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Preface

After spinal cord injury in humans severed axons do not regrow. This causes per-

manent functional deficits, such as loss of sensation and paralysis. These devastat-

ing consequences of spinal cord injury have long been thought to be incurable,

but this pessimistic view is changing. Over the last decade we have gained a much

better insight into the environmental and neuron-intrinsic factors that prevent axon

regrowth in the central nervous system (CNS) of mammals. Progress in experi-

mentally eliciting some axon regrowth in mammals is currently leading to thera-

peutic strategies. In the light of these encouraging findings, it is important to ad-

dress further challenges for functional regeneration. Namely, we may ask how axon

regrowth can be made even more robust, what the targets are that regrowing axons

have to contact, how axons manage to grow there and how reconnections can lead

to functional recovery. These aspects of spinal cord regeneration are difficult to

study in mammals that do not normally regenerate their spinal cord and in vitro

analyses cannot mimic the complex spinal network. There are, however, other ver-

tebrate model systems that share many basic features of connectivity in the spinal

cord with mammals and show robust axon regrowth and functional recovery, such

as fish and amphibians. By comparing the mammalian situation, in which en-

hancement of axon growth seems to be feasible now, with that in functionally re-

generating vertebrates, we may learn which mechanisms are important for func-

tional recovery. For these reasons, this volume aims in its first part to give a

comprehensive view over the state of the art in research into spinal cord injury in

mammals in 2006. The second part is to increase our understanding of the spinal-

intrinsic circuitry, the target of regenerating axons. The third part demonstrates

how diverse non-mammalian regenerating model systems contribute to our under-

standing of spinal cord regeneration. Finally, in the fourth part non-mammalian

models of optic nerve regeneration are discussed, because this popular and acces-

sible system is likely to yield insights into CNS regeneration that is also relevant

for the spinal cord.

In the first part of the book Pat Anderson, Jez Fabes and David Hunt (Chapter 1)
are illuminating recent findings on the array of molecules in the environment of

the lesioned CNS of mammals that are inhibitory to axon regrowth. In a comple-

mentary review Ferdinando Rossi (Chapter 2) gives a current account of the factors

intrinsic to neurons that prevent vigorous axon regrowth. Bhavna Ylera and Frank

XV



Bradke (Chapter 3) show us how the neuron-intrinsic response of axotomized neu-

rons can be enhanced in mammals. Richard Benton and Scott Whittemore (Chapter
4) report how the inhibitory environment in the CNS can be replaced by more con-

ducive and growth promoting cellular substrates including promising stem cell ap-

proaches. They finish the part on mammalian regeneration research by critically

discussing the latest clinical trials.

Stan Grillner and Peter Wallén (Chapter 5) begin the second part by describing

the spinal-intrinsic neuronal network that produces locomotion-related patterns of

activity, the so-called central pattern generator of locomotion, in the lamprey. This

jawless vertebrate possesses a simple, yet typical vertebrate spinal network and

the authors show us how mathematical modeling increases our understanding of

the activity in this network. Anna Vallstedt and Klas Kullander (Chapter 6) then de-

scribe genetic techniques in mice that are currently being used to improve our sur-

prisingly small knowledge of the central pattern generator in mammals. The spinal

central pattern generator is a target for regenerating descending axons. Agustin
Gonzáles and Hans ten Donkelaar (Chapter 7) point out how major descending

tracts are evolutionarily conserved between non-mammalian vertebrates and mam-

mals. This adds to the significance of findings from non-mammalian vertebrates

for regeneration research.

In the third part Michael Shifman, Li-Quing and Michael Selzer (Chapter 8) dem-

onstrate the power of the lamprey system to understand spinal cord regeneration

at the level of individually identifiable neurons. The zebrafish is an important

model organisms for developmental biology. Joe Fetcho, Dimple Bhatt and Steven
Zottoli (Chapter 9) continue to show that regeneration can be experimentally aug-

mented in larval zebrafish and the process of axon regrowth can be visualized in

the living larva. We show in our own contribution (Chapter 10) that specific genes

expressed during spinal cord regeneration in adult zebrafish can be directly manip-

ulated, which leads to alterations in behavioural recovery. Thus the importance

of individual molecules for the regenerative outcome can be tested in fish model

systems.

In the third part we compiled contributions on regeneration in the optic system

of non-mammalian vertebrates, which provides the researcher with a relatively ho-

mogeneous population of neurons, i.e. retinal ganglion cells, that is readily acces-

sible and easily lesioned by an optic nerve crush. Sarah Dunlop (Chapter 11) shows

how regenerative capacity for this cell type varies across vertebrate classes from full

functional regeneration in fish via axon regrowth without recovery of function in

reptiles to no axon regrowth in mammals. Saturo Kato, Yoshiki Koriyama, Tori Mat-
sukawa and Kayo Sugitani (Chapter 12) demonstrate how the optic system in gold-

fish can be used to find new regeneration-associated genes and how the function of

these genes can be tested in vivo and in vitro. Finally, Marie-Claude Senut, Blake
Fausett, Matthew Veldman and Daniel Goldman (Chapter 13) show how promoter

analysis of regeneration-associated genes can be performed in transgenic zebrafish

and new regeneration-associated genes can be discovered by gene array analysis.

Many of the genes activated in regenerating retinal ganglion cells in fish are also

upregulated in regenerating mammalian neurons. Therefore, there is a justified
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hope that some of the regeneration-associated genes discovered in gold- and zebra-

fish are part of a general regeneration program in vertebrates.

Secondary neuron loss around a spinal lesion site in mammals is significant and

thought to exacerbate the condition. These neurons are usually not replaced. Trans-

genic fish used by Senut et al. also shed light on gene activation during lesion-

induced stem cell proliferation in the CNS of zebrafish, indicating a mechanism

by which damaged neurons may be replaced. Salamanders are even able to regen-

erate the entire spinal cord during tail regeneration. Thus, the analysis of stem cell

proliferation and functional integration of newly generated neurons in fish and

amphibians may lead to ways to activate similar mechanisms in mammals.

Overall, there is an enormous increase in the number of findings on spinal cord

regeneration both from mammalian and non-mammalian systems. Bringing to-

gether insights from different vertebrate classes from the molecular to systems

level offers an opportunity to identify the critical steps necessary for successful re-

generation of highly complex spinal functions. We hope that this book gives an up

to date introduction into the many facets of CNS regeneration research for stu-

dents and provides specialists in the field with a useful entry point to comparative

analysis.

We thank Dr. Andreas Sendtko from Wiley-VCH for his initiative and highly pro-

fessional management of the volume and all the authors for their captivating con-

tributions and excellent cooperation.

Edinburgh, October 2006 Catherina G. Becker
Thomas Becker
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Mammalian Models of CNS Regeneration





1

The Role of Inhibitory Molecules in Limiting

Axonal Regeneration in the Mammalian Spinal Cord

Patrick N. Anderson, Jez Fabes, and David Hunt

1.1

Introduction

In adult mammals axonal regeneration is vigorous following peripheral nerve in-

jury, but meager after injury to the central nervous system (CNS). Several theories

seek to explain this situation. First, the cell body response to axotomy may be inad-

equate in intrinsic CNS neurons. Second, there may be inadequate levels of sup-

port in terms of neurotrophic factors and cell adhesion molecules in the CNS.

Third, the regeneration of axons in the CNS may be prevented by molecules which

inhibit neurite outgrowth in vitro. In addition, the absence of a normal wound-

healing response in mammalian CNS tissue may limit regeneration; whereas a le-

sion site in a peripheral nerve is rapidly repopulated by Schwann cells migrating

from the two stumps, lesion sites in the CNS expand by secondary degeneration

during the first week after injury. None of these hypotheses explains all of the

data, but the idea that inhibitory molecules play a major role in preventing axonal

regeneration in the CNS has dominated thought in this area for almost two de-

cades. However, there remains much contradictory evidence concerning the roles

inhibitory molecules and conflicting views as to their importance in limiting axo-

nal regeneration in vivo (e.g., Raisman, 2004; Schwab, 2004).

1.1.1

CNS Neurons Have Widely Differing Phenotypes

The heterogeneity of CNS neurons and their responses to injury greatly compli-

cates the evaluation of hypotheses on CNS regeneration. This is best illustrated

by the results of grafting peripheral nerves into the CNS. Richardson et al. (1980)

showed that many adult mammalian CNS neurons could regenerate axons through

a suitable environment in the form of a peripheral nerve graft. However, sub-

sequent studies showed that many, perhaps most, neurons in the brain are very

poor at regenerating axons, even into nerve grafts (Anderson et al., 1998; Anderson

and Lieberman, 1999). This may be because CNS neurons differ dramatically in

3



their sensitivity to neurotrophic factors, the strength of their cell body responses to

axotomy, and in their expression of receptors for inhibitory molecules (Hunt et al.,

2002a; Josephson et al., 2002; Lauren et al., 2003; Pignot et al., 2003).

1.2

Difficulties in Assessing Axonal Regeneration in the Mammalian Spinal Cord

A characteristic of scientific progress is that novel techniques that initially appear

difficult become commonplace within a few years. This has not been the case with

experimental studies of axonal regeneration in the mammalian spinal cord. There

have been many claims of treatments resulting in successful axonal regeneration

in the mammalian CNS, but there is a paucity of cases where those claims have

been replicated in other laboratories, or have even developed into a series of confir-

matory observations from the same laboratory. This may be because of the ease

with which some axons can be left intact when lesioning tracts in the CNS; spared

axons can be misinterpreted as regenerated axons.

1.2.1

Experimental Lesions and Problems of Interpretation

Probably the best model for producing reliable complete lesions of a CNS tract is

provided by the optic nerve, which can be completely sectioned or crushed by an

experienced operator, with little chance of axonal sparing. This has allowed major

discoveries to be made on the influence of neurotrophic stimuli (Berry et al., 1996;

Logan et al., 2006) and inflammation (Leon et al., 2000; Lorber et al., 2005) on the

vigor of axonal regeneration within CNS tissue. Yet even in the optic nerve, reports

of remarkable axonal regeneration (Eitan et al., 1994) have sometimes gone with-

out apparent replication or further development.

The mammalian spinal cord can be transected, contused or compressed to pro-

duce a lesion. Transection or partial transection lesions (Fig. 1.1) have the advan-

tage that the site of initial injury can be accurately estimated. The lesion sites are

filled with blood and macrophages and then invaded by meningeal cells, endothe-

lial cells and Schwann cells, together with axons, some of which are of peripheral

origin (Zhang et al., 1997). Meningeal cells are the source of several molecules that

can inhibit or repel regenerating axons (Zhang et al., 1997; Pasterkamp et al., 2001;

Niclou et al., 2003). Astrocyte processes extend into the lesion sites, but few astro-

cyte or oligodendrocyte cell bodies are present. A region of reactive gliosis charac-

terized by hypertrophic astrocytes develops rostral and caudal to the lesion site

where CSPGs are up-regulated (Davies et al., 1999; Tang et al., 2003), and there

may be cavitation, particularly if the lesion involves the central canal. Complete

transection of the mammalian spinal cord should allow axonal regeneration to be

studied without the complication of spared fibers. However, the animals require

considerable care after surgery, including regular manual emptying of the bladder,

and permission to perform such experiments can be difficult to obtain in Europe.
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It is worth noting that even with attempts at complete transection, spared fibers

can be left at the ventral surface of the cord (You et al., 2003).

Contusion and compression lesions are good models of common types of spinal

injury in the western world, but the lesion size and position are more difficult to

control. In such lesions it is not possible to be precise about the position of the

axotomy, and the possibility of spared fibers is more difficult to eliminate than

with transection injuries. Contusion/compression lesions develop from the center

of the spinal cord where there is extensive cell death and an invasion of hematoge-

neous cells (Popovich et al., 1997). Subsequently, large injury sites with cavitation

around the central canal, spreading several millimeters rostral and caudal to the

site of impact, develop in rats (Bresnahan et al., 1991). Fibrotic tissue instead of

cavities is found in most strains of mice (Ma et al., 2001; Stokes and Jakeman,

2002). Typically, the dorsal corticospinal tracts are destroyed in all but the mildest

contusion injuries with loss of much gray matter and sparing of a variable amount

of peripheral white matter. The axons in the lesioned tracts often terminate well

short of the region of primary impact. Although contusion and compression inju-

ries are often less than ideal for studying axonal regeneration, they are excellent

models in which to study effects of treatments on behavioral recovery. In all but

the most severe lesions, functional recovery occurs to some extent. A number of

behavioral tests have been developed for such purposes, including the BBB score

(Basso et al., 1995) of open field motor function, grid and rope walking (for a re-

Fig. 1.1. GFAP immunohistochemistry identifying astrocytes in a

horizontal section of the cervical spinal cord of an adult rat one week

following dorsal column transection. The wound has enlarged since the

initial injury and is characterized by the absence of CNS glia. The

GFAP-negative ‘‘space’’ at the center is occupied by macrophages,

other invading non-glial cells, some axons, and fluid-filled cysts.

Reactive astrocytes are present bordering the lesion.
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cent use of such tests, see Hendriks et al., 2006). Many more treatments including

steroid treatment (Young, 1991) and environmental enrichment (Lankhorst et al.,

2001) have been found to enhance behavioral recovery than to promote axonal re-

generation. Such treatments presumably act through neuroprotection and/or en-

hancing plasticity in surviving connections between the rostral and caudal parts of

the spinal cord. As the histopathological features differ from those of transection

injuies, it would be reasonable to suggest that all potential therapies should be

tested on contusion lesions prior to clinical use. However, whether the lesions are

produced by transection, contusion or compression, and despite the structural dif-

ferences between these lesions, regeneration of intrinsic CNS axons across the le-

sion site is always very poor.

In summary, complete transection lesions are the best for proving axonal regen-

eration has taken place, but compression or contusion injuries are excellent for

studying functional recovery.

1.2.2

Tracing Regenerating Axons

Anterograde tracing of axons provides the ‘‘gold standard’’ for assessing the extent

of regeneration following injury because it allows the course of regenerating axons

to be followed around or through a lesion site. Retrograde tracing has the disadvan-

tage that cell bodies may become labeled by spread of tracer through the tissues,

necessitating careful analysis of the injection site. Anterograde tracing of descend-

ing axons is usually performed using biotinylated dextran amine (BDA; Fig. 1.2)

(Li et al., 1997) or sometimes cholera toxin subunit B (CTB) (Hagg et al., 2005),

injected near the cell bodies of the injured neurons. Enhanced green fluorescent

protein (EGFP) delivered by lentiviral vectors is also useful for tracing axons from

brainstem nuclei, and labels only those axons that arise from neurons in the region

where the vector is applied (Fabes et al., 2006; Fig. 1.1). Ascending dorsal column

axons may be labeled with CTB or CTB-HRP (Chong et al., 1996, 1999), injected

into peripheral nerves.

1.2.2.1 Regeneration of Corticospinal Axons is Difficult to Assess

Corticospinal tract axons are widely distributed through a transverse section of the

spinal cord of rodents (Fig. 1.2). Although most corticospinal tract axons passing

through a segment of cord are found in the dorsal funiculus, others are present

in the lateral and ventral funiculi of the white matter, and these fibers – if spared

– will also send branches into the gray matter below a lesion. Hence, it is difficult

to eliminate all corticospinal tract projections without a complete lesion, and

sprouting of surviving axons caudal to a lesion – an interesting neurobiological

phenomenon in its own right – may be confused with axonal regeneration. As cor-

ticospinal tract axons are present in much of the gray matter, it is particularly diffi-

cult to distinguish any regenerating axons that might grow through the gray mat-

ter around a partial lesion, from axons that were undamaged. Rubrospinal tracts

(Fig. 1.2) are located entirely within the dorsal part of the lateral funiculus in ro-
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