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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and scholars the
opportunity of assembling and commenting upon major classical works and honors the work of dis-
tinguished scholars in probability and statistics. Each volume contains the original papers, original
commentary by experts on the subject’s papers, and relevant biographies and bibliographies.

Springer is commited to maintaining the volumes in the series with free access on SpringerLink, as
well as to the distribution of print volumes. The full text of the volumes is available on SpringerLink
with the exception of a small number of articles for which links to their original publisher is included
instead. These publishers have graciously agreed to make the articles freely available on their websites.
The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting of Anirban
DasGupta, Peter Hall, Jim Pitman, Michael Sørensen, and Jon Wellner.
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Preface and Introduction

When Springer approached me with a proposal for editing a collection of Dev Basu’s writings and
articles, with original commentaries from experts in the field, I accepted this invitation with a sense
of pride, joy, and anxiety. I was a direct student of Dev Basu at the Indian Statistical Institute, and
accepted this task with a sense of apprehension. I was initially attracted to Basu because of his clarity
of exposition and a dignified and inspiring presence in the classrooms at the ISI. He gave us courses on
combinatorics, distribution theory, central limit theorems, and the random walk. To this date, I regard
those courses to be the best I have ever taken on any subject in my life. He never brought any notes,
never opened the book, and explained and derived all of the material in class with an effortlessness
that I have never again experienced in my life.

Then, I got to read some of his work, on sufficiency and ancillarity, survey sampling, the likelihood
principle, the meaning of the elusive word information, the role of randomization in design and in
inference, eliminating nuisance parameters, his mystical and enigmatic counterexamples, and also
some of his highly technical work using abstract algebra, techniques of complex and Fourier analysis,
and on putting statistical concepts in a rigorous measure theoretic framework. I realized that Basu
was also a formidable mathematician. The three signature and abiding qualities of nearly all of Basu’s
work were clarity of exposition, simplicity, and an unusual originality in thinking and in presenting his
arguments. Anyone who reads his paper on randomization analysis (Basu (1980)) will ponder about
the use of permutation tests and the role of a statistical model. Anyone who reads his papers on survey
data, the likelihood principle, information, ancillarity, and sufficiency will be forced to think about the
foundations of statistical practice. The work was fascinating and original, and influenced generations
of statisticians across the world. Dennis Lindley has called Basu’s writings on foundations “among
the most significant contributions of our time to the foundations of statistical inference.”

Foundations can be frustrating, and disputes on foundations can indeed be never-ending. Although
the problems that we, as statisticians, are solving today are different, the fundamentals of the subject
of statistics have not greatly changed. Depending on which particular foundational principle we more
believe in, it is still the fundamentals laid out by Fisher, Pearson, Neyman, Wald, and the like, that
drive statistical inference. Despite decades and volumes devoted to debates over foundational issues,
these issues still remain important. In his commentary on Basu’s work on survey sampling in this
volume, Alan Welsh says “· · · , and this is characteristic of Basu and one of the reasons (that) his
papers are still so valuable; it does challenge the usual way · · · . Statistics has benefitted enormously
that Basu made that journey.” I could not say it any better. It is with this daunting background that I
undertook the work of editing this volume.

This book contains 23 of Basu’s most significant articles and writings. These are reprints of the
original articles, presented in a chronological order. It also contains eleven commentaries written by
some of our most distinguished scholars in the areas of foundations and statistical inference. Each
commentary gives an original and contemporary critique of a particular aspect or some particular
contribution in Basu’s work, and places it in perspective. The commentaries are by George Casella and
V. Gopal, Phil Dawid, Tom DiCiccio and Alastair Young, Malay Ghosh, Jay Kadane, Glen Meeden,
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Preface and Introduction

Robert Serfling, Jayaram Sethuraman, Terry Speed, and Alan Welsh. I am extremely grateful to each
of these discussants for the incredible effort and energy that they have put into writing these commen-
taries. This book is a much better statistical treasure because of these commentaries.

Terry Speed has eloquently summarized a large portion of Basu’s research in his commentary. My
comments here serve to complement his. Basu was born on July 5, 1924 in the then undivided Bengal
and had a modest upbringing. He obtained an M.A. in pure mathematics from Dacca University in
the late forties. His initial interest in mathematics no doubt came from his father, Dr. N. M. Basu,
an applied mathematician who worked on the mathematical theory of elasticity under the supervision
of Nobel laureate C. V. Raman. Basu told us that shortly after the partition of India and Pakistan, he
became a refugee, and crossed the borders to come over to Calcutta. He found a job as an actuary. The
work failed to give him any intellectual satisfaction at all. He quit, and at considerable risk, went back
to East Pakistan. The adventure did not pay off. He became a refugee for a second time and returned
to Calcutta. Here, he came to know of the ISI, and joined the ISI in 1950 as a PhD student under
the supervision of C. R. Rao. Basu’s PhD dissertation “Contributions to the Theory of Statistical
Inference” was nearly exclusively on pure decision theory, minimaxity and admissibility, and risks
in testing problems under various loss functions (Basu (1951, 1952a, 1952b)). In Basu (1951), a
neat counterexample shows that even the most powerful test in a simple vs. simple testing problem
can be inconsistent, if the iid assumption for the sequence of sample observations is violated. In
Basu (1952a), an example is given to show that if the ordinary squared error loss is just slightly altered,
then a best unbiased estimate with respect to the altered loss function would no longer exist, even in the
normal mean problem. Basu (1952b) deals with admissible estimation of a variance for permutation
invariant joint distributions and for stationary Markov chains with general convex loss functions. It
would seem that C. R. Rao was already thinking of characterization problems in probability, and Basu
was most probably influenced by C. R. Rao. Basu wrote some early articles on characterizing normal
distributions by properties of linear functions, a topic in which Linnik and his students were greatly
interested at that time. This was a passing phase.

In 1953, he came to Berkeley by ship as a Fulbright scholar. He met Neyman, and listened to
many of his lectures. Basu spoke effusively of his memories of Neyman, Wald, and David Blackwell
at many of his lectures. It was during this time that he learned frequentist decision theory and the
classical theory of statistics, extensively and deeply. At the end of the Fulbright scholarship, he
went back to India, and joined the ISI as a faculty member. He later became the Dean of Studies,
a distinguished scientist, and officiating Director of the Research and Training School at the ISI.
He pioneered scholastic aptitude tests in India that encourage mathematics students to understand
a topic and stop focusing on cramming. The widely popular aptitude test book Basu, Chatterji, and
Mukherjee (1972) is an institution in Indian mathematics all by itself. He also had an ingrained love
for beautiful things. One special thing that he personally developed was a beautiful flower garden
around the central lake facing the entrance of the main residential campus. It used to be known as
Basu’s garden. He also worked for some years as the chief superintendent of the residential student
hostels, and when I joined there, I heard stories about his coming by in the wee hours of the morning
to check on students, always with his dog. I am glad that he wasn’t the superintendent when I joined,
because my mischievous friends and I were stealing coconuts from the campus trees around 4:00 am
every morning for an early morning carb boost. I can imagine his angst and disbelief and the angry
outrage of his puzzled dog at some of his dedicated students hanging from coconut trees at four in the
morning, and a few others hiding in the bushes on guard.

The subject of statistics was growing rapidly in the years around the second world war. The
most fundamental questions were being raised, and answered. In quick succession, we had the
Neyman-Pearson lemma, Cramér-Rao inequality, Rao-Blackwell theorem, the Lehmann-Scheffé theo-
rem, Neyman’s proof of the factorization theorem, Mahalanobis’s D2-statistic, the Wald test, the score
test of Rao, and Wald and Le Cam’s masterly and all encompassing formulation and development of
decision theory as a unified basis for inference. This was also a golden age for the ISI. Fisher was
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Preface and Introduction

spending time there, and so were Kolmogorov, and Haldane. Basu joined the ISI as a PhD student
in that fertile and golden era of statistics and the ISI. He was clearly influenced, and deeply so, by
Kolmogorov’s rigorous measure theoretic development of probability theory, and simultaneously by
Fisher’s prodigious writings on the core of statistics, maximum likelihood, sufficiency, ancillarity,
fiducial distributions, randomization tests, and so on. This influence of Kolmogorov and Fisher is
repeatedly seen in much of Basu’s later work. The work on foundations is obviously influenced by
Fisher’s work, and the technical work on sufficiency, ancillarity, and invariance (Basu (1967, 1969))
is very clearly influenced by Kolmogorov. It is not too much of a stretch to call some of Basu’s work
on sufficiency, ancillarity, and invariance research on abstract measure theory.

Against this backdrop, we see Basu’s first transition into raising and answering questions that
have something fundamental and original about them. Among the most well known is what everyone
knows simply as Basu’s theorem (Basu (1955a)). It is the only result in statistics and probability
that is listed in Wikipedia’s list of Indian inventions and discoveries, significant scientific inventions
and discoveries originating in India in all of recorded history. A few other entries in this list are the
hookah, muslin, cotton, pajamas, private toilets, swimming pools, hospitals, plastic surgery, diabetes,
jute, diamonds, the number zero, differentials, the Ramanujan theta function, the AKS primality test,
Bose-Einstein statistics, and the Raman effect.

The direct part of Basu’s theorem says that if X1, · · · , Xn have a joint distribution Pn,θ ,

θ ∈ �, T (X1, · · · , Xn) is boundedly complete and sufficient, and S(X1, · · · , Xn) is ancillary, then T
and S are independent under each θ ∈ �. The theorem has very pretty applications, and I will mention
a few. But, first, I would like to talk a little more of the context of this theorem. He was led to Basu’s
theorem when he was asked the following question. Consider iid N (μ, 1) observations X1, · · · , Xn .
Then, every location invariant statistic is ancillary; is the converse true? The converse is not true, and
so Basu wanted to characterize the class of all ancillary statistics in this situation. The reverse part of
Basu’s theorem answers this question; in general, suppose T (X1, · · · , Xn) is boundedly complete and
sufficient. Then, S(X1, · · · , Xn) is ancillary only if it is independent of T under each θ . Typically,
in applications, one would take T to be the minimal sufficient statistic, which has the best chance of
being also complete. Without completeness, an ancillary statistic need not be independent of T .

Returning to the more well known part of Basu’s theorem, namely the direct part, there is an ele-
ment of sheer beauty about the result. A sufficient statistic is supposed to capture all the information
about the parameter that the full data could supply, and an ancillary statistic has none to offer at all.
We can think of a rope, with T and S at the two ends of the rope, and θ placed in the middle. T
has everything to do with θ , and S has nothing to do with θ whatsoever. They must be independent!
The theorem brings together sufficiency, information, ancillarity, completeness, and conditional inde-
pendence. Terry Speed (Speed (2010), IMS Bulletin), calls it a beautiful theorem, which indeed it is.
Basu later worked on various other aspects of ancillarity and selection of reference sets; all of these
are comprehensively discussed in Phil Dawid’s commentary in this volume.

Basu’s theorem isn’t only pretty. It has also been used by many researchers in diverse areas
of statistics and probability. To name a few, the theorem has been used extensively in distribution
theory, in deriving Barndorff-Nielsen’s magic formula (Barndorff-Nielsen (1983), Small (2010)), in
proving theorems on infinitely divisible distributions, in goodness of fit testing (and in particular
for finding the mean and the variance of the WE statistic for testing exponentiality), and of late in
small area estimation. Hogg and Craig (1956), Lehmann (1981), Boos and Hughes-Oliver (1998),
and Ghosh (2002) have previously described some of these applications. Larry Brown has provided
some very powerful applications of a more general (but less statistically intuitive) version of Basu’s
theorem in Brown (1986), and Malay Ghosh has indicated applications to empirical Bayes problems
in his commentary in this volume. Here are a few of my personal favorite applications of Basu’s
theorem to probability theory. The attractive part of these examples is that you save on clumsy or
boring calculations by using Basu’s theorem in a clever way. The final results can be obtained without
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Preface and Introduction

using Basu’s theorem, but in a pedestrian sort of way. In contrast, by applying Basu’s theorem, you
do it elegantly.

Example 1 (Independence of Mean and Variance for a Normal Sample) Suppose X1, X2, · · · , Xn

are iid N (η, τ 2) for some η, τ . Suppose X is the mean and s2 the variance of the sample values
X1, X2, · · · , Xn . The goal is to prove that X and s2 are independent, whatever be η and τ . First note
the useful reduction that if the result holds for η = 0, τ = 1, then it holds for all η, τ . Indeed, fix any
η, τ , and write Xi = η + τ Zi , 1 ≤ i ≤ n, where Z1, · · · , Zn are iid N (0, 1). Now,

(
X ,

n∑
i=1

(
Xi − X

)2

)
L=

(
η + τ Z , τ 2

n∑
i=1

(
Zi − Z

)2

)
.

Therefore, X and
∑n

i=1(Xi − X)2 are independently distributed under (η, τ ) if and only if Z and∑n
i=1(Zi − Z)2 are independently distributed. This is a step in getting rid of the parameters η, τ

from consideration. But, now, we will import a parameter! Embed the N (0, 1) distribution into a
larger family of {N (μ, 1), μ ∈ R} distributions. Consider now a fictitious sample Y1, Y2, · · · , Yn

from Pμ = N (μ, 1). The joint density of Y = (Y1, Y2, · · · , Yn) is a one parameter Exponential
family density with the natural sufficient statistic T (Y ) = ∑n

i=1 Yi . And, of course,
∑n

i=1(Yi −Y )2 is
ancillary. Since this is an Exponential family, and the parameter space for μ obviously has a nonempty
interior, all the conditions of Basu’s theorem are satisfied, and therefore, under each μ,

∑n
i=1 Yi and∑n

i=1(Yi − Y )2 are independently distributed. In particular, they are independently distributed under
μ = 0, i.e., when the samples are iid N (0, 1), which is what we needed to prove. This is surely a very
pretty proof of that classic fact in distribution theory.

Example 2 (An Exponential Distribution Result) Suppose X1, X2, · · · , Xn are iid Exponential ran-

dom variables with mean λ. Then, by transforming (X1, X2, · · · , Xn) to
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn
,

X1 + · · · + Xn

)
, one can show by carrying out the necessary Jacobian calculation that(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
is independent of X1 + · · · + Xn . We can show this without doing any

calculations by using Basu’s theorem.
For this, once again, by writing Xi = λZi , 1 ≤ i ≤ n, where the Zi are iid standard Exponen-

tials, first observe that
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
is a (vector) ancillary statistic. Next observe that

the joint density of X = (X1, X2, · · · , Xn) is a one parameter Exponential family, with the natural
sufficient statistic T (X) = X1 + · · · + Xn . Since the parameter space (0,∞) obviously contains a

nonempty interior, by Basu’s theorem, under each λ,
(

X1
X1+···+Xn

, · · · ,
Xn−1

X1+···+Xn

)
and X1 + · · · + Xn

are independently distributed.

Example 3 (A Weak Convergence Result Using Basu’s Theorem) Suppose X1, X2, · · · are iid
random vectors with a uniform distribution in the d-dimensional unit ball. For n ≥ 1, let dn =
min1≤i≤n ||Xi ||, and Dn = max1≤i≤n ||Xi ||. Thus, dn measures the distance to the closest data point
from the center of the ball, and Dn measures the distance to the farthest data point. We find the limiting
distribution of ρn = dn

Dn
. Although this can be done by using Slutsky’s theorem, the Borel-Cantelli

lemma, and some direct algebra, we will do so by an application of Basu’s theorem.
Toward this, note that for 0 ≤ u ≤ 1,

P(dn > u) = (1 − ud)n; P(Dn > u) = 1 − und .
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As a consequence, for any k ≥ 1,

E[Dn]k =
∫ 1

0
kuk−1(1 − und)du = nd

nd + k
,

and,

E[dn]k =
∫ 1

0
kuk−1(1 − ud)ndu =

n!�
(

k

d
+ 1

)

�

(
n + k

d
+ 1

) .

Now, embed the uniform distribution in the unit ball into the family of uniform distributions in balls of
radius θ and centered at the origin. Then, Dn is complete and sufficient, and ρn is ancillary. Therefore,
once again, by Basu’s theorem, Dn and ρn are independently distributed under each θ > 0, and so, in
particular under θ = 1. Thus, for any k ≥ 1,

E[dn]k = E[Dnρn]k = E[Dn]k E[ρn]k

⇒ E[ρn]k = E[dn]k

E[Dn]k
=

n!�
(

k

d
+ 1

)

�

(
n + k

d
+ 1

) nd + k

nd

∼
�

(
k

d
+ 1

)
e−nnn+1/2

e−n−k/d

(
n + k

d

)n+ k

d
+1/2

(by using Stirling’s approximation)

∼
�

(
k

d
+ 1

)

n

k

d

.

Thus, for each k ≥ 1,

E

[
n1/dρn

]k

→ �

(
k

d
+ 1

)
= E[V ]k/d = E[V 1/d ]k,

where V is a standard Exponential random variable. This implies, because V 1/d is uniquely deter-
mined by its moment sequence, that

n1/dρn
L⇒ V 1/d ,

as n → ∞.
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Example 4 (An Application of Basu’s Theorem to Quality Control) Herman Rubin kindly suggested
that I give this example. He used Basu’s theorem to answer a question on statistical quality control
while consulting some engineers in the fifties. Here is the problem, which is simple to state.

In a production process, the measurement X of a certain product has to fall between conformity
limits a, b. For design, as well as for quality monitoring, the management wants to estimate what
percentage of items are currently meeting the conformity specifications. That is, we wish to esti-
mate θ = P(a < X < b). Suppose that for estimation purpose, we have obtained data values

X1, X2, · · · , Xn , which we assume are iid N (μ, σ 2) for some μ, σ . Then, θ = 

(

b−μ
σ

)
−


( a−μ
σ

)
.

Standard plug-in estimates are asymptotically efficient. But quality control engineers have an inherent
preference for the UMVUE. We derive the UMVUE below in closed form by using Basu’s theorem
and the Lehmann-Scheffé theorem.

By the Lehmann-Scheffé theorem, the UMVUE is the conditional expectation

E
(
Ia≤X1≤b |X , s

) = P
(
a ≤ X1 ≤ b |X , s

)

= P

(
a − X

s
≤ X1 − X

s
≤ b − X

s
|X , s

)

Now, (X , s) are jointly sufficient and complete, and X1−X
s is evidently ancillary. Therefore, by Basu’s

theorem, we get the critical simplification that the conditional distribution of X1−X
s given (X , s) is

the same as the unconditional distribution (whatever it is) of this ancillary statistic X1−X
s . Hence, the

UMVUE of θ is

= P

(
a − X

s
≤ X1 − X

s
≤ b − X

s

)
= Fn

(
b − X

s

)
− Fn

(
a − X

s

)
,

where Fn(t) denotes the CDF of the unconditional distribution of X1−X
s .

We can, perhaps a little fortunately, compute this in closed form. It is completely obvious that the
mean of Fn is zero and that the second moment is 1

n . With a little calculation, which we will omit, Fn

can be shown to be a Beta distribution on [−1, 1] (in fact, even this fact, which I am not proving here,
can be proved by using Basu’s theorem). In other words, Fn has the density

fn(x) =
�

(
α + 1

2

)
√

π� (α)
(1 − x2)α−1,−1 ≤ x ≤ 1.

The value of α must be n−1
2 , by virtue of the second moment being 1

n . Hence, the UMVUE of θ is

Fn

(
b − X

s

)
− Fn

(
a − X

s

)

where

Fn(t) = �
( n

2

)
√

π�( n−1
2 )

∫ t

−1
(1 − x2)

n−3
2 dx
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= 1

2
+ �

( n
2

)
√

π�

(
n − 1

2

) t 2 F1

(
1

2
,

3 − n

2
; 3

2
; t2

)
,

where 2 F1 denotes the usual Gauss Hypergeometric function. This describes the UMVUE of θ in
closed form. Herman Rubin or I have not personally seen this very closed form derivation involving
the Hypergeometric function anywhere, but it is another instance where Basu’s theorem makes the
problem solvable without breaking our back.

Example 5 (A Covariance Calculation) Suppose X1, · · · , Xn are iid N (0, 1), and let X and Mn

denote the mean and the median of the sample set X1, · · · , Xn . By using our old trick of importing
a mean parameter μ, we first observe that the difference statistic X − Mn is ancillary. By Basu’s
theorem, X1 + · · · + Xn and X − Mn are independent under each μ, which implies

Cov(X1 + · · · + Xn, X − Mn) = 0 ⇒ Cov(X , X − Mn) = 0

⇒ Cov(X , Mn) = Cov(X , X) = Var(X) = 1

n
.

We have achieved this result without doing any calculations at all.

Example 6 (Application to Infinite Divisibility) Infinitely divisible distributions are important in both
the theoretical aspects of weak convergence of partial sums of triangular arrays, and in real appli-
cations. Here is one illustration of the use of Basu’s theorem in producing unconventional infinitely
divisible distributions. The example is based on the following general theorem (DasGupta (2006)),
whose proof uses both Basu’s theorem and the Goldie-Steutel law (Goldie (1967)).

Theorem Let f be any homogeneous function of two variables, i.e., suppose f (cx, cy) =
c2 f (x, y)∀x, y and ∀c > 0. Let Z1, Z2 be iid N (0, 1) random variables and Z3, Z4, · · · , Zm

any other random variables such that (Z3, Z4, . . . , Zm) is independent of (Z1, Z2). Then for any
positive integer k, and an arbitrary measurable function g, f k(Z1, Z2)g(Z3, Z4, · · · , Zm) is infinitely
divisible.

A large number of explicit densities can be proved to be densities of infinitely divisible distributions
by using this theorem. Here are a few, each supported on the entire real line.

(i) f (x) = 1

π
K0(|x |), where K0 denotes the Bessel K0 function;

(ii) f (x) = 2 log(|x |)
π2(x2 − 1)

;

(iii) f (x) = 1√
2π

(
1 − √

2π |x |ex2/2
(−|x |)
)

;

(iv) f (x) = 1

2

1

(1 + |x |)2
.

Note that the density in (iv) is the so called GT density. Of course, we can introduce location and scale
parameters into all of these, and make families of infinitely divisible distributions.
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Continuing on with some other significant contributions of Basu, his mathematical work as well as
his foundational writings on survey sampling helped put sampling theory on a common mathematical
footing with the rest of rigorous statistical theory, and even more, in raising and clarifying really
fundamental issues. Alan Welsh has discussed the famous example of Basu’s elephants (Basu (1971))
in his commentary in this volume. This is the solitary example that I know of where a single example
has led to the writing of a book with the example in its title (Brewer (2002)). The elephants example
must be understood in the context of the theme and also the time. It was written when the Horvitz-
Thompson estimator for a finite population total was gaining theoretical popularity, and many were
accepting the estimator as an automatic choice. Basu’s example reveals a fundamental flaw in the
estimator in particular, and in the wisdom of sample space based optimality, more generally. The
example is so striking and entertaining, that I cannot but reproduce it here.

Example 7 (Basu’s Elephants) “The circus owner is planning to ship his 50 adult elephants and so he
needs a rough estimate of the total weight of the elephants. As weighing an elephant is a cumbersome
process, the owner wants to estimate the total weight by weighing just one elephant. Which elephant
should he weigh? So the owner looks back at his records and discovers a list of the elephants’ weights
taken 3 years ago. He finds that 3 years ago Sambo the middle-sized elephant was the average (in
weight) elephant in his herd. He checks with the elephant trainer who reassures him (the owner) that
Sambo may still be considered to be the average elephant in his herd. Therefore, the owner plans to
weigh Sambo and take 50y (where y is the present weight of Sambo) as an estimate of the total weight
Y = Y1 + . . . + Y50 of the 50 elephants. But the circus statistician is horrified when he learns of the
owner’s purposive sampling plan. “How can you get an unbiased estimate of Y this way?” protests the
statistician. So together they work out a compromise sampling plan. With the help of a table of random
numbers, they devise a plan that allots a selection probability of 99/100 to Sambo and equal selection
probabilities of 1/4900 to each of the other 49 elephants. Naturally, Sambo is selected, and the owner is
happy. “How are you going to estimate Y ?”, asks the statistician. “Why? The estimate ought to be 50y
of course,” says the owner. “Oh! No! That cannot possibly be right,” says the statistician. “I recently
read an article in the Annals of Mathematical Statistics where it is proved that the Horvitz-Thompson
estimator is the unique hyperadmissible estimator in the class of all generalized polynomial unbiased
estimators.” “What is the Horvitz-Thompson estimate in this case?”, asks the owner, duly impressed.
“Since the selection probability for Sambo in our plan was 99/100,” says the statistician, “the proper
estimate of Y is 100y

99 and not 50y.” “And how would you have estimated Y ,” enquires the incredulous
owner, “if our sampling plan made us select, say, the big elephant Jumbo?” “According to what I
understand of the Horvitz-Thompson estimation method,” says the unhappy statistician, “the proper
estimate of Y would then have been 4900y, where y is Jumbo’s weight.” That is how the statistician
lost his circus job (and perhaps became a teacher of statistics!).”

Some of my other personal favorites are a number of his counterexamples. The examples always
used to have something dramatic or penetrating about them. He would take a definition, or an idea,
or an accepted notion, and chase it to its core. Then, he would give a remarkable example to reveal a
fundamental flaw in the idea and it would be very very difficult to refute it. One example of this is his
well known ticket example (Basu (1975)). The point of this example was to argue that blind use of the
maximum likelihood estimate, even if there is just one parameter, is risky. In the ticket example, Basu
shows that the MLE overestimates the parameter by a huge factor with a probability nearly equal to
one. The example was constructed to make the likelihood function have a global peak at the wrong
place. Basu drives home the point that one must look at the entire likelihood function, and not just
where it peaks. Very reasonable, especially these days, when so many of us just throw the data into a
computer and get the MLE and feel happy about it. Jay Kadane has discussed Basu’s epic paper on
likelihood (Basu (1975)) for this volume.
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In this very volume, Robert Serfling discusses Basu’s definition of asymptotic efficiency through
concentration of measures (Basu (1956)) and the counterexample which puts his definition at the
extreme opposite pole of the traditional definition of asymptotic efficiency. An important aspect of
Basu’s definition of asymptotic relative efficiency is that it isn’t wedded to asymptotic normality, or√

n-consistency. You could use it, for example, to compare the mean and the midrange in the normal
case, which you cannot do according to the traditional definition of asymptotic relative efficiency.

A third example, but of less conceptual gravity, is his example of an inconsistent MLE
(Basu (1955b)). The most famous example in that domain is certainly the Neyman-Scott example
(Neyman and Scott (1948)). In the Neyman-Scott example, the inconsistency is caused by a nonva-
nishing bias, and once the bias is corrected, consistency is retrieved. Basu’s example is pathological
statistically, but like all his examples, this too makes the point in the most extreme conceivable way.
The inconsistent MLE isn’t fixable in his example.

One important point about Basu’s writings is that it is never clear that he does not like the proce-
dures that classical criteria produce. In numerous writings, he uses a time tested classical procedure.
But he only questions the rationale behind choosing them. This distinction is important. I feel that
in these matters, he is closer to Dennis Lindley, who too, reportedly holds the view that classical
statistics generally produces fine procedures, but using the wrong reasons. This seems to be very far
from a dogmatic view that all classical procedures deserve to be discarded because of where they
came from. But, even when Basu questioned the criteria for selecting a procedure in his writings, and
in his seminars, it was always in the best of spirits (George Casella comments in this volume that “the
banter between Basu and Kempthorne is fit for a comedy.”)

Shortly after he taught us at the ISI, Basu left India and moved to the USA. He joined the faculty
of the Florida State University, causing, according to his daughter Monimala, a family rebellion.
They would happily settle in Sydney, or Denmark, or Ottawa, or Sheffield, where Basu used to visit
frequently, even Timbuktu, but not in a small town in Florida. After he moved to the US, one can see
a distinct change of perspective and emphasis in Basu’s work. He now started working on more prac-
tical things; concrete elimination of nuisance parameters, modelling Bayesian bioassays with miss-
ing data (Basu and Pereira (1982a)), randomization tests (1980), and Bayesian nonparametrics. His
involvement in Bayesian nonparametrics resulted in a beautifully written paper on Dirichlet processes
starting from absolute scratch (Basu and Tiwari (1982b)). Jayaram Sethuraman superbly discusses this
paper in this volume. In a way, Basu’s involvement in Bayesian nonparametrics was perhaps a little
surprising. This is not because he could not deal with abstract measure theory; he was an expert on it!
But, because, Basu repeatedly expressed his deep rooted skepticism about putting priors on more than
three or four parameters. He never said what he would do in problems with many parameters. But
he would not accept improper priors, or even empirical Bayes. He simply said that he does not know
what to do if one has many parameters, because you then just can’t write your elicited information
into honest priors. In some ways, Basu was a half hearted Bayesian. But, he was very forthcoming.

Basu returned permanently to India 1986. He still taught and lectured at the ISI. I last saw Basu in
1995 at East Lansing. He, his wife Kalyani, and daughter Monimala were all visiting his son Shantanu,
who was then a postdoctoral scientist at Michigan State University. I spent a few hours with him, and I
told him what I was working on. I asked him if he would like to give a seminar at Purdue. He said that
the time came some years ago that he should now only listen, to young people like you, and not talk.
He said that his time has passed, and he only wants to learn now, and not profess. He often questioned
himself. In a nearly spiritual mood, he once wrote (Ghosh (1988)): “What have I got to offer? I am
afraid nothing but a set of negative propositions. But with all humility, let me draw the attention of
the would be reader to the ancient Vedic (Hindu scripture) saying- “neti, neti, · · · , iti,” which means-
“not this, not this, · · · , this!”

Basu went back to Calcutta from Lansing, and I received letters from him periodically. In the March
of 2001, when I was visiting Larry Brown at the Wharton school, one morning an e-mail came from
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B.V. Rao at Calcutta. The e-mail said that he is duty bound to give me the saddest news, that Dr. Basu
passed away the night before. I went to Larry Brown’s office and gave him the news. Larry looked
at me, as if he did not believe what I said, and I saw his eyes glistening up, and he said - “that’s just
too bad. He was such a good guy.” However, the idealism and the inspiration live on, as strongly as
in 1973, when he walked into that classroom at the ISI to meet twenty 16 year olds, and fifty minutes
later, we were all in love with probability. I know that I speak for numerous people who got to know
Basu as closely as we did, that he was a personification of purity, in scholarship and in character.
There was an undefinable poetic and ethereal element in the man, his personality, his presence, his
writings, and his angelic disposition, that is very very hard to find. He is missed dearly, but he lives in
our memory. The legacy remains ever so strong. I do tell my students in my PhD theory course; read
Basu.

West Lafayette, Indiana, USA Anirban DasGupta
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Basu, D. (1967). Problems related to the existence of minimal and maximal elements in some families of subfields,

Proc. Fifth Berkeley Symp. Math. Statist. and Prob., I, 41–50, Univ. California Press, Berkeley.
Basu, D. (1969). On sufficiency and invariance, in Essays on Probability and Statistics, R.C. Bose et al. eds., University

of North Carolina Press, Chapel Hill.
Basu, D. (1971). An essay on the logical foundations of survey sampling, with discussions, in Foundations of Statistical

Inference, V. P. Godambe and D. A. Sprott eds., Holt, Rinehart, and Winston of Canada, Toronto.
Basu, D. (1975). Statistical information and likelihood, with discussion and correspondence between Barnard and Basu,
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Goldie, C. (1967). A class of infinitely divisible random variables, Proc. Cambridge Philos. Soc., 63, 1141–1143.
Hogg, R. and Craig, A. T. (1956). Sufficient statistics in elementary distribution theory, Sankhyā, 17, 209.
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Basu’s Work on Randomization and Data Analysis

George Casella and Vikneswaran Gopal

1 Introduction

Sir R. A. Fisher put forward the idea that randomization is a necessary component of any designed
experiment. It is accepted without question by most practitioners of statistics. Yet in the two
papers

1. Basu, D. (1978) Relevance of randomization in data analysis. Survey sampling and measurement
267-292.

2. Basu, D. (1980) Randomization analysis of experimental data: the Fisher randomization test.
Journal of the American Statistical Association 75 (371) 575-582.

Basu wonders out loud if randomization is really that important. He argues his case in the context of
survey sampling, and when analyzing data using a randomization test.

In [1] Basu covers the survey sampling situation, and the randomization test is the topic of [2].
Although he acknowledges that there is a place for randomization in surveys (see Section 4 of [1]),
his belief is the opposite for the randomization test. It is important to note the difference between the
randomizations discussed in the two papers. In [1], Basu focuses on prerandomization - how to pick a
sample from a sampling frame, and how it affects the subsequent analysis of data. In [2], the focus is
on the randomization test, which was first introduced by Fisher. The two types of randomization are
intricately linked, as the first provides a basis for the second. In essence, Basu argues that the absence
of prerandomization does not make a dataset worthless, however, because of the total dependence of
the randomization test on prerandomization, a randomization test is never valid.

In this commentary, we provide a short summary of Basu’s ideas on randomization. That he did
not write a great deal more on this topic is, in his own words, “a measure of my diffidence on the
important question of the relevance of randomization at the data analysis stage”.

G. Casella (B)
Distinguished Professor, Department of Statistics, University of Florida, Gainesville, FL 32611. Supported by National
Science Foundation Grants DMS-0631632 and SES-0631588
e-mail: casella@stat.ufl.edu

V. Gopal (B)
PhD Candidate, Department of Statistics, University Florida, 102 Griffin-Floyd Hall, Gainesville, FL 32611
e-mail: viknesh@stat.ufl.edu

A. DasGupta (ed.), Selected Works of Debabrata Basu, Selected Works in Probability and Statistics,
DOI 10.1007/978-1-4419-5825-9_1, C© Springer Science+Business Media, LLC 2011

1



G. Casella and V. Gopal

2 Survey Sampling

The main question posed in [1] is about how to analyze the data generated by a survey or experiment.
With a series of examples, Basu demonstrates the disadvantages of a frequentist approach, which is
closely tied to the exact sampling plan used.

We highlight one of his more striking examples here. Suppose we have a well-defined finite pop-
ulation P , consisting of individually identifiable objects called units. We can perceive of P as the
set {1, 2, . . . , N }. Corresponding to each j ∈ P , there exists an unknown quantity Y j . The goal of
sampling is typically to estimate some function of (Y1, Y2, . . . , YN ). The method of achieving this is
through a sampling plan S , by which we mean a set of rules, following which we can arrive at a
subset s of P .

Suppose also that we have a machine that produces N = 100 units in a day. However, it is possible
for the machine to malfunction at some point, after which it only produces defective products. Using
the definitions of the previous paragraph, Yi take on values 1 or 0, depending on whether they are
defective or functioning. The aim is to estimate θ = ∑

Yi , the total number of defective products
manufactured in a day, by drawing a sample from the N units.

Randomization is injected into the experiment through the choice of the sampling plan. Should
we draw a simple random sample? Maybe a stratified sample? Whatever S we chose, the result of
drawing a sample of size 4 would be recorded as, say,

Y17 = 0, Y24 = 0, Y40 = 1, Y73 = 1.

What then would a non-Bayesian statistician do with this data? To apply a randomization analysis,
the probability of this sample with respect to the sampling scheme would have to be computed. A
complicated enough scheme might even preclude this. A Bayesian, on the other hand, would observe
that regardless of the sampling scheme applied, we know that 61 ≤ θ = ∑

Yi ≤ 76, since the first
defective occurred in the set {25, 26, . . . , 40}. Moreover, the likelihood function would be constant
over the set {61, 62, . . . , 76} and we simply base all inference on this. Thus, Basu is invoking the
Conditionality and Likelihood Principles to conclude that at the data analysis stage, the exact nature
of the sampling plan is not important. He also points out that it in this case a sequential purposive
sampling plan would serve our need better.

Notice that the example has been carefully set-up so that the non-Bayesian would be somewhat
confused. For example, θ as it is presented here, would not be viewed as a parameter in classical
statistics. But Basu, being a Bayesian, does not make a distinction between a random variable and a
parameter. The way Basu presents the problem, a Bayesian analysis offers itself as the most natural
thing to do. Such an approach avoids the need for obsessive randomization, and extracts information
from the sample obtained rather than basing inference on samples that were not drawn.

3 The Test of Randomization

With [2], Basu places the randomization test under his microscope. At the end of his analyses, he
concludes that he is unable to justify the use of the randomization test.

In the initial segments of the paper, Basu presents a version of the Fisher randomization test as a
precursor to nonparametric tests such as the sign test and the Wilcoxon signed-rank test. Following
that, he speculates that Fisher lost interest and belief in the randomization test. The final section
of the paper is the most entertaining one. It contains a fictitious conversation between a scientist,
a statistician and Basu himself. The three individuals discuss the randomization test introduced by
Fisher in Chapter III (Section 21) of [3].
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The scientist wishes to test whether a new diet is an improvement over the standard one. 30 animals
are divided into 15 homogeneous pairs and from each pair, the scientist selects one subject for the
treatment and the other one for the control. The response is the amount of weight gained in a subject
after, say, 6 weeks. The data for each pair are recorded as (ti , ci ). Suppose that for this particular
experiment, the scientist records that ti − ci > 0 for all i , and that T = ∑

i (ti − ci ) is a large positive
number.

H0 states that the new diet makes no difference to the response. If this null hypothesis were true,
it would mean that any difference in response for the i-th pair must have been caused by “nuisance”
factors such as subject differences. Under H0 then, the significance level of the observed statistic
would be Pr(T ′ ≥ T |H0) = (1/2)15, assuming that all treatment assignments were equally likely.
Basu takes the position that the randomization test should be applicable even if the randomization
were not so. Specifically, he asks why the randomization test yields a different significance level
if a biased coin were used to assign treatments within each pair. This apparent breakdown of the
methodology is one of the reasons that leads Basu to recommend that the test not be used.

In introducing the article [2] in an earlier collection [4], Basu poses similar questions with regard
to the famous tea-tasting experiment, which was also introduced by Fisher in [3].

A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or tea infusion
was first added to the cup. . . . Our experiment consists in mixing eight cups of tea, four in one way and four in
the other, and presenting them to the subject for judgement in a random order.

The subject knows that there are 4 cups of each kind, and her task is to pick out the two groups of cups.
Fisher argued that under the (null) hypothesis that the lady does not have the ability to distinguish, if
we use the number of matches between the true grouping and the lady’s grouping as a statistic, the
significance level of a perfect grouping by the lady is given by

Pr(T ≥ 8|H0) = 1

70

Basu asks a series of questions of this approach:

Why randomize? Was it because we wanted to keep the Lady in the dark about the actual layout? But then,
why did we have to tell the Lady that there were exactly four cups of each kind in the layout and that all the
70 choices were equally likely? Why couldn’t we choose just any haphazard looking layout and keep the lady
uninformed about the choice? But then, how could we compute the significance level? Instead of randomizing
over the full 70 point set, couldn’t we randomize over a smaller, say, 10 point set of haphazard arrangements?
How can we explain that in that case the same data (x, y) with T = 8 will be associated with a significance level
of 1/10? Why are we holding the Lady’s response y as fixed and playing this probability game with the ancillary
statistic x?

Fisher went some way to explaining some of these questions when he described the purpose of
randomization, in Chapter II (Section 10) of [3].

The element in the experimental procedure which contains the essential safeguard, is that the two modifications
of the test beverage are to be prepared “in random order”. . . . The phrase “random order” itself, however, must
be regarded as an incomplete instruction, standing as a kind of shorthand symbol for the full procedure of
randomization, by which the validity of the test of significance may be guaranteed against corruption by the
causes of disturbance which have not been eliminated.

Fisher says that randomization is what solves the problem of not being able to hold every single
factor other than the treatment condition constant. The only solution is to ensure that every treat-
ment allocation has an equal chance of occurring. Any other probability distribution on the treatment
assignments could introduce a confounding factor.

For example, suppose that in the diet experiment, a coin that yields a treatment assignment of
(ti , ci ) with probability 1/4 rather than 1/2 is used. Then this is clearly against the requirement spelt
out by Fisher, because for example, a treatment allocation with 15 (ci , ti )’s is more likely than one
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with 15 (ti , ci )’s. If the animals were kept in a pen divided into 30 cells in a 15 × 2 arrangement, it is
possible that the cells on the left obtained more sunlight and hence caused the animals to gain more
weight. This would make the control treatment look good, since more animals on the left would be
assigned that treatment.

The validity of the randomization test depends on the prerandomization being carried out properly,
which requires that all treatment assignments be equally likely. Granted, Fisher never explicitly stated
that when he said randomize, he meant for us to impose a uniform distribution on the treatment
allocations. However, even if he had made his intentions explicit, would Basu have let him so lightly?
We think not. Unless Fisher gave a sound mathematical argument as to why all treatment allocations
should be equally likely, Basu’s points would still be relevant and fair.

4 Final Thoughts

It is a tremendous joy to read Basu’s papers. He presents his view in such a convincing manner that one
almost feels ashamed at believing anything to the contrary. However, it is clear from the final sections
of [1] that he does not suffer terribly from tunnel vision; he dissects his own arguments and tries to
come up with explanations for possible criticisms of his points. It is also evident that he welcomes a
good debate. The discussions at the end of [2] provide ample evidence for this. The banter between
Basu and Kempthorne in particular, is fit for a comedy (be sure not to miss it!).

(Re-)Reading Basu’s papers, which combine an inimitable style of writing with impactful exam-
ples, is an educating, enlightening and entertaining experience. At best, we question our assumptions
and beliefs, which leads us to gain new insights into classical statistical concepts. At “worst”, we
embark on a journey to becoming Bayesian.
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Basu on Ancillarity

Philip Dawid

1 The origins of ancillarity

The term “ancillary statistic” was introduced by R. A. Fisher (Fisher 1925) in the context of maximum
likelihood estimation. Fisher regarded the likelihood function as embodying all the information that
the data had to supply about the unknown parameter. At a purely abstract level, this might be regarded
as simply an application of the sufficiency principle (SP), since as a function of the data the whole
likelihood function (modulo a positive constant factor — a gloss we shall henceforth take as read)
is minimal sufficient; but that principle says nothing about what we should do with the likelihood
function when we have it. Fisher went beyond this stark interpretation, regarding the actual form
of the likelihood function as itself somehow embodying the appropriate inference. In some cases,
such as full exponential families, the maximum likelihood estimator (MLE) is itself sufficient, fully
determining the whole course of the likelihood function; but more generally it is only in many-one
correspondence with the likehood function, so that two different sets of data can have associated
likelihood functions whose maxima are in same place, but nevertheless differ in shape. Initially, for
Fisher, an ancillary statistic (from the Latin “ancilla”, meaning handmaiden) denoted a quantity cal-
culated from the data which “lent support” to the MLE, by providing additional information about the
shape of the likelihood function, over and above the position of its maximum — for example, higher
derivatives of the log-likelihood at the MLE. If we regard the spikiness of the likelihood function
as telling us something about the (data-dependent) precision of the MLE, we might select a suitable
ancillary statistic to quantify this precision: this appears to have been Fisher’s original motivation.
According to this understanding of an ancillary statistic as describing the shape of the likelihood
function, it is necessarily a function of the minimal sufficient statistic. Ideally, the MLE together with
it handmaiden would fully determine the likelihood function, the pair then constituting a minimal
sufficient statistic.

Fisher (1934) then considered the working out of these general concepts in the special case of
a location model, where the MLE fully determines the location of the likelihood function, but is
entirely uninformative as to its its shape; while the configuration statistic, i.e., the set of pairwise
differences between the observations, constitutes an ancillary statistic, fully determining the shape
of the likelihood function, but uninformative about its location. For this model (though, for Fisher’s
original definition, not necessarily more generally) it is also true that the distribution of this ancillary
statistic is entirely independent of the value of the unknown location parameter; furthermore, the
conditional distribution of the maximum likelihood estimator, given the configuration, has a density
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that has the same shape as the likelihood function. At a certain point, Fisher decided that it was such
properties, rather than his original handmaiden conception, that were of crucial general importance,
and from that point on the word “ancillary” was used to mean “having a distribution independent
of the parameter”. Associated with this was the somewhat vague idea of a “conditionality principle”
(CP), whereby it is the conditional distribution of the data, given the ancillary statistic, that is regarded
as supplying the appropriate “frame of reference” for determining the precision of our estimate. As
a simple example lending support to this principle, suppose we first toss a fair coin, and then take
10 observations if it lands heads up, or 100 if it lands tails up. The coin toss does not depend upon
the parameter (it is ancillary in the revised sense, although not necessarily in the original sense),
and so cannot, of itself, be directly informative about it; but it does determine the precision of the
experiment subsequently performed, and it does seem eminently sensible to condition on the number
of observations actually taken to obtain a realistic measure of realised precision.

At an abstract level, CP can be phrased as requiring that any inference should be (or behave as
if it were) conducted in the frame of reference that conditions on the realised value of an ancillary
statistic. One can attempt to draw analogies between this CP and the sufficiency principle, SP, which
tells us that our inference should always be (or behave as if it were) based on a sufficient statistic.
But is important to note that in either case there may be a choice of statistics of the relevant kind, and
we would like to be able to apply the principle simultaneously for all such. Considering first the case
of sufficiency, suppose T1 is sufficient and, in accordance with SP, we are basing our inference on T1
alone. If now T1 is a function of T2, then T2 is also sufficient: but the property that our inference should
be based on T2 alone is automatically inherited from this property holding for the “smaller” statistic
T1, so we do not need to take any explicit steps to ensure this. In particular, if we can find a smallest
sufficient statistic T0, a function of any other sufficient statistic, then basing our inference on T0 will
automatically satisfy SP with respect to any choice of sufficient statistic. It is well known that, subject
only to mild regularity conditions, such a smallest (“minimal”) sufficient statistic can generally be
found. Hence it is pretty straightforward to satisfy SP simultaneously with respect to every sufficient
statistic: simply base inference on the minimal sufficient statistic.

The case of ancillarity appears very similar, though with the functional ordering reversed. Suppose
S1 is ancillary, and, in accordance with CP, we are basing inference on the conditional distribution
of the data, given S1. If now S2 is a function of S1, then S2 is also ancillary; and the property that
inference is conditioned on S2 is automatically inherited from this property holding for the “larger”
statistic S1. This analysis suggests that — in close analogy with the case of the minimal sufficient
statistic — we should aim to identify a largest ancillary statistic S0, of which every ancillary statistic
would be a function. Then conditioning on S0 would automatically satisfy CP, simultaneously with
respect to every choice of ancillary statistic.

2 Enter Basu

The above analysis appears unproblematic, and might be thought to make a compelling case for always
conditioning on the largest ancillary statistic — an apparently straightforward enterprise. But then
along comes Basu, and suddenly things are not so clear!

Basu presented theory and counter-examples to show that in general there is no unique largest
ancillary statistic, conditioning on which would allow us to apply the conditionality principle unam-
biguously. Typically there will be a multiplicity of ancillary statistics that are maximal, i.e., cannot be
expressed as a non-trivial function of any other ancillary; and in this case no single largest ancillary
can exist. Even in what would seem to be the simplest special case, of two independent observations
from the normal location model, having Xi ∼ N (θ, 1) (i = 1, 2), there is no largest ancillary: for
any c ∈ [−∞,+∞], the statistic Sc defined as X1 − X2 if X1 + X2 > c, X2 − X1 otherwise, is
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