ESSENTIALS OF ANATOMIC PATHOLOGY

THIRD EDITION

Edited by

LIANG CHENG, MD
Professor of Pathology and Urology
Director of Molecular Diagnostics Service
Chief of Genitourinary Pathology Division
Director, Fellowship in Urologic Pathology
Indiana University School of Medicine
Indianapolis, Indiana

DAVID G. BOSTWICK, MD
Chief Medical Officer
Bostwick Laboratories
Glen Allen, Virginia
Preface to the Third Edition

It is our privilege to present the Third Edition of Essentials of Anatomic Pathology. This edition has been substantially revised to include the most current knowledge and understanding of pathologic processes and to provide contemporary, comprehensive, evidence-based practice information in a consistent and user-friendly outline format. It is our sincere hope that this new edition will serve the educational and reference needs of both trainees and practicing pathologists.

This work has been greatly expanded and enhanced with the addition of seven new chapters: Immunohistochemistry for the Surgical Pathologist, Tumors of Unknown Primary, Biomedical Informatics for Anatomic Pathology, Quality Assurance and Regulations for Anatomic Pathology, Molecular Pathology of Solid Tumors, and others. The addition of these chapters reflects the increased importance of these topics in the modern practice of pathology. The most recently published TNM staging classifications (2010 revision) by the American Joint Committee on Cancer (AJCC) and the World Health Organization (WHO) classification of tumors have been incorporated. This new edition includes 2083 full color photographs and 235 tables, making it an even more useful visual reference than previous editions. Additional emphasis has been placed on newly discovered biomarkers and histologic variants. A limited number of “Suggested Readings” rather than an exhaustive list of references are included with each chapter.

The text, authored by leading international experts, will serve as an evidence- and criterion-based reference that fully outlines the current scope of our specialty. This new edition details in a clear and concise manner the most important aspects of anatomic pathology, and the topics presented herein constitute the fundamentals and core base of knowledge that is required for the daily practice of surgical pathology. We hope that this updated edition will continue to serve as a frontline resource for trainees and practicing pathologists.

Our profound gratitude goes to all who have been involved in the development and production of this new edition. We are indebted to the contributing authors for sharing their knowledge and experiences with our readers and with us. We also express our appreciation to the excellent production staff at Springer Publishing whose efforts made this project possible. In particular, we would like to thank Ryan P. Christy from the Multimedia Education Division of the Department of Pathology at Indiana University, who edited the digital images for this book, and Tracey Bender, who provided superior editorial assistance. Finally, we thank our readers who have made many insightful suggestions that have enhanced the quality of this work. As always, we welcome the opinions of our readers to ensure greater usability in future editions.

Liang Cheng, MD
Indianapolis, Indiana

David G. Bostwick, MD
Glen Allen, Virginia
The past decade has witnessed remarkable progress in surgical pathology. The ability of contemporary surgical pathologists to reach a definite diagnosis has been enhanced greatly by innovative immunohistochemical techniques and biomarkers. The information that is useful for pathology practice may not be readily accessible in the daily signout. An up-to-date handbook that contains relevant information to establish an accurate diagnosis would be of practical value. Therefore, we have concentrated on diagnostic criteria and differential diagnosis to ensure an accurate diagnosis.

The purpose of Essentials of Anatomic Pathology is to provide a concise review of anatomic pathology for pathologists in training and practicing pathologists, integrating recent advances in diagnostic surgical pathology. This book is organized to allow easy reference for daily practice, and is intended to aid residents who are preparing for Anatomic Pathology Boards and in-service examinations. It will be a useful resource for medical students and for anyone interested in pathology.

Part I covers general anatomic pathology, including diagnostic molecular pathology, medical cytogenetics, human genetic disorders, microbiology for surgical pathologists, forensic pathology, and cytopathology. Part II is classified by organ system, and covers important diagnostic features of common medical diseases and tumors. The pertinent clinical information, salient diagnostic features, relevant ancillary data (for example, immunohistochemical profiles), main differential diagnoses of each disease, and most recent tumor staging information are presented in a consistently user-friendly format. We believe that this format will provide easy access to essential information necessary for sign-out. It is not meant as a substitute for lavishly illustrated, comprehensive textbooks, but to complement them as a practical aid. We hope that this text will materially aid in continuing efforts to recognize, understand, and accurately interpret the gross and light microscopic findings in anatomic pathology specimens.

We earnestly solicit constructive criticism from colleagues so that the utility of this text can be expanded and improved to its maximum potential.

Liang Cheng, MD
David G. Bostwick, MD
Contents

Preface to the Third Edition ... v
Preface to the First Edition .. vii
Contributors .. xi

Part I General Pathology

1 Cytopathology
 Fadi W. Abdul-Karim, Jennifer Brainard, and Claire W. Michael 3

2 Immunohistochemical Diagnosis in Surgical Pathology
 Nancy Klipfel, Raul Simental-Pizarro, and Clive R. Taylor ... 103

3 Tumors of Unknown Primary
 Nancy Klipfel, Raul Simental-Pizarro, and Clive R. Taylor ... 203

4 Diagnostic Electron Microscopy
 Jean L. Olson .. 247

5 Transplantation Pathology
 Oscar W. Cummings .. 267

6 Microbiology for the Surgical Pathologist
 Deborah E. Blue and Stephen D. Allen ... 315

7 Forensic Pathology
 Frank P. Miller III and Jeffrey J. Barnard ... 407

8 Autopsy
 Dean A. Hawley ... 455

9 Biomedical Informatics for Anatomic Pathology
 Waqas Amin, Uma Chandran, Anil V. Parwani, and Michael J. Becich 469

10 Quality Assurance and Regulations for Anatomic Pathology
 Maxwell L. Smith and Stephen S. Raab ... 481

11 Molecular Diagnostic Pathology
 James Huang and Richard D. Press ... 489

12 Molecular Pathology of Solid Tumors
 Franklin R. Moore and Richard D. Press ... 515

13 Human Genetic Disorders

Part II Organ Systems

14 Neuropathology
 Eyas M. Hattab, Matthew C. Hagen, Bernd W. Scheithauer, and Arie Perry 601

15 Lymph Node
 Ellen D. McPhail and Paul J. Kurtin .. 681

16 Spleen
 Dennis P. O'Malley and Attilio OraZI ... 723

17 Bone Marrow
 Dennis P. O'Malley .. 751

18 Neoplasms of the Skin and Immunodermatology
 Daniel P. Vandersteen, Melanie Triflett-Treviño, and Chris H. Jokinen 797

19 Nonneoplastic Skin Diseases
 Steven D. Billings and Antoinette F. Hood ... 875

20 Endocrine Pathology
 Lori A. Erickson .. 903

21 Bone and Joints
 JasiV R. Khurana and Guldeep Uppal ... 955

22 Soft Tissue Tumors
 Leona A. Doyle and Alessandra F. Nascimento ... 995
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Tumor of the Salivary Glands</td>
<td>Diana M. Bell and Adel K. El-Naggar</td>
<td>1047</td>
</tr>
<tr>
<td>24</td>
<td>Head and Neck</td>
<td>John D. Henley and Don-John Summerlin</td>
<td>1081</td>
</tr>
<tr>
<td>25</td>
<td>Eye and Ocular Adnexae</td>
<td>Jose M. Bonnin</td>
<td>1123</td>
</tr>
<tr>
<td>26</td>
<td>Mediastinum and Thymus</td>
<td>Chung-Che (Jeff) Chang, Munir Shahjahan, and Joseph F. Tomashofski Jr</td>
<td>1161</td>
</tr>
<tr>
<td>27</td>
<td>Cardiovascular Pathology</td>
<td>Eric A. Pfeifer</td>
<td>1193</td>
</tr>
<tr>
<td>28</td>
<td>Lung and Pleura</td>
<td>Carol F. Farver and Andrea V. Arrossi</td>
<td>1211</td>
</tr>
<tr>
<td>29</td>
<td>Breast</td>
<td>Mohiedean Ghofrani and Fattaneh A. Tavassoli</td>
<td>1263</td>
</tr>
<tr>
<td>30</td>
<td>Vulva and Vagina</td>
<td>Sharon X. Liang and Wenxin Zheng</td>
<td>1309</td>
</tr>
<tr>
<td>31</td>
<td>Uterus and Fallopian Tube</td>
<td>Maritza Martel and Fattaneh A. Tavassoli</td>
<td>1343</td>
</tr>
<tr>
<td>32</td>
<td>Ovary and Peritoneum</td>
<td>Robert E. Emerson</td>
<td>1397</td>
</tr>
<tr>
<td>33</td>
<td>Placenta and Gestational Trophoblastic Disease</td>
<td>Raymond W. Redline</td>
<td>1431</td>
</tr>
<tr>
<td>34</td>
<td>Nonneoplastic Renal Diseases</td>
<td>Geoffrey A. Talmon and Donna J. Lager</td>
<td>1455</td>
</tr>
<tr>
<td>35</td>
<td>Tumors of the Kidney</td>
<td>Gregory T. MacLennan and Liang Cheng</td>
<td>1487</td>
</tr>
<tr>
<td>36</td>
<td>Urinary Bladder</td>
<td>Liang Cheng, Antonio Lopez-Beltran, and David G. Bostwick</td>
<td>1515</td>
</tr>
<tr>
<td>37</td>
<td>Renal Pelvis, Ureter, and Urethra</td>
<td>Antonio Lopez-Beltran, Sean R. Williamson, and Liang Cheng</td>
<td>1567</td>
</tr>
<tr>
<td>38</td>
<td>Prostate</td>
<td>David G. Bostwick and Liang Cheng</td>
<td>1581</td>
</tr>
<tr>
<td>39</td>
<td>Testis and Testicular Adnexa</td>
<td>Kenneth A. Iczkowski and Thomas M. Ulbright</td>
<td>1617</td>
</tr>
<tr>
<td>40</td>
<td>The Penis</td>
<td>Alcides Chaux, Gustavo Ayala, and Antonio L. Cubilla</td>
<td>1647</td>
</tr>
<tr>
<td>41</td>
<td>Esophagus and Stomach</td>
<td>Thomas P. Plesec and John R. Goldblum</td>
<td>1681</td>
</tr>
<tr>
<td>42</td>
<td>Small Intestine, Appendix, Colorectum, and Anus</td>
<td>Stephen C. Lawhorn and Shuan C. Li</td>
<td>1717</td>
</tr>
<tr>
<td>43</td>
<td>Pancreas</td>
<td>Olca Basturk and N. Volkan Adsay</td>
<td>1747</td>
</tr>
<tr>
<td>44</td>
<td>Nonneoplastic Hepatobiliary Disease</td>
<td>Romil Saxena</td>
<td>1771</td>
</tr>
<tr>
<td>45</td>
<td>Neoplasms of the Liver and Biliary System</td>
<td>Romil Saxena</td>
<td>1829</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>1855</td>
</tr>
</tbody>
</table>
Contributors

FADI W. ABDUL-KARIM, MD
Professor of Pathology, Case Western Reserve University,
Director of Anatomic Pathology, University Hospitals
Case Medical Center, Cleveland, OH, USA

N. VOLKAN ADSAY, MD
Professor and Vice Chair, Director of Anatomic
Pathology, Department of Pathology and Laboratory
Medicine, Emory University, Atlanta, GA, USA

STEPHEN D. ALLEN, MD
James Warren Smith Professor of Clinical Microbiology,
Director, Division of Clinical Microbiology,
Department of Pathology and Laboratory
Medicine, Indiana University School of Medicine,
Indianapolis, IN, USA

WAQAS AMIN, MD
Research Associate, Department of Biomedical
Informatics, University of Pittsburgh,
Pittsburgh, PA, USA

ANDREA V. ARROSSI, MD
Assistant Professor of Pathology, Cleveland Clinic,
Cleveland Clinic Lerner College of Medicine,
Cleveland, OH, USA

GUSTAVO AYALA, MD, PhD
R. Clarence and Irene H. Fulbright Chair in Pathology,
Professor, Director HTAP, Department of Pathology
and Scott Department of Urology, Dan L Duncan
Cancer Center, Baylor College of Medicine,
One Baylor Plaza, Houston, TX, USA

JEFFREY J. BARNARD, MD
Chief Medical Examiner, Dallas County, Director,
Southwestern Institute of Forensic Sciences,
Dallas, TX, USA

OLCA BASTURK, MD
Department of Pathology, Memorial Sloan-Kettering
Cancer Center, New York, NY, USA

MICHAEL J. BECICH, MD, PhD
Chair, Professor of Biomedical Informatics, Pathology,
Information Sciences and Telecommunications,
Department of Biomedical Informatics,
University of Pittsburgh School of Medicine,
Pittsburgh, PA, USA

DIANA M. BELL, MD
Assistant Professor, Pathology-Head and Neck,
The University of Texas M.D. Anderson Cancer Center,
Houston, TX, USA

STEVEN D. BILLINGS, MD
Co-Director of Dermatopathology Section, Associate
Professor of Pathology, Cleveland Clinic, Cleveland
Clinic Lerner College of Medicine, Cleveland, OH, USA

DEBORAH E. BLUE, MD
Associate Professor, Division of Translational Science
and Molecular Medicine, Division of Human
Pathology, Department of Physiology, Michigan State
University College of Human Medicine,
Grand Rapids, MI, USA

JOSE M. BONNIN, MD
Professor of Pathology, Ophthalmology, and Neurology,
Director of Neuropathology Service, Indiana University
School of Medicine, Indianapolis, IN, USA

DAVID G. BOSTWICK, MD
Chief Medical Officer, Bostwick Laboratories,
Glen Allen, VA, USA

JENNIFER BRAINARD, MD
Section Head, Cytopathology and Staff Pathologist,
Gynecologic Pathology, Cleveland Clinic,
Cleveland, OH, USA

UMA CHANDRAN, PhD
Co-Director, Department of Biomedical Informatics,
Cancer Informatics Services, University of Pittsburgh
Cancer Institute, Pittsburgh, PA, USA
Contributors

CHUNG-CHE (JEFF) CHANG, MD, PhD
Professor of Pathology, Department of Pathology, The Methodist Hospital, Baylor College of Medicine, Weill Medical College of Cornell University, Houston, TX, USA

ALCIDES CHAUX, MD
Associated Member, Instituto de Patología e Investigación, Asunción, Paraguay

LIANG CHENG, MD
Professor of Pathology and Urology, Director of Molecular Diagnostics Service, Chief of Genitourinary Pathology Division, Director, Fellowship in Urologic Pathology, Indiana University School of Medicine, Indianapolis, IN, USA

ANTONIO L. CUBILLA, MD
Professor of Pathology, Universidad Nacional de Asunción, Director, Instituto de Patología e Investigación, Asunción, Paraguay

OSCAR W. CUMMINGS, MD
Professor of Pathology, Director of Surgical Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

LEONA A. DOYLE, MD
Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA

ADEL K. EL-NAGGAR, MD, PhD
Professor of Pathology, Chief, Section-Head and Neck Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

ROBERT E. EMERSON, MD
Associate Professor of Pathology, Director of Anatomic Pathology, Wishard Memorial Hospital, Indiana University School of Medicine, Indianapolis, IN, USA

LORI A. ERICKSON, MD
Associate Professor of Laboratory Medicine and Pathology, Mayo Clinic, Mayo Clinic College of Medicine, Rochester, MN, USA

CAROL F. FARVER, MD
Vice-chair for Education, Director of Pulmonary Pathology, Cleveland Clinic, Pathology and Laboratory Medicine Institute, Cleveland, OH, USA

RALITZA H. GAVRIMOVA, MD
Senior Associate Consultant, Instructor in Medical Genetics and Neurology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

MOHIEDEAN GHOFRANI, MD
Staff Pathologist, Southwest Washington Medical Center, Vancouver, WA, USA

JOHN R. GOLDBLUM, MD
Chairman, Professor of Pathology, Department of Anatomic Pathology, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA

ELYSE M. GRYCKI
Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

MATTHEW C. HAGEN, MD, PhD
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

EYAS M. HATTAB, MD
Associate Professor, Director of Immunohistochemistry, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

DEAN A. HAWLEY, MD
Staff Pathologist, Columbus Regional Hospital, Columbus, IN, USA

ANTOINETTE F. HOOD, MD
Professor and Chair, Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA, USA

JAMES HUANG, MD
Clinical Associate Professor, Department of Clinical Pathology, William Beaumont Hospital, William Beaumont School of Medicine, Royal Oak, MI, USA

KENNETH A. ICZKOWSKI, MD
Associate Professor, Department of Pathology, University of Colorado Denver, Aurora, CO, USA
Contributors

CHRIS H. JOKINEN, MD
Staff Pathologist/Dermatopathologist, Department of Pathology, St. Mary’s Hospital/Duluth Clinic Health System, Duluth, MN, USA

JASVIR S. KHURANA, MD
Associate Professor, Department of Pathology, Temple University School of Medicine, Philadelphia, PA, USA

NANCY E. KLIPFEL, MD
Assistant Professor of Pathology, Associate Director of Surgical Pathology Fellowship, Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA

KATRINA E. KOTZER
Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

Teresa M. Kruisselbrink
Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

PAUL J. KURTIN, MD
Consultant in Hematopathology and Anatomic Pathology, Professor of Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

DONNA J. LAGER, MD
Director of Renal Pathology, ProPath Laboratories, Clinical Associate Professor of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA

STEPHEN C. LAWHORN, MD
Bostwick Laboratories, Glen Allen, VA, USA

SHUAN C. LI, MD
Staff Pathologist and Director of Residency Program, Department of Pathology and Laboratory Medicine, Orlando Health, Orlando, FL, USA

SHARON X. LIANG, MD, PhD
Associate Professor, Hofstra University School of Medicine, Director of Gynecologic Pathology, North Shore-LIJD Health System, New Hyde Park, NY, USA

NORALANE M. LINDOR, MD
Consultant, Professor of Medical Genetics, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

ANTONIO LOPEZ-BELTRAN, MD, PhD
Professor of Anatomic Pathology, Department of Surgery, Unit of Anatomic Pathology, Cordoba University School of Medicine, Cordoba, Spain

GREGORY T. MACLENNAN, MD
Professor of Pathology, Urology and Oncology, Case Western Reserve University, Director of Surgical Pathology, University Hospitals Case Medical Center, Cleveland, OH, USA

MARITZA MARTEL, MD
Staff Pathologist, Department of Pathology, Providence St. Vincent Medical Center, Portland, OR, USA

ELLEN D. MCPHAIL, MD
Consultant in Hematopathology and Anatomic Pathology, Associate Professor of Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

CLAIRE W. MICHAEL, MD
Professor of Pathology, Director of Cytopathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA

FRANK P. MILLER III, MD
Forensic Pathologist, Coroner, Cuyahoga County, OH, USA; Instructor of Pathology, Case Western Reserve University, Cleveland, OH, USA

ELYSE B. MITCHELL
Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

FRANKLIN R. MOORE, MD, PhD
Department of Pathology, Oregon Health & Science University, Portland, OR, USA

ALESSANDRA F. NASCIMENTO, MD
Associate Pathologist, Assistant Professor, Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA

DEVIN Oglesbee, PhD
Senior Associate Consultant, Assistant Professor of Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

JEAN L. OLSON, MD
Professor of Pathology, Director of Electron Microscopy, Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Contributors

Dennis P. O’Malley, MD
Pathologist, Clarient Inc., Aliso Viejo, CA; Adjunct Associate Professor, Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Attilio Orazi, MD, FRCPath
Professor of Pathology and Laboratory Medicine, Director, Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA

Anil V. Parwani
Division Director, Pathology Informatics, Staff Pathologist, University of Pittsburgh School of Medicine and Shadyside Hospital, Pittsburgh, PA, USA

Arie Perry, MD
Professor of Pathology and Neurological Surgery, Vice Chair, Director of Neuropathology Division and the Neuropathology Fellowship Program, Department of Pathology, University of California San Francisco, San Francisco, CA, USA

Eric A. Pfeifer, MD
Consultant in Anatomic Pathology and Forensic Medicine, Mayo Clinic, Rochester, MN, USA

Thomas P. Plesec, MD
Assistant Professor of Pathology, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA

Richard D. Press, MD, PhD
Professor of Pathology, Director of Molecular Pathology, Oregon Health & Science University, Portland, OR, USA

Rajiv K. Pruthi, MBBS
Consultant, Assistant Professor of Medicine, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

Stephen S. Raab, MD
Professor of Pathology, Vice Chair of Quality, Director of Anatomic Pathology, University of Colorado Denver, Aurora, CO, USA

Raymond W. Redline, MD
Professor of Pathology and Reproductive Biology, Co-Director, Pediatric and Perinatal Pathology, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA

Cassandra K. Runke
Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

Romil Saxena, MBBS, FRCPath
Associate Professor of Pathology, Associate Professor of Medicine, Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA

Bernd W. Scheithauer, MD
Consultant in Pathology, Professor of Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

Munir Shajahan, MD
Department of Pathology, The Methodist Hospital, Houston, TX, USA

Raul G. Simental-Pizarro, MD
Assistant Professor, Department of Pathology and Laboratory Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA

Maxwell L. Smith, MD
Assistant Professor, Director of Liver and Transplant Pathology, Departments of Pathology and Medicine, University of Colorado Denver, Aurora, CO, USA

Don-John Summerlin, MD, MS
Professor of Pathology, Director of Head & Neck Pathology, Indiana University School of Medicine, Indianapolis, IN, USA

Geoffrey A. Talmon, MD
Assistant Professor, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA

Fattaneh A. Tavassoli, MD
Professor of Pathology and Obstetrics, Gynecology, and Reproductive Sciences, Director, Women’s Health Program/Gynecologic and Breast Pathology, Yale University School of Medicine, New Haven, CT, USA

Clive R. Taylor, MD, PhD
Professor and Chairman, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
Brittany C. Thomas

Genetic Counselor, Instructor in Laboratory Medicine and Pathology, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA

Joseph F. Tomashefski, Jr., MD

Professor and Chairman, Department of Pathology, Case Western Reserve University School of Medicine at MetroHealth Medical Center, Cleveland, OH, USA

Melanie Triffet-Trevino, MD

Staff Dermatopathologist, Dermatopathology of Wisconsin, Brookfield, WI, USA

Thomas M. Ulbright, MD

Lawrence M. Roth Professor of Pathology and Laboratory Medicine, Director of Anatomic Pathology, Indiana University School of Medicine, Indianapolis, IN, USA

Guldeep Uppal, MD

Department of Pathology, Temple University School of Medicine, Philadelphia, PA, USA

Daniel P. Vandersteen, MD

Staff Pathologist/Dermatopathologist, Department of Pathology, St. Mary’s Hospital/Duluth Clinic Health System, Duluth, MN, USA

Sean R. Williamson, MD

Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

Wenxin Zheng, MD

Professor of Pathology and Gynecology, Director of Gynecologic Pathology, Director of Molecular Pathology, The University of Arizona, Tucson, AZ, USA
Part I

General Pathology
Cytopathology

Fadi W. Abdul-Karim, MD, Jennifer Brainard, MD, and Claire W. Michael, MD

PART A: GYNECOLOGIC CYTOLOGY......1-5

I. The 2001 Bethesda System............1-6

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>1-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen Adequacy</td>
<td>1-6</td>
</tr>
<tr>
<td>General Categorization</td>
<td>1-6</td>
</tr>
<tr>
<td>Interpretation/Result</td>
<td>1-6</td>
</tr>
<tr>
<td>Negative for Intraepithelial Lesion or Malignancy</td>
<td>1-6</td>
</tr>
<tr>
<td>Organisms</td>
<td>1-6</td>
</tr>
<tr>
<td>Other Nonneoplastic Findings</td>
<td>1-6</td>
</tr>
<tr>
<td>Epithelial Cell Abnormalities</td>
<td>1-6</td>
</tr>
<tr>
<td>Ancillary Testing</td>
<td>1-6</td>
</tr>
<tr>
<td>Automated Review</td>
<td>1-6</td>
</tr>
</tbody>
</table>

II. Specimen Adequacy Terminology/Reporting..............1-7

Adequate Pap Test	1-7
Endocervical/Transformation Zone	1-7
Unsatisfactory Specimen	1-8

III. Organisms...............................1-8

Trichomonas vaginalis	1-8
Candida albicans	1-8
Bacterial Vaginosis	1-9
Actinomyces	1-9
Herpes Simplex Virus	1-10
Chlamydia trachomatis	1-10
Döderlein Bacilli (Lactobacillus acidophilus)	1-10
Leptothrix	1-10
Molluscum Contagiosum (Pox Virus)	1-10

IV. Contaminants.............................1-10

Enterobius vermicularis (Pinworm)	1-10
Entamoeba histolytica	1-10
Cytomegalovirus	1-10

V. Reactive Changes......................1-11

Typical Repair	1-11
Radiation Effect	1-12
IUD-Associated Change	1-12
Atrophy	1-13
Other Reactive Changes	1-13
Hyperkeratosis	1-13
Parakeratosis	1-13
Chronic Follicular (Lymphocytic) Cervicitis	1-13
Folic Acid Deficiency	1-14
Navicular Cells	1-14
Decidual Cells	1-14
Trophoblasts	1-14

VI. Squamous Cell Abnormalities.......1-15

| Atypical Squamous Cells1-15 |
| Atypical Squamous Cells of Undetermined Significance | 1-15 |
| Atypical Squamous Cells: Cannot Exclude HSIL | 1-16 |
| Squamous Intraepithelial Lesions1-17 |
| Low Grade Squamous Intraepithelial Lesion | 1-17 |
| High Grade Squamous Intraepithelial Lesion | 1-18 |
| Cervical Squamous Cell Carcinoma.......1-19 |

VII. Normal and Reactive Endocervical Cytology ..1-21
 Endocervical Tubal Metaplasia ..1-21
 Microglandular Endocervical
 Hyperplasia ..1-22
 Arias-Stella Reaction ..1-22
 Benign Glandular Cells in the Specimens
 from Posthysterectomy Women ..1-22

VIII. Glandular Cell Abnormalities1-22
 Atypical Endocervical Cells ..1-22
 Atypical Endocervical Cells Favor Neoplastic ..1-23
 Endocervical Adenocarcinoma In Situ ..1-23
 Endocervical Adenocarcinoma ..1-25

IX. Endocervical Cytology1-26
 Cytologically Normal
 Endometrial Cells ..1-26
 Atypical Endometrial Cells ..1-27
 Endometrial Adenocarcinoma ..1-28
 Papillary Serous Adenocarcinoma ..1-29
 Extravaginal Metastatic
 Adenocarcinoma ..1-29
 Malignant Mixed Müllerian Tumor ..1-30
 Lymphoma/Leukemia Cervix ..1-30

X. Pap Test and HPV Testing1-30

XI. ASC-US Low Grade Triage Study
(Alts Trial) ..1-30
 HPV Prevalence ...1-30
 HPV Testing and Management
 Guidelines ..1-30

XII. The American Society for Colposcopy
 and Cervical Pathology (ASCCP)

XIII. Noncorrelating Pap and Biopsy1-31

PART B: NONGYNECOLOGIC
 CYTOLOGY ..1-33

XIV. Overview ..1-34
 Overall Evaluation of Cytologic Smear ..1-34
 Key Cellular Features ..1-34
 Cellular Patterns ..1-35

XV. Respiratory Cytology1-36
 Overview ..1-36
 Normal Cellular Components
 of Lung Cytology ..1-36
 Types of Pulmonary Specimens ..1-36
 Spectrum of Cytologic Changes
 in Various Preparations ..1-37

Benign Lesions ..1-37
Pneumonia ..1-37
Creola Bodies (Bronchial Cell
 Hyperplasia) ..1-38
Pneumocyte Type II Hyperplasia ..1-38
Pulmonary Infarct ..1-38
Cigarette and Habitual Marijuana
 Smoking ..1-39
Radiation and Chemotherapy-
 Induced Atypia ..1-39
Amiodarone Induced Changes ..1-39
Hemosiderin-Laden Macrophages ..1-40
Lipid-Laden Macrophages
 in Bronchial Lavage ..1-40
Corpora Amylacea ..1-40
Alveolar Proteinosis ..1-41
Sarcoidosis ...1-41
Miscellaneous Findings ...1-42
Infectious Processes ...1-42
Viral Infection ..1-42
Fungal Infections ...1-42
Tuberculosis ...1-43
Pneumocystis jirovecii
 (Formerly Known as
 Pneumocystis carinii (PCP))1-43
Neoplastic Lesions ...1-43
Keratinizing Squamous Cell
 Carcinoma ..1-43
Nonkeratinizing Squamous Cell
 Carcinoma ..1-44
Adenocarcinoma ...1-44
Large Cell Undifferentiated
 Carcinoma ..1-46
Pulmonary Neuroendocrine
 Tumors ...1-46
Metastatic Carcinoma ...1-48

XVI. Salivary Gland and Head/Neck
 Cytology ..1-49
 Statistics ..1-49
 Salivary Glands ...1-49
 Normal Findings ...1-49
 Nonneoplastic Lesions ...1-49
 Malignant Neoplasms ...1-50
 Malignant Neoplasms
 in Bronchial Lavage1-50
 Pulmonary Neuroendocrine
 Tumors ...1-51
 Nonneoplastic Lesions ...1-54
 Neoplastic Lesions ...1-54

XVII. Thyroid ...1-55
 Overview ..1-55
 Benign Lesions ...1-56
 Thyroid Cysts ...1-56
 Thyroiditis ..1-56
 Black Thyroid Nodule1-57
Nodular Goiter and Colloid Nodules...1-57
Toxic Diffuse Hyperplasia (Graves Disease)1-58
Neoplastic Lesions ..1-58
Follicular Neoplasm ..1-58
Hürthle Cell Neoplasm ..1-59
Papillary Carcinoma ..1-59
Medullary Carcinoma ..1-60
Anaplastic Carcinoma ...1-60
Metastatic Carcinoma ...1-61

XVIII. Breast ...1-61
Overview ..1-61
Benign Lesions ...1-61
Fat Necrosis ...1-61
Subareolar Abscesses ..1-62
Lactational Changes ..1-62
Fibrocystic Changes ...1-62
Fibroadenoma ..1-63
Gynecomastia ...1-64
Intraductal Papilloma ..1-64
Ductal Carcinoma In Situ and Invasive Carcinoma1-64
Ductal Carcinoma In Situ ..1-64
Lobular Carcinoma In Situ ..1-65
Intracystic Papillary Carcinoma ...1-65
Invasive Ductal Carcinoma ...1-65
Lobular Carcinoma ...1-66
Mucinous (Colloid) Carcinoma ...1-66
Medullary Carcinoma ..1-67
Tubular Carcinoma ...1-67
Apocrine Carcinoma ..1-67
Phyllodes Tumor ...1-67
Metaplastic Carcinoma ..1-67

XIX. Lymph Node ...1-68
Reactive Hyperplasia ..1-68
Acute Lymphadenitis ...1-68
Necrotizing Granulomatous Lymphadenitis1-68
Cat Scratch Disease ..1-68
Nonnecrotizing Granulomatous Lymphadenitis1-68
Infectious Mononucleosis ..1-68
Malignant Lymphoma ...1-69
Common Variants of Lymphoma1-69

XX. Skin, Soft Tissue, Bone, and Cartilage1-71
Skin ..1-71
Pilomatrixoma (Calcifying Epithelioma of Malherbe)1-71
Squamous Cell Carcinoma ...1-71
Basal Cell Carcinoma ...1-71
Malignant Melanoma ..1-71

Merkel Cell Carcinoma ...1-72
Soft Tissue ..1-72
Adipose Tissue Tumors ...1-72
Fibrous and Fibrohistiocytic Lesions1-72
Neural Tumors ..1-73
Miscellaneous ..1-74
Bone and Cartilage ..1-75
Chondroma ..1-75
Chondroblastoma ...1-75
Giant Cell Tumor ...1-75
Chondrosarcoma ..1-76
Osteosarcoma ...1-76
Ewing Sarcoma and PNET ...1-76
Langerhans Cell Histiocytosis (Eosinophilic Granuloma)1-76

XXI. Esophagus, Stomach, Colon, Liver, and Pancreas1-76
Esophagus ...1-76
Normal Components ...1-76
Infection ...1-76
Reflux Esophagitis ..1-77
Radiation Change ...1-77
Barrett Esophagus ...1-77
Dysplasia ...1-77
Squamous Cell Carcinoma ...1-77
Adenocarcinoma ...1-78
Stomach ..1-78
Normal Cytology ...1-78
Gastric Ulcer ...1-78
Chronic Gastritis ...1-78
Hyperplastic or Regenerative Polyp1-78
Adenocarcinoma ...1-78
Lymphoma ...1-79
Colon ...1-79
Normal Cytology ...1-79
Adenomatous Polyp ..1-79
Adenocarcinoma ...1-79
Liver ...1-79
Normal Components ...1-79
Benign Lesions ...1-79
Malignant Lesions ...1-80
Pancreas ..1-81
Normal Components ...1-81
Acute Pancreatitis ..1-82
Chronic Pancreatitis ...1-82
Cystic Mass Lesions ..1-82
Solid Masses ...1-83

XXII. Ovary ...1-84
Overview ...1-84
Selected Lesions ..1-84
Follicular Cyst ...1-84
Corpus Luteum Cyst ..1-84
Essentials of Anatomic Pathology, 3rd Ed.

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endometriotic Cyst</td>
<td>1-84</td>
</tr>
<tr>
<td>Mature Cystic Teratoma</td>
<td>1-84</td>
</tr>
<tr>
<td>Cystic Granulosa Cell Tumor</td>
<td>1-84</td>
</tr>
<tr>
<td>Serous Cystadenoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Mucinous Cystadenoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Papillary Serous Cystadenocarcinoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Mucinous Cystadenocarcinoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Endometrioid Carcinoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Clear Cell Carcinoma</td>
<td>1-85</td>
</tr>
<tr>
<td>Brenner Tumor</td>
<td>1-85</td>
</tr>
<tr>
<td>Carcinoid</td>
<td>1-85</td>
</tr>
<tr>
<td>Dysgerminoma</td>
<td>1-85</td>
</tr>
</tbody>
</table>

XXIII. Kidney | 1-86
- Simple Cyst | 1-86
- Oncocytoma | 1-86
- Angiomyolipoma | 1-86
- Clear Cell Renal Cell Carcinoma | 1-86
- Chromophobe Renal Cell Carcinoma | 1-87
- Papillary Renal Cell Carcinoma | 1-87
- Collecting Duct Carcinoma | 1-87
- Wilms Tumor | 1-88

XXIV. Urinary Bladder | 1-88
- Overview | 1-88
- Benign Lesions and Mimics of Malignancy | 1-89
 - Reactive Urothelial Cells | 1-89
 - Instrument Artifact and Lithiasis | 1-89
 - Decoy Cells | 1-89
 - Ileal Conduit | 1-89
 - Treatment Effect | 1-89

XXV. Pleural and Peritoneal Fluid | 1-92
- Benign Quiescent Mesothelial Cells | 1-92
- Reactive Mesothelial Cells | 1-92
- Rheumatoid Pleuritis/Pericarditis | 1-93
- Tuberculosis | 1-93
- Malignant Mesothelioma | 1-93
- Metastatic Adenocarcinoma | 1-94

XXVI. Cerebrospinal Fluid and Central Nervous System | 1-96
- Specimen Preparation of CSF | 1-96
- Normal Components of CSF | 1-96
- Ependymal Cells | 1-96
- Choroid Plexus Cells | 1-97
- Pia-Arachnoid (Leptomeningeal) Cells | 1-97
- Brain Parenchyma | 1-97
- Primitive (Blast-Like) Cells of Neonates | 1-97
- Inflammatory Conditions | 1-97
- Acute Lymphocytic Leukemia/Malignant Lymphoma | 1-97
- Astrocytoma | 1-97
- Ependymomas | 1-98
- Choroid Plexus Papilloma | 1-98
- Craniopharyngioma | 1-98
- Germinoma | 1-98
- Meningioma | 1-98
- Retinoblastoma | 1-98
- Medulloblastoma | 1-98
- Metastatic Carcinoma | 1-99

XXVII. Suggested Reading | 1-99
- Urothelial Neoplasm | 1-90
- Urothelial Adenocarcinoma | 1-91
Part A

Gynecologic Cytology
THE 2001 BETHESDA SYSTEM

Specimen Type
♦ Indicate conventional smear (Pap smear) vs. liquid-based preparation vs. other

Specimen Adequacy
♦ Satisfactory for evaluation (describe presence or absence of endocervical/Transformation Zone component (TZ) and any other quality limiting factors, e.g., partially obscuring blood, inflammation, etc.)
♦ Unsatisfactory for evaluation (specify reason)
 – Specimen rejected/not processed (specify reason)
 – Specimen processed and examined, but unsatisfactory for evaluation of epithelial abnormality because of (specify reason)

General Categorization (Optional)
♦ Negative for intraepithelial lesion or malignancy
♦ Other: See “Interpretation/Result” (e.g., endometrial cells in a woman ≥40 years of age)
♦ Epithelial cell abnormality: See “Interpretation/Result” (specify “squamous” or “glandular” as appropriate)

Interpretation/Result
NEGATIVE FOR INTRAEPITHELIAL LESION OR MALIGNANCY
♦ When there is no cellular evidence of neoplasia, state this in the General Categorization above and/or in the “Interpretation/Result” section of the report, whether or not there are organisms or other nonneoplastic findings

Organisms
♦ Trichomonas vaginalis
♦ Fungal organisms morphologically consistent with Candida spp
♦ Shift in vaginal flora suggestive of bacterial vaginosis
♦ Bacteria morphologically consistent with Actinomyces spp
♦ Cellular changes associated with Herpes simplex virus (HSV)

Other Nonneoplastic Findings (Optional to Report; not Inclusive)
♦ Reactive cellular changes associated with
 – Inflammation (includes typical repair)
 – Radiation
 – Intrauterine contraceptive device (IUD)
♦ Glandular cells status post hysterectomy
♦ Atrophy

Other
♦ Endometrial cells (in a woman ≥40 years of age)
 – Specify if negative for squamous intraepithelial lesion

Epithelial Cell Abnormalities
Squamous Cell
♦ Atypical squamous cells
 – Of undetermined significance (ASC-US)
 – Cannot exclude HSIL (ASC-H)
♦ Low grade squamous intraepithelial lesion (LSIL)
 – Encompassing: HPV/mild dysplasia/CIN1
♦ High grade squamous intraepithelial lesion (HSIL)
 – Encompassing: moderate and severe dysplasia, CIS; CIN2 and CIN3
 – With features suspicious for invasion (if invasion is suspected)
♦ Squamous cell carcinoma

Glandular Cell
♦ Atypical
 – Endocervical cells (NOS or specify in comments)
 – Endometrial cells (NOS or specify in comments)
 – Glandular cells (NOS or specify in comments)
♦ Atypical endocervical glandular cells, favor neoplastic
♦ Endocervical adenocarcinoma in situ (AIS)
♦ Adenocarcinoma
 – Endocervical
 – Endometrial
 – Extrauterine
 – Not otherwise specified (NOS)

Other Malignant Neoplasms (Specify)

Ancillary Testing
♦ Provide a brief description of the test method(s) and report the result so that it is easily understood by the clinician

Automated Review
♦ If the case is examined by automated device, specify the device and result

Educational Notes and Suggestions (Optional)
♦ Suggestions should be concise and consistent with clinical followup guidelines published by professional organizations (references to relevant publications may be included)
Adequate Pap Test (Figs. 1.1 and 1.2)

- An adequate test has well-visualized and well-preserved squamous cells with an estimated minimum of 8–13,000 cells (conventional Pap) and >5,000 (liquid-based Pap). This minimum cell range should be an estimate aided by published diagrams of representations of microscopic fields with different parameters of microscope objectives/oculars/field number and number of cells.
- Describe presence or absence of endocervical/ transformation component and any other quality indicators immediately after

Satisfactory and Unsatisfactory terms. The list of quality indicators might include: absence of pertinent clinical information (such as LMP, age, etc.), air drying, or poor preservation of cellular material, excessive blood/mucous/exudates, thick cell groups, scant cellularity, and excessive cytolysis.

- Any specimen with abnormal cells is by definition satisfactory for evaluation.

Endocervical/Transformation Zone Component (Figs. 1.3 and 1.4)

- At least 10 well-preserved endocervical and/or squamous metaplastic cells should be observed to report that a transformation zone component (TZ) is present. In a negative Pap test, its absence does not necessarily mean that the patient requires early repeat testing especially if the patient has a negative Pap.

Fig. 1.1. Satisfactory for evaluation. Negative for intraepithelial lesion or malignancy. Superficial squamous cells, metaplastic cells, and intermediate squamous cells. *LBP* liquid-based preparation.

Fig. 1.2. Satisfactory for evaluation. Negative for intraepithelial lesion or malignancy. Superficial, intermediate, and metaplastic squamous cells. *LBP* liquid-based preparation.

Fig. 1.3. Satisfactory for evaluation. Endocervical-transformation zone component present. Normal endocervical cells. *CP* Conventional preparation.

Fig. 1.4. Satisfactory for evaluation. Endocervical transformation zone component present. Immature and mature metaplastic cells. *CP* Conventional preparation.
history. However, attention to regular screening is suggested. If there is a history of abnormal Pap, incomplete visualization of cervix, immunocompromised status, or poor screening history, repeat in 6 months is suggested.

Unsatisfactory Specimen (Fig. 1.5)

- Clarify laboratory’s role in processing/evaluation of specimen in the report
- Suggested wording to clarify report
 - Rejected Pap
 - (a) Specimen rejected (not processed) because of the following: specimen not labeled, slide broken, etc
 - Fully evaluated unsatisfactory Pap
 - (a) Specimen processed and examined, but is unsatisfactory for evaluation of epithelial abnormality because of obscuring blood, inflammation (>75% of the cells are obscured), etc
- Additional comments or recommendations are suggested, as appropriate: An excessively bloody or inflamed Pap test may mask the screener’s ability to detect an underlying abnormality and a repeat examination/evaluation is suggested

ORGANISMS

Trichomonas vaginalis (Figs. 1.6 and 1.7)

- Approximately 25% of women are carriers of *Trichomonas vaginalis*. *Trichomonas vaginalis* often coexist with *leptothrix* and other coccoid bacteria. The organisms are small, "pear or kite-shaped," and faintly stained with small, oval, eccentric pale nuclei and red cytoplasmic granules. Rare flagella may be observed in LBP. Cannonball cells with agglomeration of neutrophils onto squamous cells maybe observed. The squamous cells may show vacuolization, polychromasia, and “moth eaten” appearance. Granular debris and inflammation is usually present in the background.

Candida albicans (Figs. 1.8 and 1.9)

- Approximately 10% of females are carriers of *Candida* organisms. The incidence of *Candida* infection increases with pregnancy, oral contraceptive use, and diabetes. The organisms
are yeast forms with long pseudohyphae. “Spearing” of epithelial cells by the pseudohyphae may be observed. Inflammatory cells are generally present in the background. Torulopsis glabrata lack the pseudohyphae observed in Candida, but the two organisms may be difficult to separate on Pap test.

Bacterial Vaginosis (Fig. 1.10)

- Bacterial vaginosis occurs in 10–30% of the general population. Patients have exponentially more anaerobes per ml of vaginal fluid than normal. The etiologic agents for bacterial vaginosis include Gardnerella vaginalis, anaerobic lactobacilli, and Bacteroides and Mobiluncus species. G. vaginalis (haemophilus-corynebacterium-vaginalis) may be cultured in 30–50% of asymptomatic women.

- A combination of Pap test, wet prep, and other tests including vaginal PH and “Whiff” test on KOH preparation, which is positive in symptomatic women, can establish the diagnosis. The organisms are gram variable bacilli, including numerous coccobacilli, curved bacilli, or mixed organisms imparting a “filmy” appearance to the preparation. Lactobacilli are absent. “Clue cells” refer to the presence of squamous cells covered by adherent, small, and uniformly spaced coccobacilli. This finding is neither specific nor sufficient for the diagnosis of bacterial vaginosis.

Actinomyces (Fig. 1.11)

- Actinomyces organisms are gram positive filamentous bacteria. They are associated with the use of IUD and vaginal pessaries. Actinomyces organisms are recognized by the presence of isolated tangled aggregates of long basophilic filamentous structures with a radiating pattern.
Herpes Simplex Virus (Fig. 1.12)
- 80% of exposed females develop Herpes simplex virus (HSV) infection following exposure and the recurrence rate is 60%. Herpetic infection is characterized by the presence of multinucleation, molding of nuclei, ground-glass nuclei, margination of chromatin, and eosinophilic intranuclear inclusions. Type I and type II (genital) herpes, or primary or secondary infections cannot be distinguished cytologically.

Chlamydia trachomatis
- Intracytoplasmic vacuoles containing eosinophilic dots (elementary particles) are not specific for C. trachomatis, as they probably represent mucinous or other vacuoles. C. trachomatis may be associated with follicular cervicitis. The Pap test has no role in the diagnosis of this infection.

Döderlein Bacilli (Lactobacillus acidophilus)
- Döderlein bacilli represent a heterogeneous group of bacilli whose function is to maintain an acid vaginal pH (3.5–4.5). They are the only species of bacteria that are capable of causing cytolysis or dissolution of cytoplasm of intermediate squamous cells by hydrolyzing intracytoplasmic glycogen, and they result in cytolysis of intermediate squamous cells.

Entamoeba histolytica
- Entamoeba histolytica organisms are large trophozoites with large nuclei and a dot-like central karyosome. Their cytoplasm is vacuolated and contains ingested RBCs.

Cytomegalovirus
- Cytomegalovirus infection in immunocompetent women is usually transient and asymptomatic. The infected cells are enlarged with a solitary basophilic intranuclear inclusion surrounded by a halo. Intracytoplasmic small granular inclusions may also be observed.

CONTAMINANTS

- Alternaria. Alternaria are air-borne contaminant fungi that have short yellow brown conidiospores and transversely and longitudinally septate macroconidia (snow shoe-like).
- Pollen
- Vegetable cells. Vegetable cells have dense cell walls and structureless nuclei. They may be observed in patients with rectovaginal fistulas along with goblet cells, inflammation, and necrotic debris.
- Graphite-pencil markings
- Lubricant jelly. Not recommended for gynecologic examination prior to Pap smear.
- Cotton, cardboard, and tampon fibers
- Trichome. “Octopus-like” or star-shaped structure derived from leaves of arrow-wood plant.
Typical Repair (Figs. 1.15 and 1.16)
- Typical repair is characterized by the presence of cohesive sheets of cells with rare or absence of isolated cells.

Ferning. Represents arborizing palm leaf-like pattern of cervical mucus that occurs at ovulation.

"Corn flakes." A refractile brown cell artifact representing air-trapping between the superficial squamous cell nuclei and the cover slip. It can be resolved by reprocessing.

Sperm. Sperm may be identified in the Pap test a few days after intercourse. In HIV-infected patients, the presence of sperm is indicative of unprotected intercourse.

Reactive Changes (Figs. 1.13 and 1.14)

Fig. 1.13. Reactive cellular changes associated with inflammation. Sheet of cells with slightly enlarged uniform nuclei and abundant cytoplasm. Polymorphonuclear leukocytes are present in the sheet. Elsewhere in this slide fungal organisms consistent with Candida species were observed. LBP liquid-based preparation.

Fig. 1.14. Reactive cellular changes associated with inflammation. Sheet of squamous cells with distinct borders, abundant cytoplasm, enlarged uniformly round nuclei and nucleoli. Isolated atypical cells are not observed. CP Conventional preparation.

Fig. 1.15. Reactive cellular changes associated with inflammation. Typical repair characterized by a sheet of cells with distinct borders, abundant cytoplasm, and slightly enlarged nuclei with uniform chromatin pattern and nucleoli. CP Conventional preparation.

Fig. 1.16. Reactive cellular changes associated with inflammation. Typical repair. LBP liquid-based preparation.
and regular. The cells have a delicate, cyanophilic cytoplasm without differentiation

No tumor diathesis is present

Differential Diagnosis

- The differential diagnosis of typical repair includes, among others, squamous cell carcinoma (SCC) and acantholytic cells in pemphigus vulgaris
- SCC presents as discohesive abnormal cells. The tumor cells have an irregular chromatin distribution and multiple irregular nucleoli. A tumor diathesis is present
- Acantholytic cells in pemphigus vulgaris are usually observed in vaginal smears. Isolated single cells are present: referred to as tombstone cells – Tzank cells. Correlation with clinical history is essential for accurate interpretation of cells derived from pemphigus vulgaris

Radiation Effect (Figs. 1.17 and 1.18)

- Radiated cells manifest cellular enlargement (macrocytosis), and nuclear enlargement, but the N/C ratio remains normal. The cells show nuclear and cytoplasmic vacuoles and large perinuclear halos. Cellular chromat in is finely granular or degenerative ("smudged"). Karyorrhexis and karyopyknosis are observed
- Binucleation and multinucleation, and micro- and macronucleoli are typical of radiated cells. Large bizarre cells with polychromasia, cytoplasmic vacuolization, peripheral cytoplasmic projections (pseudopodia), and cytophagocytosis including intracytoplasmic neutrophils are observed

IUD-Associated Change (Fig. 1.19)

- Small clusters of hypersecretory endocervical cells are observed. The cells have abundant cytoplasm with distinct cell borders. Large cytoplasmic vacuoles (bubble-gum cytoplasm) are observed

The nuclei are large, uniform and may contain prominent nucleoli. Inflammatory/reparative squamous changes may be present. The background is generally clean or inflammatory

- Actinomycotic colonies and calcified debris may be observed in the background

Differential Diagnosis

- The differential diagnosis of IUD is mainly endometrial adenocarcinoma
- Adenocarcinoma of endometrium, unlike IUD-associated changes occurs in older patients (postmenopausal). Generally endometrial adenocarcinoma is characterized by the presence of many abnormal cells with associated tumor diathesis. Cells derived from adenocarcinoma have an irregular chromatin pattern and prominent nucleoli