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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but richness and relevance of applications and implementation de-
pend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental re-
lationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time–frequency analy-
sis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
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vi ANHA Series Preface

major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time–frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function”. Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodu-
lar trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time–frequency-scale methods such as wavelet the-
ory. The coherent states of mathematical physics are translated and modulated
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Fourier transforms, and these are used, in conjunction with the uncertainty principle,
for dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor
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Preface

This book is a collection of papers written or co-authored by participants in the
“Twenty Years of Wavelets” conference held at DePaul in May, 2009. The con-
ference attracted almost a hundred participants from five different countries over
three days. There were 13 plenary lectures and 16 contributed talks. The confer-
ence was envisioned to celebrate the twentieth anniversary of a one-day conference
on applied and computational harmonic analysis held at DePaul in May 1989 and
was organized by one of the editors, Jonathan Cohen. The 1989 DePaul conference
was scheduled to supplement a two-day special session of a regional AMS meeting
on computational harmonic analysis and approximation theory. Combined together,
the three days of talks may have been the first conference in the United States which
featured the subject of wavelets. Although the focus of that conference was com-
putational harmonic analysis, wavelet theory, which was in its infancy at the time,
played a central role in the three days of talks.

After two decades of extensive research activities, it was appropriate to pause
and have a look back at what had been accomplished and ponder what lay ahead.
This was exactly the aim of the 2009 conference. The conference had two sub-
themes, past and future. Some of the plenary speakers, including I. Daubechies
and J. Kovačević, gave expository and survey talks covering the history and ma-
jor accomplishments in the field and some speakers focused on new directions for
wavelets, especially in the area of geometric harmonic analysis.

All conference speakers were invited to submit papers related to the themes of
the conference. This was interpreted broadly to include articles in applied and com-
putational harmonic analysis. Though many of the articles are based on conference
presentations, this book was not envisioned as a proceedings and some of the arti-
cles represent material not presented at the conference. All the papers in this book
were anonymously refereed.

The book is divided into three parts. The first is devoted to the mathematical
theory of wavelets and features several papers on the geometry of sets and the de-
velopment of wavelet bases. The second part deals with the underlying geometry of
large data sets and how tools of harmonic analysis prove useful in extracting infor-
mation from them. The third part is devoted to exploring some ways that harmonic
analysis, and wavelet theory in particular, have been applied to study real-world
problems.

xi



xii Preface

The articles in this book are mostly written by mathematicians and are intended
for mathematicians and engineers with some background in Fourier analysis and
the theory of wavelets. The book should be accessible to workers in the field and to
graduate students with an interest in working in related areas.

We gratefully acknowledge the National Science Foundation, NSF Grant DMS-
0852170, and DePaul University, both of whom provided generous financial support
for the conference. We would also like to express our appreciation to the authors
for submitting their work and meeting the deadlines, to the referees for their help
and cooperation, and to Thomas Grasso, the science editor for Birkhäuser, for his
support throughout this project.

Finally, we note with sadness that one of the authors in this volume, Daryl Geller,
passed away in late January. He was a very fine mathematician who will be missed
by his colleagues and friends.

DePaul University, Chicago, Illinois Jonathan Cohen
February, 2011 Ahmed I. Zayed
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Chapter 1
An Introduction to Wavelets and Multiscale
Analysis: Theory and Applications

Ahmed I. Zayed

Abstract The purpose of this introductory chapter is to give the reader an overview
of the contents of the monograph and show how the chapters are tied together. We
give a brief description of each chapter but with emphasis on how the chapters fit
in the monograph and the general subject area. The descriptions are not meant to
replace, but to supplement, the chapters’ abstracts, which summarize the chapters’
main results.

1.1 Introduction

This monograph is broadly based on talks given at an international conference on
wavelets that was held at DePaul University, May 15–17, 2009, and was partially
supported by grants from the National Science Foundation and DePaul University
Research Council. The title of the conference was “Twenty Years of Wavelets” to
commemorate the twentieth anniversary of another conference on wavelets that was
held at the same university in 1989.

Since the introduction of wavelets in the early 1980s, the subject has under-
gone tremendous developments both on the theoretical and applied fronts. Myriads
of research and survey papers and monographs have been published on the sub-
ject covering different areas of applications, such as signal and image processing,
denoising, and data compression. This monograph not only contributes to this bur-
geoning subject, but also sheds light on new directions for wavelets, especially in the
area of geometric harmonic analysis which aims at developing harmonic analysis
techniques to deal with large data sets in high dimensions. This approach, which was
pioneered by R. Coifman and his team at Yale University, has shown very promising
results.

A.I. Zayed (�)
Department of Mathematical Sciences, DePaul University, Chicago, IL 60614, USA
e-mail: azayed@condor.depaul.edu

J. Cohen and A.I. Zayed (eds.), Wavelets and Multiscale Analysis: Theory
and Applications, Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-0-8176-8095-4 1, c© Springer Science+Business Media, LLC 2011
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2 A.I. Zayed

R. Coifman and some of his collaborators and former students have contributed
chapters to this book. These chapters may provide researchers and graduate students
an opportunity to learn about recent developments in the area of multiscale harmonic
analysis.

The purpose of this chapter is to give the reader an overview of the contents of
the monograph and show how the chapters are connected together. We assume that
the reader is familiar with the rudiments of wavelets and multiresolution analyses.
The book is divided into three parts: the first part is the Mathematical Theory of
Wavelets, the second is the Multiscale Analysis of Large Data Sets, and the third
is Applications of Wavelets. The chapters in the first part are grouped together by
common themes: wavelet sets and wavelet construction. Chapters 2 and 3 deal with
wavelet sets, while Chaps. 4–6 discuss the construction of wavelets in different set-
tings, such as wavelets on a torus, crystallographic composite dilation wavelets, and
vector-valued (multichannel) wavelets. The second part comprises chapters on mul-
tiscale analysis of large data sets. The chapters in part three discuss applications of
wavelets in three different fields: cosmology, atmospheric data analysis, and denois-
ing speech signals for digital hearing aids.

Admittedly, the boundaries between the three parts are rather subjective.
Chapter 12 would have also fit nicely in the first part of the book because it in-
troduces a wavelet construction on compact Riemannian manifolds; however, it is
placed in the third part because of the authors’ emphasis on the applications of their
work to cosmology.

The notation we use in this chapter is standard. We denote the sets of real num-
bers by R, the integers by Z, and the natural numbers by N. Recall that the standard
dyadic wavelets are functions of the form

ψm,n(x) = 2n/2ψ(2nx−m),m,n ∈ Z,x ∈R, (1.1)

that are generated from one single function ψ , called the mother wavelet, by
translation and dilation. More generally, if we denote the translation, dilation, and
modulation operators, respectively, by Tm,Dn,Ek where

Tm f (x) = f (x−m), Dn f (x) = 2n/2 f (2nx), Ek f (x) = ei<k,x> f (x),

where x ∈ R
d ,m,k ∈ Z

d ,n ∈ Z, then the wavelet and Gabor systems on R
d can be

written, respectively, as

ψm,n(x) = DnTmψ(x), gm,n(x) = EkTmg(x).

A more general form of wavelets in R
d is given by

(
ψ A

j

)
m,n

(x) = |detA|n/2ψ j(Anx−m), (1.2)

where A is a real expansive d×d invertible matrix and j = 1, . . . ,J, n ∈ Z, m ∈ Z
d .
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A multiresolution analysis of L2(R) consists of a nested sequence of closed
subspaces {Vn}∞

n=−∞ of L2(R) and a function φ ∈ V0, called the scaling function,
such that

(1) . . .⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . . .
(2)

⋃∞
i=−∞ Vi is dense in L2(R).

(3)
⋂∞

i=−∞ Vi = {0}.
(4) f (x) ∈V0 ⇔ f (2 jx) ∈Vj.
(5) {Tnφ(x) = φ(x−n)}∞

n=−∞ is an orthonormal (Riesz) basis for V0.

It is well known that given a multiresolution analysis, one can construct an
orthonormal wavelet basis of L2(R).

1.1.1 Mathematical Theory of Wavelets

The construction of dyadic orthonormal wavelet bases in L2(R) hinges on the
construction of the mother wavelet ψ . The pioneering work of Y. Meyer and
S. Mallat [5, 6] gave an algorithm for constructing the mother wavelet in the setting
of multiresolution analysis (MRA). However, not every wavelet is generated from a
multiresolution analysis as J. Journé in 1992 demonstrated by his celebrated exam-
ple of a non-MRA wavelet basis for L2(R); see [3, p. 136]. In higher dimensions,
the construction of orthonormal wavelet bases was more elusive. The most common
construction of an orthonormal wavelet basis came from the theory of multiresolu-
tion analysis (MRA) which requires 2d−1 functions ψ j, j = 1, ...,2d−1, to generate
the resulting orthonormal basis (ONB), (ψ j)m,n, of L2(Rd); see [6, p. 90].

For some time there was doubt about the existence of a single dyadic orthonor-
mal wavelet basis for R

d ,d > 1. The work of Dai, Larson, and Speegle [1, 2] on
operator theory proved the existence of such wavelets in L2(Rd),d > 1. Their proof
used the notion of wavelet sets and operator algebra methods. It turned out that the
Fourier transform of such a mother wavelet ψ is the characteristic function χΩ of a
measurable set Ω , which is called a wavelet set.

The construction of such a wavelet set is not obvious, but it is necessary that
its translates by Z

d provide a tiling of R
d . In fact, it is known that if E ⊂ R is a

measurable set, then E is a wavelet set if and only if E is both a 2-dilation generator
(modulo null sets) of a partition of R and a 2π-translation generator (modulo null
sets) of a partition of R. The simplest example of a wavelet set is given by the
Shannon’s wavelet ψ whose Fourier transform ψ̂ = χE , where E = [−2π ,−π)∪
[π ,2π). The structure of wavelet sets in higher dimensions is much more intricate.

In Chap. 2, John Benedetto and his son Robert give a general method for con-
structing single dyadic wavelets, which generate wavelet orthonormal bases (ONBs)
for the space of square-integrable functions in two important antipodal cases. These
cases are L2(Rd), where R

d is the d-dimensional Euclidean space, and L2(G),
where G belongs to the class of locally compact Abelian groups (LCAGs) which
contain a compact open subgroup. The wavelets they construct are not derived from
any MRA.
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In the first five sections, the authors discuss the geometry and construction of
Euclidean wavelet sets and then proceed to extend their results to the non-Euclidean
cases, such as locally compact Abelian groups and p-adic fields, Qp, of p-adic
rationals. One of the salient features of this well written chapter is that it is almost
self contained. The authors give a historical account of the subject, as well as the
needed definitions and mathematical tools.

It is a well known fact that if ψ is an orthonormal wavelet, i.e., it generates
an orthonormal wavelet basis in L2(R), then ∑k |ψ̂(ω + 2πk)|2 = 1, and hence
|ψ̂(ω)| ≤ 1. Furthermore,

2π =
∫

R

|ψ̂(ω)|2dω =
∫

E
|ψ̂(ω)|2dω ≤ |E| ≤ |E|= |supp ψ̂ |,

where E = {ω : ψ̂(ω) �= 0} and E is the closure of E. Thus, the minimal measure
of the support of the Fourier transform of a wavelet ψ is 2π and clearly the support
of the Fourier transform of ψ possesses the minimal measure if and only if

|ψ̂ |= χE and |E|= |E|= 2π ,

where χE is the characteristic function of E. Recall that in the latter case, where the
Fourier transform of ψ is the a characteristic function of a set E, the set E is called
a wavelet set. Many wavelet sets have been constructed where E is a finite union
of intervals. Of course, in these cases |E| = |E| = 2π and even in the known cases
where E is a union of infinitely many intervals, still |E| = |E| = 2π . Hence, this
raises the question of whether there exists a wavelet set E∗ such that |E∗| > |E∗|=
2π . In Chap. 3, Z. Zhang answers this question in the affirmative. He also answers
the same question for the scaling function of the associated multiresolution analysis.

One of the key elements in the construction of a multiresolution analysis is the
notion of shift-invariant spaces and the nested sequence of subspaces generated from
them by dilation. These ideas are extended by K. Hoover and B. Johnson in Chap. 4
to construct a multiresolution analysis and hence a finite-dimensional system of
orthonormal wavelets in L2(T), where T is the torus. In this setting, dilation and
translation have different meanings. The dilation operation is achieved through a
matrix A, called the Quincunx dilation matrix

A =
(

1 −1
1 1

)
;

see (1.2), while translation is considered over a discrete subgroup of T
2. More pre-

cisely, for a fixed integer j > 0, a lattice, Γj of order 2 j generated by A is a collection
of 2 j distinct coset representatives of A− j

Z
2/Z

2. The translation operators are gen-
erated by elements of Γj. A shift-invariant space is defined as a space that consists
of functions in L2(T2) that are invariant under translation by elements of Γj. Having
introduced the basic tools for shift-invariant spaces, the authors go on to construct
a MRA of order 2 j consisting of closed subspaces {Vk} j

k=0 of L2(T2) satisfying



1 An Introduction to Wavelets and Multiscale Analysis: Theory and Applications 5

similar properties to those of the standard MRA, such as the nested sequence
property and the existence of a scaling function. They conclude their work by giving
examples of wavelet systems on the torus that are analogs of the Shannon and Haar
wavelets.

Another type of wavelets, called crystallographic Haar-type composite dilation
wavelets, is discussed in Chap. 5 by J. Blanchard and K. Steffen. These wavelets are
composite dilation wavelets which arise from crystallographic groups and are linear
combinations of characteristic functions. To briefly explain some of the terminology,
let GLd(R) be the group of d× d invertible matrices. For any A ∈ GLd(R), define
the dilation by (1.2). A full rank lattice Γ is a subset of R

d with the property that
there exists A∈GLd(R), such that Γ = AZ

d . A group of invertible matrices G and a
full rank lattice Γ are said to satisfy the crystallographic condition if Γ is invariant
under the action of G, i.e. G(Γ ) = Γ . The translation of f by k ∈ Γ is defined as
usual by Tk f (x) = f (x− k). With these two unitary operators, an affine system,

UC,Γ =
{

DcTkψ�(x) : c ∈C,k ∈ Γ , � = l, . . . ,L
}

,

is constructed from a countable set of invertible matrices, C ⊂ GLd(R), a full rank
lattice Γ , and a set of generating functions, Ψ(x) = (ψ1, . . . ,ψL) ⊂ L2(Rd). An
affine system with composite dilations are obtained when C = AB is the product of
two subsets of invertible matrices A and B.

In this chapter, it is assumed that A =
{

a j : j ∈ Z
}

is a group generated by integer
powers of an expanding matrix, a, and B is a subgroup of invertible matrices so that
the affine system is in the form

Ua,B,Γ (Ψ) =
{

D j
aDbTkψ� : j ∈ Z,b ∈ B,k ∈ Γ ,1 ≤ �≤ L

}
.

The system of functions Ψ = (ψ1, . . . ,ψL)⊂ L2(Rd) is called a composite dilation
wavelet if Ua,B,Γ (Ψ) is an orthonormal basis of L2(Rd).

When B = Id, where Id is the identity matrix, we obtain the standard multiwavelet
definition, and when d = 1,Γ = Z, and a = 2, we obtain the standard dyadic
wavelets. The authors discuss examples of Haar-type composite dilation wavelets
that were introduced in [4] by Krishtal, Robinson, Weiss, and Wilson under the as-
sumptions: (a) B is a finite group and (b) the lattice Γ is invariant under the action
of B, i.e., B(Γ ) = Γ . It is shown that assumption (b) implies assumption (a), i.e., B
must be a finite group in a Haar-type composite dilation wavelet system. Assump-
tion (b) is the crystallographic condition. The authors develop a systematic way to
construct crystallographic Haar-type composite dilation wavelets for L2(Rd) and
then discuss in more details, with examples, the construction for L2(R2).

Chapter 6 by C. Conti and M. Cotronei deals with the construction of wavelets
for the analysis of vector-valued functions. Such functions arise naturally in many
applications where the data to be processed are samples of vector-valued functions.
Multichannel signals, or vector-valued signals whose components come from differ-
ent sources with possible intrinsic correlations, such as brain activity (EEG/MEG)
data or colored images, may exhibit a high correlation which can be revealed and
exploited by what is called multichannel wavelet analysis.
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The most common signal processing technique to handle vector-valued data
is to deal with the signal’s components one by one and thus ignoring possible
relationships between some components. The standard scalar wavelet analysis,
including multiwavelets, does not take into account the correlations among compo-
nents. Recently, matrix wavelets, multichannel wavelets (MCW), and multichannel
multiresolution analyses (MCMRA) have been proposed for the analysis of matrix-
valued and vector-valued signals. An underlying concept in these different schemes
is the existence of a matrix refinable function which satisfies the so-called full rank
condition.

To explain some of the terminology, let r,s ∈N, and A ∈R
r×s be an r× s matrix.

Let A = (A j ∈R
r×s, j ∈ Z) be a bi-infinite sequence of such matrices such that

‖A ‖2 =

(

∑
j∈Z

|A j|22
)1/2

< ∞,

where |.|2 denotes the standard �2 norm of r× s matrices. Let Lr×s
2 (R) denote the

Banach space of r× s matrix-valued functions on R with components in L2(R)
and norm

‖F‖2 =

(
s

∑
k=1

r

∑
j=1

∫

R

|Fj,k(x)|2dx

)1/2

.

For a matrix function F and a matrix sequence A , the convolution ∗ is defined as

F ∗A = ∑
k∈Z

F(·− k)Ak .

Fix a matrix sequence A = (A j ∈ R
r×r, j ∈ Z) and for any bi-infinite vector se-

quence c = (c j ∈R
r, j ∈ Z) define the vector subdivision operator SA based on the

matrix mask A , as

SA (c) =

(

∑
k∈Z

A j−2kck, j ∈ Z

)

.

A vector subdivision scheme is defined inductively as

c0 = c, cn = SA (cn−1).

A multichannel multiresolution analysis (MCMRA) in the space Lr
2(R) of square

integrable vector-valued functions can be defined as a nested sequence · · ·V−1 ⊂
V0 ⊂ V1 ⊂ ·· · of closed subspaces of Lr

2(R) with similar properties to those in the
scalar case, but in which the role of the scaling function φ is now replaced by a
vector function so that the space V0 is generated by the integer translates of r func-
tion vectors, f i. That is, there exist f i = ( f i

1, . . . , f i
r) ∈ Lr

2(R), i = 1, ..,r, so that any
h ∈ V0 can be written as h = F ∗ c, where F = ( f 1, . . . , f r) ∈ Lr×r

2 (R) and c = (ck).
The matrix F is called the matrix scaling function and it is required that F be stable,
i.e., there exist K1,K2 such that
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K1 ‖c‖2 ≤ ‖F ∗ c‖2 ≤ K2 ‖c‖2 .

It is shown that the subspaces Vj form a MCMRA if there exists a full rank stable
matrix refinable function F ∈ Lr×r

2 (R) such that

Vj =
{

F ∗ c(2 j·)} , j ∈ Z.

The reader who is familiar with MRA can now see the analogy with the scalar case
and how one can associate a matrix wavelet to any orthogonal MCMRA.

In addition, the authors investigate full rank interpolatory schemes and show their
connection to matrix refinable functions and multichannel wavelets. They show how
to solve matrix quadrature mirror filter equations and give a constructive scheme that
uses spectral factorization techniques and a matrix completion algorithm based on
the solution of generalized Bezout identities.

In Chap. 7, D. Han and D. Larson use operator algebra techniques to study, in
a unified way, wavelet and Gabor frames, or more generally, Bessel wavelets and
Gabor–Bessel sets.

Recall that a sequence of vectors {xn} in a separable infinite dimensional Hilbert
space H is said to be a frame if there exist A,B > 0 such that for all x ∈H , we
have

A‖x‖2 ≤∑
n
|〈x,xn〉|2 ≤ B‖x‖2 .

If only the right-hand inequality holds, the sequence is called a Bessel Sequence.
A unitary system U is a set of unitary operators containing the identity operator I
and acting on the Hilbert space H . A vector x ∈H is called complete wandering
vector (respectively frame generator vector, or Bessel generator vector) for U if

U x = {Ux : U ∈U }
is an orthonormal basis (respectively a frame, or a Bessel sequence). A bounded
linear operator A on H that maps every frame (Bessel) generator for U to a frame
(Bessel) generator for U is called a frame (Bessel) generator multiplier.

In this chapter, the authors characterize some special Bessel generator multipliers
for unitary systems that are ordered products of two unitary groups. This includes
the wavelet and the Gabor unitary systems since wavelets can be viewed as being
generated by an ordered product {DnTm} of two unitary groups, the dilation group
{Dn} and the translation group {Tk}, and acting on a separable infinite dimensional
Hilbert space L2(Rd). In the Gabor theory, the groups are the modulation group
{Ek} and the translation group {Tk}.

The authors point out that one can gain much additional perspective on wavelets
and frame wavelets if one views them as special cases of Bessel wavelets. One rea-
son for this is that, unlike the sets of wavelets and frame wavelets, the set of Bessel
wavelets is a linear space. Some new results for wavelets and frame wavelets, as well
as, some new proofs of previously known results, are obtained as special cases of
the Bessel wavelet case. The same can be said about Gabor–Bessel generators. The
chapter provides a detailed exposition of part of the history leading up to this work.
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With the advent of wavelets and multiresolution analyses, shift-invariant spaces
have become the focus of many research papers. Sampling spaces are special cases
of shift-invariant spaces and they may be defined as

V =

{

f : f ∈ L2(R), f (x) = ∑
k

f (tk)φ(x− tk), φ ∈ L2(R)

}

,

where {tk} is an increasing sequence of real numbers such that limk→−∞ tk = −∞,
limk→∞ tk = ∞, and 0 < δ ≤ |tk+1− tk|, and {φ(x− tk)} is a frame, or Riesz basis,
or an orthonormal basis in L2(R). In most cases of interest, tk = k ∈ Z, and in this
case the prototype is the Paley–Wiener space of functions f bandlimited to [−π ,π ]
and which have the representation

f (x) = ∑
k

f (k)
sin π(x− k)

π(x− k)
= ∑

k

f (k)φ(x− k),

where φ(x) = sinc x = sinπx/πx.
An important tool in the study of sampling spaces is the Zak transform, which is

defined for f ∈ L2(R) by

(Z f )(x,w) = ∑
k∈Z

f (x + k)e−2π ikw, f ∈ L2(R). (1.3)

In the last chapter of Part I, E. Hernández, H. Šikić, G. Weiss, and E. Wilson give a
new insight into the Zak transform and its properties. Let φ(x,w) denote the function
given by (1.3) and M be the space of all such functions. It is easy to see that φ is
periodic in w with period one and that

φ(x + �,w) = e2π i�wφ(x,w), � ∈ Z.

Moreover, it is known that φ ∈ L2
(
T 2
)
, where T = [−1/2,1/2) and that the linear

operator Z maps L2(R) isometrically onto M.
Let us define φ̃ ∈ L2

(
T 2
)

by

φ̃(x,w) = ∑
k∈Z

f (w+ k)e2π ikx,

and denote the space of all such functions by M̃. It is easy to see that φ̃ is periodic
in x with period one and φ̃(x,w + �) = e−2π i�xφ̃(x,w). The authors introduce the
unitary map

(Uφ)(x,w) = e−2π ixwφ(x,w)

on M, and also the Zak-like transform Z̃ by

(Z̃g)(x,w) = ∑
�∈Z

g(w+ �)e2π i�x = φ̃(x,w), g ∈ L2(R).
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It is shown that
Z̃−1UZ f = f̂ , Z−1U∗Z̃g = ǧ,

where f̂ denotes the Fourier transform of f and ǧ denotes the inverse Fourier trans-
form of g. The authors also show how to use the Zak transform to obtain elementary
proofs of some results in harmonic analysis, including the Plancherel theorem and
the Shannon sampling theorem.

1.1.2 Multiscale Analysis of Large Data Sets

R. Coifman and M. Gavish in Chap. 9 introduce digital data bases represented by
data matrices M using harmonic analysis techniques. The prototype matrix M, is
a data matrix whose set of columns X may be interpreted as observations or data
points and set of rows Y may be interpreted as variables measured on the data points.
The classical tools of multivariate statistics do not apply well in this case because
one of the basic assumptions in multivariate statistics, namely, that the observations
are independent and identically distributed, is no longer valid because, in general,
correlations exist among the rows and columns. In this work, the authors propose
another approach using harmonic analysis technique.

The authors first introduce the notion of a geometry and a Haar-like orthonormal
basis on an abstract set, such as a set of observations. They then proceed to construct
two coupled geometries on the rows and columns of the data matrices, which is
called the coupled geometry of the matrix M. The coupled geometry is constructed
using what the authors call a partition tree.

Guided by a classical result of J. O. Strömberg [7] that the tensor product of
Haar bases is very efficient in representing functions on product spaces, the authors
construct a Haar-like basis on X and Y, denoted by ψi and φ j, and then show that the
tensor basis

{
ψi×φ j

}
is an efficient basis of M. The Haar-like basis is a multiscale,

localized orthonormal basis induced by a partition tree. Once a coupled geometry
that is compatible with the matrix is obtained, the data matrix is expanded in the
tensor-Haar basis and the data set is processed in the coefficient domain. It is shown
that �p entropy conditions on the expansion coefficients of the database, viewed as
a function on the product of the geometries, imply both smoothness and efficient
reconstruction.

The authors describe how a tensor-Haar basis, induced by a coupled geometry
that is compatible with the data matrix, can be used to perform compression, as well
as, statistical tasks such as denoising and learning on the data matrix. They illustrate
their technique for finding the coupled geometry of matrix rows and columns by
giving two examples; the first example involves potential interaction between two
point clouds in three dimensions and the second involves organizing a matrix whose
rows are samples of some manifold Laplacian eigenfunctions.

As an interesting concrete example of data analysis using the general procedure
described above, the authors consider a term-document data matrix. The documents
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are abstracts of 1,047 articles obtained from the Science News journal website of
different fields. One thousand words with the highest correlation to article subject
classification are selected so that the Mi, j entry of the data matrix M is the rel-
ative frequency of the ith word in the jth document, i = 1, . . .1,000 and j = 1,
=1. . . 1,024.

Chapter 10 by G. Chen, A. Little, M. Maggioni, and L. Rosasco, reports on some
advances in multiscale geometric analysis for the study of large data sets that lie in
high dimensional spaces but are confined to low-dimensional nonlinear manifolds.
Symbolically, the data sets lie on a d-dimensional nonlinear manifold M embedded
in a high dimensional space R

D and are corrupted by high-dimensional noise.
The data sets are represented as discrete sets in R

D, where D can be as large as
106. Unlike classical statistics, which deals with large data sets of size n in a space
of fixed dimension D, with at least n 2D, in the case under consideration here we
have n of the same order as D, and oftentimes n < D.

One of the statistical tools used to analyze data sets is the Principle Component
Analysis (PCA) which is based on the Singular Value Decomposition (SVD). Recall
that if X is an n×D matrix, it can be decomposed as X =UYVt , where U ∈R

n×n and
V ∈R

D×D are orthogonal and Y ∈R
n×D, is diagonal and semi positivedefinite. The

diagonal elements {λi} of Y are called singular values and are ordered in decreasing
order of magnitude and called the SVD of X . The first d columns of V provide the
d-dimensional least square fit to X . If the rows {xi} of X represent n data points in
R

D, and lie on a bounded domain in a d-dimensional linear subspace of R
D, then

the SVD method may be applied.
However, in this chapter, the authors focus on the case where the data lie on

a non-linear d-dimensional manifold M in R
D with d � D, and where the SVD

method does not work. They propose a new technique based on what they call ge-
ometric wavelets which aims at efficiently representing the data. Essentially, the
authors construct a data-dependent dictionary with I elements using multiscale
geometric analysis of the data such that every element in the data set may be repre-
sented, up to a certain precision ε, by m elements of the dictionary. The elements of
the dictionary are called geometric wavelets. They share some similarities with the
standard wavelets, but they are quite different from them in crucial ways. Geomet-
ric wavelets are not based on dilation and translation and their multiscale analysis
is nonlinear. The authors develop fast but nonlinear algorithms for computing a fast
geometric wavelet transform and discuss the problem of estimating the intrinsic di-
mension of a point cloud and give different examples to illustrate their techniques.

The last chapter that deals with data in high-dimensional spaces is Chap. 11 by
Lieu and Saito. Many problems in pattern recognition often require comparison
between ensembles of signals (i.e., points in a high-dimensional space) instead of
comparing individual signals. Let

Xi =
{

xi
1, . . . ,x

i
mi

}
,

where xi
j is a signal or a vector in R

d . The set Xi is called a training ensemble, which
is assumed to have a unique label among C possible labels, and mi is the number
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of signals in the ensemble Xi. The collection of ensembles X = ∪M
i=1Xi ⊂ R

d is
called a collection of M training ensembles. Let Y = ∪N

j=1Y
j ⊂R

d be a collection

of test ensembles, where Y j =
{

Y j
1 , . . . ,Y j

n j

}
is the jth test ensemble of n j signals.

The goal is to classify each Y j to one of the possible C classes given the training
ensembles X. The authors propose an algorithm for doing just that.

The proposed algorithm consists of two main steps. The first step performs the di-
mensionality reduction without losing important features of the training ensembles,
followed by constructing a compact representation, called a signature, that repre-
sents an essence of the ensemble in the reduced space. The second step embeds a
given test ensemble into the reduced space obtained in the first step followed by
classifying it to the label of the training ensemble whose signature is most similar
to that of the test ensemble. How to define the similarity or the distance measure
between signatures is the key issue discussed in this work.

For the first step the authors try to find an effective low-dimensional represen-
tation of the data. The most well-known linear embedding techniques are Principal
Component Analysis (PCA) and Multidimensional Scaling (MDS). More recently,
many nonlinear methods for dimensionality reduction, such as Laplacian eigenmaps
and diffusion maps, have been proposed in order to improve the shortcomings of
PCA/MDS. The authors compare the performance of these reduction methods and
then propose an algorithm that extends a given test ensemble into the trained em-
bedding space. They then measure the distance between the test ensemble and each
training ensemble in that space, and classify it using the nearest neighbor method.
The label of the training ensemble whose signature is closest to that of a given test
ensemble is assigned to it. This raises the question of how you define the distance
measure for the nearest neighbor classifier. There are many such measures for com-
paring two given signatures, such as the usual Euclidean distance. But the most
robust one the authors choose is the so-called Earth Mover’s Distance (EMD).

The chapter is concluded by describing the results of numerical experiments on
two real data sets to illustrate how the proposed algorithm can be applied in practice.
The first experiment is on underwater object classification using acoustic signals
and the second is on a lip-reading problem, whose objective is to train a machine to
automatically recognize the spoken words from the movements of the lips captured
on silent video segments (no sound is involved).

1.1.3 Wavelet Applications

The third part of the monograph is dedicated to wavelets applications. Some of the
applications are based on the continuous wavelet transform and its generalizations.
Recall that the continuous wavelet transform of a function f ∈ L2(R) is defined as

Wψ [ f ](a,b) =
1

√|a|
∫

R

f (x)ψ
(

x−b
a

)
dx, a,b ∈ R, a �= 0,
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where ψ is the mother wavelet which is assumed to satisfy the admissibility
condition

∫

R

|ψ̂(ω)|2
|ω | dω < ∞. (1.4)

Spherical harmonics have been, for a long time, the main tool for analyzing
functions on spheres but in recent years spherical wavelets have become a com-
peting tool. Chapter 12 by D. Geller and A. Mayeli deals with the construction of
wavelets on a smooth compact (connected) Riemannian manifold M, of dimension
n, in particular, on spheres. They first show how to construct nearly tight frames
that are well-localized both in frequency and space on M and then introduce what
they call spin wavelets. They then apply their construction to the analysis of cosmic
microwave background radiation (CMB).

Starting with an appropriately chosen mother wavelet on the real line and replac-
ing the scale parameter in the associated continuous wavelet transform by a positive
self-adjoint operator T on L2(M), an analogue of the wavelet transform can be de-
fined. Since the transition from the real line to compact Riemannian manifolds is
not very obvious, we will sketch the procedure.

From (1.4), we obtain for a suitable smooth function h with h(0) = 0

0 <

∫ ∞

0

|h(t)|2
t

dt = c < ∞,

which implies that for all ξ > 0
∫ ∞

0
|h(tξ )|2 dt

t
= c < ∞. (1.5)

Standard discretization of this formula yields for a > 1,ξ > 0 (see [3, p. 69])

0 < Aa ≤ ∑
j∈Z

∣
∣h(a2 jξ )

∣
∣2 ≤ Ba < ∞.

Now, let h(ξ ) = ξ 2e−ξ 2
, so that ψ = ȟ is a constant multiple of the Mexican hat

function. By multiplying (1.5) by |F(ξ )|2, where F is a square integrable function
and integrating with respect to ξ , we have

∫

R

‖F ∗ψt‖2
2

dt
t

= c‖F‖2
2 ,

where ψt(x) = (1/t)ψ(x/t). The authors show that by discretizing the last integral,
one obtains

A‖F‖2
2 ≤∑

∣
∣〈F,φ j,k〉

∣
∣2 ≤ B‖F‖2

2 ,

where

φ j,k =
√

ba jψa j

(
x−bka j) ,

for sufficiently small b and a sufficiently close to 1.
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Replacing ξ in (1.5) by a positive self-adjoint operator T on a Hilbert space H ,
the authors show that

∫ ∞

0
|h|2(tT )

dt
t

= c(I−P),

and

Aa (I−P)≤ ∑
j∈Z

|h|2(a2 jT )≤ Ba (I−P) ,

where P is the projection onto the null space of T, I is the identity operator, Aα and
Bα are constants.

As a special case, take T =−d2/dx2 on the real line, so that

[
h(t2T )F

]
(x) =

∫

R

Kt(x,y)F(y)dy, F ∈ L2,

where Kt (x,y) = ψt(x− y). On a smooth compact (connected) Riemannian man-
ifold M, T is taken as the Laplace–Beltrami operator. A wavelet theory can now
be developed for L2(M). A characterization of the Besov spaces using the frames
constructed earlier can be obtained. The authors proceed to introduce what they call
spin wavelets on the sphere and discuss their applications.

One of the most interesting features of this work is its applications to physics, in
particular, to cosmic microwave background radiation (CMB), which was emitted
after the Big Bang and is regarded as one of the pieces of evidence for the Big Bang
theory. In this application, spherical wavelets seem to work better than spherical
harmonics since the former are well-localized.

P. Fisher and K. Tung in Chap. 13 present two applications of wavelets as a
numerical tool for atmospheric data analysis. In the first application, they use the
continuous wavelet transform to determine the local Quasi-Biennial Oscillation
(QBO) period, which is a dominant oscillation of the equatorial stratospheric zonal
wind. The period is irregular but averages to about 28 months. Because the contin-
uous wavelet transform can determine the local intrinsic period of an oscillation, it
gives a more objective method for calculating the period of the QBO than previously
used subjective methods.

The second application employs a wavelet-based multifractal formalism to an-
alyze multifractal signals and find their singularity spectra. The authors apply the
wavelet-based multifractal approach to the analysis of two sets of atmospheric data.

In the last chapter of the monograph, N. Whitmal, J. Rutledge, and J. Cohen,
present a wavelet based approach for denoising speech signals for digital hearing
aids. They describe an algorithm to remove background noise from noisy speech
signals for use in digital hearing aids. The algorithm, which is based on wavelets
and wavelet packets, was the result of a series of successive experiments in which
the algorithm was adjusted to overcome a number of problems, such as the selection
of a basis that best distinguishes noise from speech and the choice of the optimal
number of coefficients from which the denoised signal can be constructed. Exper-
iments performed at a computer lab in the Northwestern University Department of
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Electrical Engineering and Computer Science showed, via spectrograms and tables
of signal to noise ratios, that their method provided better noise reduction than spec-
tral subtraction or other subspace methods. Testing on hearing impaired subjects,
however, yielded intelligibility results comparable with other methods. Subsequent
research revealed, both theoretically and experimentally, that subspace methods that
involve hard thresholding produce effects on normal hearing listeners that are simi-
lar to recruitment of loudness, a common hearing disorder.
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