounded and analytic on {w ∈
C : 0 < |w| < 1/R}, a punctured neighborhood of 0. Since we have shown single
points to be removable, g extends analytically to {w ∈ C : |w| < 1/R}. By [RUD,
10.16],

g(w) = a0 + a1w + a2w
2 + a3w

3 + · · ·
with the convergence being absolute and uniform for all w with |w| ≤ 1/R′ for any
R′ > R. Clearly then,

f (z) = a0 + a1

z
+ a2

z2
+ a3

z3
+ · · ·

with the convergence being absolute and uniform for all z with |z| ≥ R′ for any
R′ > R. Set

f (∞) = g(0) = a0 = lim
z→∞ f (z)
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and

f ′(∞) = g′(0) = a1 = lim
z→∞ z{ f (z)− f (∞)}.

We describe this situation by saying that f extends to be “analytic” at∞ with value
f (∞) and “derivative” f ′(∞) there. Another typical example of our use of language
would be to say that f is “analytic at ∞” since it can be written as a “power series
about∞”.

The last paragraph applies to any element of H∞(C \ K ) and extends it to a
function bounded and “analytic” on C

∗ \ K . These extentions form a Banach alge-
bra which we denote H∞(C∗ \ K ). Of course, it is isometrically isomorphic to
H∞(C\ K ). We will frequently be cavalier about the distinction between these two
algebras.

Let us now back up a bit and consider any function f analytic on C \ K and
bounded on a deleted neighborhood of∞. Then for � a cycle in C\K with winding
number 1 about every point of K and C a counterclockwise circular path centered
at the origin encircling K and �, one has

f ′(∞) = 1

2π i

∫
C

f (ζ ) dζ = 1

2π i

∫
�

f (ζ ) dζ.

The first equality follows by plugging the power series about ∞ above into the
integral and then integrating term-by-term while the second inequality follows from
Cauchy’s Integral Theorem [RUD, 10.35]. If, in addition, z0 is any point of K , then

f (∞) = 1

2π i

∫
C

f (ζ )

ζ − z0
dζ = 1

2π i

∫
�

f (ζ )

ζ − z0
dζ.

To see this, apply the integral representations for f ′(∞) above to the function
g(z) = f (z)/(z− z0), noting that g(∞) = limz→∞ f (z)/(z− z0) = f (∞) · 0 = 0
and so g′(∞) = limz→∞ z f (z)/(z − z0) = f (∞) · 1 = f (∞).

Given U a punctured neighborhood of ∞, let { fn} be a sequence of functions
analytic and uniformly bounded on U that converges uniformly on compact subsets
of U to a function f . Of course f is then analytic and bounded on U [RUD, 10.28]
and so all functions here are analytic at ∞. Our integral representations now make
it clear that fn(∞)→ f (∞) and f ′n(∞)→ f ′(∞).

Lemma 1.2 Let U be an open superset of a compact subset K of C. Then any ana-
lytic function f on U \ K can be written uniquely as g+ h where g is analytic on U
and h is analytic on C

∗ \ K with h(∞) = 0. Moreover, if f is bounded on U \ K ,
then g and h are bounded on U and C

∗ \ K respectively.

Proof Given any z ∈ U , choose a cycle �g(z) in U \(K ∪{z}) with winding number
1 about every point of K ∪ {z} and 0 about every point of C \U . Define

g(z) = 1

2π i

∫
�g(z)

f (ζ )

ζ − z
dζ.
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Cauchy’s Integral Theorem [RUD, 10.35] implies that this integral is independent
of the particular �g(z) chosen. Thus g is well defined and, given any �g(z), we have

g(w) = 1

2π i

∫
�g(z)

f (ζ )

ζ − w
dζ

for all w in the component of C\�g(z) containing z since �g(z) will serve as �g(w)

for such w [RUD, 10.10]. We may thus differentiate under the integral in the last
displayed equation to conclude that g is analytic on U .

Given any z ∈ C\K , choose a cycle �h(z) in (U \{z})\K with winding number
one about every point of K and zero about every point of C \ (U \ {z}). Define

h(z) = − 1

2π i

∫
�h(z)

f (ζ )

ζ − z
dζ.

Cauchy’s Integral Theorem [RUD, 10.35] implies that this integral is independent
of the particular �h(z) chosen. Thus h is well defined and an argument similar to
that just given for g shows that h is analytic on C\K . Let � be a cycle in U \K with
winding number one about every point of K and zero about every point of C \ U .
Then

h(z) = − 1

2π i

∫
�

f (ζ )

ζ − z
dζ

for all z in the unbounded component of C \ � since � serves as �h(z) for such
z [RUD, 10.10]. The last displayed equation makes it clear that h is bounded in a
deleted neighborhood of ∞ and so analytic at ∞. Moreover, letting z →∞ in this
equation, we see that h(∞) = 0.

Cauchy’s Integral Theorem [ RUD, 10.35] applied to the cycle �g(z) − �h(z)
implies that f = g + h on U \ K , so existence has been shown. Consider another
representation f = g̃ + h̃ as desired. Liouville’s Theorem [RUD, 10.23] applied to
g − g̃ = h̃ − h gives us uniqueness.

To finish, suppose f is bounded on U \ K . Choose an open set V with compact
closure such that K ⊆ V ⊆ cl V ⊆ U . Since h is bounded on C \ V , g = f − h is
bounded on U \V . But then, since g is bounded on cl V , g is bounded on U . Finally,
h = f − g is bounded on U \ K and so also on C \ K . ��

Now to all but one of the promised equivalences for removability.

Proposition 1.3 For a compact subset K of C, the following are equivalent:

(a) K is removable.
(b) There exists an open superset U of K in C such that each function that is

bounded and analytic on U \ K extends across K to be analytic on the whole
of U.
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(c) The only elements of H∞(C∗ \ K ) are the constant functions.
(d) For every f ∈ H∞(C∗ \ K ), one has f ′(∞) = 0.

Proof (a)⇒ (b): Trivial.
(b) ⇒ (c): Given f ∈ H∞(C∗ \ K ), clearly one also has f ∈ H∞(U \ K ) and

so f extends analytically across K . Since the extension is still bounded, Liouville’s
Theorem [RUD, 10.23] now implies that f is constant.

(c)⇒ (d): Trivial.
(d) ⇒ (c): We suppose that there exists a nonconstant g ∈ H∞(C∗ \ K ) and

construct a function f ∈ H∞(C∗ \ K ) with f ′(∞) �= 0. Since g is nonconstant,
there exists a point z0 ∈ C \ K such that g(z0) �= g(∞). Set f (z) = {g(z) −
g(z0)}/(z − z0). Then f ∈ H∞(C∗ \ K ) and f (∞) = limz→∞ f (z) = 0. In
consequence, f ′(∞) = limz→∞ z f (z) = g(∞)− g(z0) �= 0.

(c) ⇒ (a): Given any open superset U of K in C and any f ∈ H∞(U \ K ), get
g and h as in the previous lemma. Then h is constant, and since h(∞) = 0, this
constant must be 0. Thus g is an analytic extension of f to U . ��

Our last equivalence for removability is a surprising apparent strengthening of the
way we have defined the concept. It has been stated separately because it requires a
finicky bit of topology which is the content of . . .

Lemma 1.4 Let X be a totally disconnected, compact, Hausdorff space. Suppose
C1 and C2 are disjoint closed subsets of X. Then X can be written as the disjoint
union of two closed subsets X1 and X2 such that C1 ⊆ X1 and C2 ⊆ X2.

Proof Recall that a clopen subset of a topological set is one that is both closed and
open.

First Claim. Given any point x ∈ X , let Ex denote the intersection of all clopen
subsets of X containing x . Then Ex is connected. (Note: The total disconnectedness
of X is not used here!)

Indeed, supposing Ex is the disjoint union of two closed subsets E1 and E2 with
x contained in E1 say, it suffices to show that E2 is empty. Since X is compact
and Hausdorff, there exist two disjoint open sets U1 and U2 such that E1 ⊆ U1 and
E2 ⊆ U2. Since Ex ⊆ U1∪U2 and Ex is an intersection of clopen sets, finitely many
of these sets must have intersection Ẽ contained in U1∪U2 by compactness. But then
Ẽ , being a finite intersection of clopen sets, is itself clopen. Hence Ẽ ∩U1 = Ẽ \U2
is also clopen and it clearly contains x . Thus by the definition of Ex , Ex ⊆ Ẽ \ U2
and so E2 ∩U2 = ∅. Since E2 ⊆ U2 also, E2 must be empty.

Second Claim. For any distinct points x, y ∈ X , there exists a clopen subset E
of X such that x ∈ E and y /∈ E . (Note: The total disconnectedness of X is used
here!)

This claim can be rephrased as Ex = {x} where Ex is as in the first claim. It thus
follows immediately from the first claim since the total disconnectedness of X just
means that the only nonempty connected subsets of X are the singletons.

Third Claim. For any closed subset C1 of X and any point y ∈ X \ C1, there
exists a clopen subset E of X such that C1 ⊆ E and y /∈ E .
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The proof of this claim is a simple compactness argument using the second claim.
Fourth Claim. For C1 and C2 disjoint closed subsets of X , there exists a clopen

subset E of X such that C1 ⊆ E and C2 ∩ E = ∅.
The proof of this claim is a simple compactness argument using the third claim.
The proposition now follows by setting X1 = E and X2 = X \ E where E is as

in the fourth claim. ��
Proposition 1.5 A compact subset K of C is removable if and only if for each open
subset U of C, each function that is bounded and analytic on U \ K extends across
K to be analytic on the whole of U.

Note that the backward implication is trivial. The forward implication is also
trivial if K is totally contained in or totally disjoint from U . Thus the meat of the
proposition is when K is removable and “half” in/out of U .

Proof Suppose K is removable, U is open, and f ∈ H∞(U \ K ).
Given ε > 0, set C1(ε) = {z ∈ K : dist(z,C \ U ) ≥ ε} and C2 = K \ U .

By Lemma 1.4, K can be written as the disjoint union of two closed subsets K1(ε)

and K2(ε) such that C1(ε) ⊆ K1(ε) and C2 ⊆ K2(ε). The equivalence of (a) with
(d) in Proposition 1.3 makes it clear that any compact subset of a removable set is
removable. Thus K1(ε) is removable. Then, since f ∈ H∞({U \K2(ε)}\K1(ε)) and
U \ K2(ε) is an open superset of K1(ε), f extends to a function fε that is analytic
on U \ K2(ε).

Given any z ∈ U , note that fε(z) is defined whenever 0 < ε < dist(z,C \ U ).
Since K is removable, it has no interior. Because of this, all the values of fε(z) for
these various values of ε are equal since they are uniquely determined as the limit of
f (w) as w ∈ U \ K approaches z. Thus we may properly define an extension f0 of
f to U by setting f0(z) = fε(z) for any ε such that 0 < ε < dist(z,C \U ). Clearly
f0 is analytic on all of U and so we are done. ��

The next result establishes the existence of a nonremovable kernel so-to-speak
for compact sets with no interior.

Lemma 1.6 Suppose that K is a compact subset of C with no interior. Then there
exists a compact subset K ∗ of K with the following property: for each compact
subset J of K , every element of H∞(C∗ \ K ) extends to an element of H∞(C∗ \ J )
if and only if K ∗ ⊆ J .

Proof Call a subset J of K good if it is compact and every element of H∞(C∗ \ K )

extends to an element of H∞(C∗ \ J ). Let K ∗ be the intersection of all good sub-
sets of K . Note that we have just made the forward implication of the equivalence
we wish to prove true by definition. Also note that a compact subset of K which
contains a good subset is clearly good. Thus to prove the backward implication it
suffices to show that K ∗ itself is good.

So let f ∈ H∞(C∗ \ K ) and z �∈ C
∗ \ K ∗. Then z �∈ J for at least one and

possibly many good subsets J of K . There exist extensions f J ∈ H∞(C∗ \ J ) of f
for these J . Now take note of our assumption that K has no interior. Because of this,
all the values of f J (z) for these various subsets J are equal since they are uniquely
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determined as the limit of f (w) as w ∈ C
∗ \K approaches z. Thus we may properly

define an extension f∗ of f to C
∗ \K ∗ by setting f∗(z) = f J (z) for any good subset

J of K that does not contain z. Clearly f∗ ∈ H∞(C∗ \ K ∗) and so we are done. ��
The final result of this section follows. Since single points are removable it has as

a corollary that every countable compact subset of C is removable. It will also come
in useful in the Postscript when we consider whether Vitushkin’s Conjecture extends
to compact subsets of C with infinite, but σ -finite, linear Hausdorff measure.

Proposition 1.7 Let {Kn} be a sequence of removable compact subsets of C whose
union K is also compact. Then K is removable.

Proof Each Kn , being removable, has no interior in C. An argument by contra-
diction using the Baire Category Theorem [RUD, 5.7] now shows that K also has
no interior in C. Thus the last lemma applies and it suffices to show that K ∗, the
nonremovable kernel of K , is empty.

So we suppose that K ∗ is nonempty and get a contradiction. Since K ∗ is the
countable union of Kn ∩ K ∗, some Kn ∩ K ∗ must have nonempty interior in K ∗ by
the Baire Category Theorem [RUD, 5.7]. Thus there exists an open subset U of C

such that U ∩ K ∗ �= ∅ and U ∩ K ∗ ⊆ Kn ∩ K ∗.
Consider now any f ∈ H∞(C∗ \ K ). Via the last lemma extend it to an element

of H∞(C∗ \ K ∗) which we will also denote by f . Note that Kn ∩ K ∗, being a com-
pact subset of the removable set Kn , is itself removable. Thus by Proposition 1.5,
f restricted to U \ K ∗ = U \ {Kn ∩ K ∗} has an analytic extension g to U . . . which
is also bounded since f is and K ∗ has no interior. Let h denote the function on
C
∗ \ {K ∗ \U } = {C∗ \ K ∗} ∪U which is equal to f on C

∗ \ K ∗ and g on U . This
function is well defined since f = g on {C∗ \ K ∗} ∩ U = U \ K ∗. Clearly h is a
bounded analytic extension of f to C

∗ \ {K ∗ \U }.
The last paragraph has shown that every element of H∞(C∗ \ K ) extends to an

element of H∞(C∗\{K ∗\U }). Thus by the last lemma we must have K ∗ ⊆ K ∗\U ,
i.e., U ∩ K ∗ = ∅. This contradiction finishes the proof. ��

1.2 Analytic Capacity

For K a compact subset of C, the number

γ (K ) = sup{| f ′(∞)| : f ∈ H∞(C∗ \ K ) with ‖ f ‖∞ ≤ 1}

is called the analytic capacity of K . Thus (d) of Proposition 1.3 could just as well
have been phrased as “γ (K ) = 0” and Painlevé’s Problem formulated as the task
of giving a geometric characterization of the compact sets K for which γ (K ) = 0.
Indeed, for the rest of the book we shall treat the two phrases “γ (K ) = 0” and “K
is removable” as synonymous. The notion of analytic capacity was introduced in
1947 by Lars Ahlfors in [AHL] where he proved the equivalence of removability
with analytic capacity zero [(a)⇔ (d) of Proposition 1.3 above] and also introduced
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the Ahlfors function (see Proposition 1.14 below). Beyond this, analytic capacity
has turned out to be of great importance for rational approximation theory (see
Chapter VIII of [GAM1], [VIT2], and/or [ZALC]). Unfortunately it is difficult to
work with, a fact to which this book is an indirect testimonial. The last decade has
seen progress in understanding it. This section is devoted to an exposition of the
classical elementary properties and estimates of analytic capacity.

The proofs of the first three propositions below are simple and left to the reader.

Proposition 1.8 Analytic capacity is monotone, i.e., γ (K1) ≤ γ (K2) whenever
K1 ⊆ K2.

Proposition 1.9 For α and β complex numbers, γ (αK + β) = |α|γ (K ).

Proposition 1.10 The analytic capacity of K depends only on the unbounded com-
ponent of C

∗ \ K . Thus, letting K̂ denote the union of K with all the bounded
components of C

∗ \ K ,

γ (K ) = γ (∂K ) = γ (K̂ ) = γ (∂ K̂ ).

The slightly different characterization of capacity provided by the next proposi-
tion will be used without mention in what follows.

Proposition 1.11 Suppose g ∈ H∞(C∗ \ K ) satisfies ‖g‖∞ ≤ 1. Then there exists
an f ∈ H∞(C∗ \ K ) with ‖ f ‖∞ ≤ 1, f (∞) = 0, and | f ′(∞)| ≥ |g′(∞)|.
Consequently,

γ (K ) = sup{| f ′(∞)| : f ∈ H∞(C∗ \ K ) with ‖ f ‖∞ ≤ 1 and f (∞) = 0}.

Proof On the one hand, if |g(∞)| = 1, then g is constant on the unbounded com-
ponent of C

∗ \ K by the Maximum Modulus Principle [RUD, 12.1 modified to take
into account regions containing∞]. Clearly f ≡ 0 works in this case.

On the other hand, if |g(∞)| < 1, then the function

f (z) = g(z)− g(∞)

1− g(∞)g(z)

is in H∞(C∗ \ K ) with ‖ f ‖∞ ≤ 1 and f (∞) = 0 [RUD, 12.4]. Moreover,

| f ′(∞)| = lim
z→∞ |z f (z)| = |g′(∞)|

1− |g(∞)|2 ≥ |g
′(∞)|,

so we are done. ��
Proposition 1.12 Suppose K is a nontrivial continuum in C. Let f denote the one-
to-one analytic mapping of the unbounded component of C

∗ \ K onto the open unit
disc at the origin for which f (∞) = 0 and f ′(∞) > 0. Then γ (K ) = f ′(∞).
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Existence here is a consequence of the Riemann Mapping Theorem [RUD, 14.8]
which we are assuming to have been modified in the obvious way to encompass
simply connected regions in C

∗. Recall that a continuum is a connected compact
set.

Proof Extending f to be identically 0 on the bounded components of C
∗ \ K , we

clearly have f ∈ H∞(C∗ \ K ) with ‖ f ‖∞ = 1. Thus f ′(∞) = | f ′(∞)| ≤ γ (K ).
For the reverse inequality, consider any g ∈ H∞(C∗ \ K ) with ‖g‖∞ ≤ 1 and

g(∞) = 0. It suffices to show that |g′(∞)| ≤ | f ′(∞)|. Note that the function g ◦
f −1 is an analytic mapping of the open unit disc at the origin into itself which fixes
the origin. Thus by Schwarz’s Lemma [RUD, 12.2], |g( f −1(w))| ≤ |w| whenever
|w| < 1, so |g(z)| ≤ | f (z)| whenever |z| is big enough. To finish, multiply this
inequality by |z|, let z →∞, and then take the supremum over all the gs. ��
Corollary 1.13 The analytic capacity of a closed ball is its radius and the analytic
capacity of a closed line segment is a quarter of its length.

Proof Considering closed balls first, by Proposition 1.9 we need only consider the
special case of K equal to the closed unit ball at the origin. Clearly the function
f (z) = z−1 is a one-to-one analytic mapping of C

∗ \ K onto the open unit disc at
the origin for which f (∞) = limz→∞ f (z) = 0 and f ′(∞) = limz→∞ z f (z) = 1.
Thus f is the function of Proposition 1.12 for this K and so γ (K ) = f ′(∞) = 1.

Turning to closed line segments, by Proposition 1.9 we need to only consider the
special case of K = [−2, 2]. Set g(w) = w +w−1 for w ∈ C \ {0}. An application
of the quadratic formula shows that for any z ∈ C, z = g(w) for, and only for,
the values w± = {z ± √z2 − 4}/2. Note that these values are reciprocals of one
another. Thus either both |w+| and |w−| are equal to 1 or exactly one of |w+| and
|w−| is strictly smaller than 1. In the first case, w± = e±iθ for some real θ and
so z = g(e±iθ ) = 2 cos θ ∈ [−2, 2] = K . Hence for z ∈ C \ K we must be in
the second case. But then clearly z = g(w) for exactly one w satisfying |w| < 1.
We conclude that g is a one-to-one analytic mapping of the punctured unit disc at
the origin onto C \ K . By [RUD, 10.33], g restricted to the punctured unit disc at
the origin has a one-to-one analytic inverse f that maps C \ K onto the punctured
unit disc at the origin. By our discussion of behavior at∞ just after Proposition 1.1,
f extends to be analytic at ∞ with f (∞) = limz→∞ f (z) = limw→0 w = 0
and f ′(∞) = limz→∞ z f (z) = limw→0 g(w)w = 1. Thus f is the function of
Proposition 1.12 for this K and so γ (K ) = f ′(∞) = 1. ��
Proposition 1.14 Let K be a compact subset of C. Then there is a unique function
f analytic and bounded by one on the unbounded component of C

∗ \ K such that
f (∞) = 0 and f ′(∞) = γ (K ).

The unique function whose existence is guaranteed by this proposition is called
the Ahlfors function of K . Note that if K is a nontrivial continuum, then the Ahlfors
function of K is just the Riemann map of Proposition 1.12. We will frequently
consider the Ahlfors function of K to be an element of H∞(C∗ \ K ) by canonically
extending it to be zero on any bounded components C

∗ \ K may have. The very
clever and elegant proof of uniqueness given below is taken from [FISH].
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Proof We may choose a sequence of functions { fn} analytic and bounded by one
on the unbounded component of C

∗ \ K such that each fn(∞) = 0 and f ′n(∞)→
γ (K ). Since these functions form a normal family [ RUD, 14.6], by extracting a
subsequence we may assume that { fn} converges uniformly on compact subsets of
the unbounded component of C \ K to a function f analytic and bounded by one
on this same unbounded component. Then fn(∞)→ f (∞) and f ′n(∞)→ f ′(∞).
Hence f (∞) = 0 and f ′(∞) = γ (K ). This settles existence.

To establish uniqueness, suppose both f and g are analytic and bounded by one
on the unbounded component of C

∗ \ K with values at∞ equal to 0 and derivatives
at ∞ equal to γ (K ). Setting h = ( f + g)/2 and k = ( f − g)/2, we have both
functions analytic and bounded by one on the unbounded component of C

∗ \ K
with h(∞) = 0, h′(∞) = γ (K ), k(∞) = 0, and k′(∞) = 0. Since f = h + k and
g = h − k, it suffices to show that k = 0.

Noting that |h|2 + |k|2 ± 2 Re hk = |h ± k|2 ≤ 1, we must have |h|2 + |k|2 ≤ 1.
Thus

|h| + 1

2
|k|2 ≤ |h| + 1

2
(1− |h|2) ≤ |h| + 1

2
(1+ |h|)(1− |h|) ≤ |h| + (1− |h|) = 1.

If k is nonzero, then

1

2
k2 = an

zn
+ an+1

zn+1
+ · · ·

where an �= 0. Since k(∞) = 0, n ≥ 2. Choose ε > 0 sufficiently small so that
ε|an||z|n−1 ≤ 1 on a neighborhood U of K . Set f̃ = h+εanzn−1k2/2 and note that
f̃ is analytic on the unbounded component of C

∗ \ K . Then | f̃ | ≤ |h| + |k|2/2 ≤ 1
on U \ K and so on this same unbounded component by the Maximum Modulus
Principle [RUD, 12.1 modified to take into account regions containing ∞]. Hence
| f̃ ′(∞)| ≤ γ (K ). However,

f̃ ′(∞) = h′(∞)+ ε|an|2 > γ (K ).

Because of this contradiction, we must have k = 0. ��
Scholium 1.15 An inspection of the proof of Proposition 1.11 shows that one
actually has the stronger conclusion | f ′(∞)| > |g′(∞)| when g(∞) �= 0 and
g′(∞) �= 0. In consequence, when γ (K ) > 0, one may drop the requirement that
f (∞) = 0 from the definition of the Ahlfors function and still retain its uniqueness.
When γ (K ) = 0, this however fails (consider the constant functions with modulus
less than 1).

Proposition 1.16 Let {Kn} be a decreasing sequence of compact subsets of C with
intersection K . Then γ (Kn)→ γ (K ).

Proof By Proposition 1.8, the sequence {γ (Kn)} is decreasing and bounded below
by γ (K ). Thus
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γ (K ) ≤ lim
n→∞ γ (Kn) = lim inf

n→∞ γ (Kn).

Let fn denote the Ahlfors function of Kn . Since these functions form a normal
family on each C \ Kn , we may apply [RUD, 14.6] and a diagonalization argument
to conclude that a subsequence of { fn} converges uniformly on compact subsets of
C \ K to a function f analytic and bounded by one on C \ K . Clearly then

lim inf
n→∞ γ (Kn) = lim inf

n→∞ f ′n(∞) ≤ f ′(∞) = | f ′(∞)| ≤ γ (K ).

Hence limn→∞ γ (Kn) = γ (K ). ��
Scholium 1.17 With a little more work, one can exploit the uniqueness of the Ahlfors
function to show that in the situation above the Ahlfors functions of the sets Kn

converge uniformly on compact subsets of C
∗ \ K to the Ahlfors function of K .

We finish this section with a number of classical estimates of the analytic capacity
of a set in terms of its diameter, length (when the set is linear), and area. Recall that
the diameter of a subset E of C is

|E | = sup{|z − w| : z, w ∈ E}.
Proposition 1.18 For K a compact subset of C,

γ (K ) ≤ |K |.

If K is also connected, and thus a continuum, then

γ (K ) ≥ |K |
4
.

Proof Clearly any subset of the plane can be contained in a closed ball whose radius
is the diameter of the set. Thus the first estimate follows from Proposition 1.8 and
Corollary 1.13.

With regard to the second estimate, we may assume that K is nontrivial. Let
f be the Riemann map of Proposition 1.12. Given z1 ∈ K , set g(w) = γ (K )/

( f −1(w) − z1). Then g is a one-to-one analytic map on the open unit disc at the
origin such that

g(0) = lim
w→0

g(w) = lim
w→0

γ (K )

f −1(w)− z1
= lim

z→∞
γ (K )

z − z1
= 0

and

g′(0) = lim
w→0

g(w)− g(0)

w
= lim

w→0

γ (K )

w( f −1(w)− z1)
= lim

z→∞
γ (K )

f (z)(z − z1)

= γ (K )

f ′(∞)− f (∞) · z1
= 1.
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Hence, by the Koebe One-Quarter Theorem [RUD, 14.14], the range of g contains
the open disc of radius one-quarter centered at the origin. For z2 ∈ K \ {z1},
γ (K )/(z2 − z1) is not in the range of g. Thus γ (K )/|z2 − z1| ≥ 1/4, i.e.,
γ (K ) ≥ |z2 − z1|/4. Since z1, z2 ∈ K with z1 �= z2 are otherwise arbitrary,
γ (K ) ≥ |K |/4. ��

Jung’s Theorem states that any subset of the plane can be contained in a closed
ball whose radius is 1/

√
3 times the diameter of the set. Many proofs of this can be

found in the delightful book [YB]. Thus the first estimate of the above proposition
is not sharp and can be improved to γ (K ) ≤ |K |/√3. While the factor of 1/

√
3

is known to be sharp in Jung’s Theorem (consider an equilateral triangle), it is not
sharp in the capacity estimate here. See the two paragraphs following the proof of
Theorem 2.6 for a demonstration of this and an identification of the sharpest constant
possible. With regard to the second estimate of the above proposition, consideration
of a line segment and use of Corollary 1.13 show the factor of 1/4 to be sharp.

Given a linear subset E of C, we denote the “length”, i.e., linear Lebesgue mea-
sure, of E by L1(E) (see Section 2.1 for our official definition of this).

Proposition 1.19 Let K be a linear compact subset of C. Then

L1(K )

4
≤ γ (K ) ≤ L1(K )

π
.

Proof Without loss of generality, let the line in which K lies be the real line R.
The function h in the proof of Proposition 1.1 is analytic off K with h(∞) = 0

and h′(∞) = L1(K )/2. While h is not bounded off K , its imaginary part is bounded
by π/2 off K . So consider the one-to-one analytic map g of the horizontal strip
{|Imw| < π/2} onto the open unit disc at the origin given by

g(w) = ew − 1

ew + 1
.

The function f = g ◦ h is then an element of H∞(C \ K ) with norm at most one
such that

f (∞) = lim
z→∞ g(h(z)) = g(0) = 0

and

f ′(∞) = lim
z→∞ zg(h(z)) = lim

z→∞ zh(z) · eh(z) − 1

h(z)
· 1

eh(z) + 1
= h′(∞) · 1 · 1

2

= L1(K )

4
.

Hence γ (K ) ≥ f ′(∞) = L1(K )/4.
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Now consider any f ∈ H∞(C∗ \ K ) with ‖ f ‖∞ ≤ 1. Given ε > 0, by the
definition of linear Lebesgue measure and the compactness of K there exists a finite
collection of pairwise disjoint, open intervals covering K whose lengths sum to less
than L1(K )+ε/2. Upon each such interval describe a rectangle having that interval
as a bisector. Let �ε be the cycle consisting of the counterclockwise boundary paths
of all the rectangles so produced. Clearly, if we make the thickness of our rectangles
small enough, then the length of �ε can be made less than 2L1(K )+ 2ε. Then

| f ′(∞)| =
∣∣∣∣ 1

2π i

∫
�ε

f (ζ ) dζ

∣∣∣∣ ≤ 2L1(K )+ 2ε

2π
.

Suping over all our f s and then letting ε ↓ 0, we get γ (K ) ≤ L1(K )/π . ��
A result of Christian Pommerenke (see [POM], or Section 6 of Chapter I of

[GAR2]) states that the analytic capacity of any linear compact set is exactly equal
to a quarter of its length. We are content with the weaker estimates above since they
suffice for removability and most other considerations while Pommerenke’s proof
would cost us too much effort.

Given a subset E of C, we denote the “area,” i.e., planar Lebesgue measure, of
E by L2(E) (see Section 5.3 for our official definition of this).

Lemma 1.20 Let K be a compact subset of C. Then for each z ∈ C \ K ,

∣∣∣∣
∫∫

K

1

ζ − z
dL2(ζ )

∣∣∣∣ ≤
√
πL2(K ).

Proof Fix z ∈ C \ K . By translating K and then rotating the resulting set by a
unimodular constant, we may assume that z = 0 and that the integral of the lemma
is nonnegative. Thus

∣∣∣∣
∫∫

K

1

ζ − z
dL2(ζ )

∣∣∣∣ =
∣∣∣∣
∫∫

K

1

ζ
dL2(ζ )

∣∣∣∣ = Re
∫∫

K

1

ζ
dL2(ζ ) =

∫∫
K

Re
1

ζ
dL2(ζ )

and so it suffices to show that

∫∫
K

Re
1

ζ
dL2(ζ ) ≤

√
πL2(K ).

Without loss of generality, L2(K ) > 0. Choose a > 0 such that πa2 = L2(K ).
Set B = B(a; a). Then L2(K \ B) = L2(B \ K ). Writing ζ = reiθ , we see that
ζ ∈ B ⇔ r ≤ 2a cos θ ⇔ Re(1/ζ ) = (cos θ)/r ≥ 1/2a. Thus

∫∫
K\B

Re
1

ζ
dL2(ζ ) ≤ L2(K \ B)

2a
= L2(B \ K )

2a
≤
∫∫

B\K
Re

1

ζ
dL2(ζ )
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and so, adding the integral of Re(1/ζ ) over K ∩ B to both sides of this inequality,
we get

∫∫
K

Re
1

ζ
dL2(ζ ) ≤

∫∫
B

Re
1

ζ
dL2(ζ ).

Finally, using polar coordinates we have

∫∫
B

Re
1

ζ
dL2(ζ ) =

∫ +π/2

−π/2

∫ 2a cos θ

0

cos θ

r
rdrdθ = πa =

√
πL2(K ).

��
Proposition 1.21 For K a compact subset of C,

γ (K ) ≥
√
L2(K )

π
.

Proof Define a function f on C \ K by

f (z) =
∫∫

K

1

ζ − z
dL2(ζ ).

Clearly f is analytic on C \ K . The lemma implies that f is bounded on C \ K
with modulus less than or equal to

√
πL2(K ) there. Lastly, f (∞) = 0 and so

f ′(∞) = limz→∞ z f (z) = −L2(K ). Hence

L2(K ) = | f ′(∞)| ≤ γ (K )‖ f ‖∞ ≤ γ (K )
√
πL2(K )

which leads to the desired inequality. ��
Consideration of a closed ball and use of Corollary 1.13 show this estimate to be

sharp.
If one wishes to show γ (K )> 0, i.e., K nonremovable, one must construct a non-

constant bounded analytic function on the complement of K . Propositions 1.1, 1.19,
and 1.21 exhibit the most common technique for doing this: one considers the
Cauchy transform

z ∈ C �→ μ̂(z) =
∫

C

1

ζ − z
dμ(ζ )

of an appropriately chosen nontrivial finite Borel measure μ supported on K . While
not well defined at every point of C, the Cauchy transform is always defined and
analytic off the support of μ and so on the complement of K . It is nonconstant since
its derivative at infinity is −μ(K ) �= 0. The catch is that the Cauchy transform
need not be bounded on the complement of K ! The need to ensure boundedness,



1.2 Analytic Capacity 17

or to somehow get around unboundedness, accounts for the phrase “appropriately
chosen” four sentences ago.

Another technique for showing nonremovability is by means of the Riemann
maps introduced in Proposition 1.12. The lower estimate on capacity in Proposi-
tion 1.18 is an example of this. The author hazards to state that Cauchy transforms
and Riemann maps are ultimately the only means known to mortals for showing
nonremovability!



Chapter 2
Removable Sets and Hausdorff Measure

2.1 Hausdorff Measure and Dimension

At a fuzzy intuitive level, removable sets have small “size” and nonremovable sets
big “size.” A precise notion of “size” applicable to arbitrary subsets of C and appro-
priate to our problem is given by Hausdorff measure (and Hausdorff dimension).
So in this section we will simply introduce Hausdorff measure as a gauge of the
smallness of a set and as a necessary preliminary for another such gauge, Hausdorff
dimension. Surprisingly, the assertions 2.1 through 2.4 below are enough to get us
through to the end of Chapter 4. It is only after, in Section 5.1, that we shall need
to take up the fact that Hausdorff measure is indeed a positive measure defined on a
σ -algebra containing the Borel subsets of C!

Given an arbitrary subset E of C and δ > 0, a δ-cover of E is simply a countable
collection of subsets {Un} of C such that E ⊆ ⋃

n Un and 0 < |Un| < δ for each n.
For any s ≥ 0, define

Hs
δ(E) = inf

{∑
n

|Un|s : {Un} is a δ-cover of E

}
.

Clearly Hs
δ(E) increases as δ decreases and so converges to a limit in [0,∞] as

δ ↓ 0. This limit is called the s-dimensional Hausdorff measure (or s-dimensional
Hausdorff–Besicovitch measure) of E and denoted Hs(E). Thus

Hs(E) = lim
δ↓0

Hs
δ(E) = sup

δ>0
Hs
δ(E).

Since the diameters of a set, its convex hull, its closure, and its closed convex hull
are the same, Hs(E) may be computed by restricting ones attention to δ-covers of
E by convex, closed, or closed convex sets. Similarly, since any nonempty set U is
contained in the open set {z : dist(z,U ) < ε} whose diameter is |U | + 2ε and since
{z : dist(z,U ) < ε} is convex whenever U is convex, Hs(E) may be computed by
restricting ones attention to δ-covers of E by open or open convex sets. Lastly, when

J.J. Dudziak, Vitushkin’s Conjecture for Removable Sets, Universitext,
DOI 10.1007/978-1-4419-6709-1_2, C© Springer Science+Business Media, LLC 2010
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E is compact, Hs(E) may be computed by restricting ones attention to δ-covers of
E by a finite number of open or open convex sets.

The following results are fairly immediate from the definition of Hausdorff mea-
sure.

Proposition 2.1 For any s ≥ 0,Hs is a set function defined on all subsets of C and
taking values in [0,∞] such that

Hs(∅) = 0,

Hs(E) ≤ Hs(F) whenever E ⊆ F ⊆ C,

and

Hs

(⋃
n

En

)
≤
∑

n

Hs(En) whenever {En} is a countable collection

of subsets o f C.

Proposition 2.2 Let E be a subset of C and let f be a mapping of E into C such
that there exists a constant c ≥ 0 for which | f (z) − f (w)| ≤ c|z − w| whenever
z, w ∈ E. Then Hs( f (E)) ≤ csHs(E).

Corollary 2.3 For α and β complex numbers and E a subset of C,Hs(αE + β) =
|α|sHs(E).

If t > s ≥ 0, 0 < δ < 1, and {Un} is a δ-cover of E , then
∑

n |Un|t ≤∑
n |Un|s .

By infing over all δ-covers and then letting δ ↓ 0, we see that Ht (E) ≤ Hs(E). Thus
Hs(E) decreases as s increases. But more can be said in this situation:

∑
n |Un|t ≤

δt−s ∑
n |Un|s , and so by infing over all δ-covers,

Ht
δ(E) ≤ δt−sHs

δ(E).

Letting δ ↓ 0, we see that if Hs(E) < ∞, then Ht (E) = 0 for all t > s,
and that if Ht (E) > 0, then Hs(E) = ∞ for all s < t . In consequence, there
exists a unique nonnegative number called the Hausdorff dimension (or Hausdorff–
Besicovitch dimension) of E and denoted dimH(E) such that

Hs(E) =
{∞ when s < dimH(E)

0 when s > dimH(E).

What happens at s = dimH(E)? In this case, Hs(E) can be 0, ∞, or anything
in between. When Hs(E) = ∞, it can even be the case that E is non-σ -finite for
Hs , i.e., E cannot be expressed as a countable union of sets of finite Hs-measure.
An example of this is the Joyce–Mörters set at the end of Chapter 4 (see Proposi-
tion 4.34).


