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CHAPTER 1 

INTRODUCTION 

The solutions presented in this manual reflect the authors' best attempt to 
provide insights and answers. While we have done our best to be complete and 
accurate, errors may occur and there may be more elegant solutions. Errata 
will be posted at the ftp site dedicated to the text and solutions manual: 

ftp://ftp.wiley.com/public/sci_tech_med/loss_models/ 
Should you find errors or would like to provide improved solutions, please 

send your comments to Stuart Klugman at sklugman@soa.org. 
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Copyright © 2012 John Wiley & Sons, Inc. 



CHAPTER 1 

INTRODUCTION 

The solutions presented in this manual reflect the authors' best attempt to 
provide insights and answers. While we have done our best to be complete and 
accurate, errors may occur and there may be more elegant solutions. Errata 
will be posted at the ftp site dedicated to the text and solutions manual: 

ftp://ftp.wiley.com/public/sci_tech_med/loss_models/ 
Should you find errors or would like to provide improved solutions, please 

send your comments to Stuart Klugman at sklugman@soa.org. 

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fourth 1 
Edition. By Stuart A. Klugman, Harry H. Panjcr, Gordon E. Willmot 
Copyright © 2012 John Wiley & Sons, Inc. 



CHAPTER 2 

CHAPTER 2 SOLUTIONS 

2.1 SECTION 2.2 

, r r n , c , , / O.Olx, 0 < x < 50, 
2.1 F5(x) = 1 - 58(x) = | 0Q2x _ 05 5 0 < χ < ? 5 

* ^ p// \ / °0 1' ° < x < 50' / . («) = F5(x) = | 0 0 2 ) 5 0 < χ < ? 5 

M*) = $ 8 = < 100ΓΧ 
& 5 W — , 5 0 < x < 7 5 . 

I. 75 - a; 

2.2 The requested plots follow. The triangular spike at zero in the density 
function for Model 4 indicates the 0.7 of discrete probability at zero. 

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fourth 3 
Edition. By Stuart. A. Klugnmn, Harry H. PHiijor, Gordon E. Willmot 
Copyright (ö 2012 John Wiley & Sons, Inc. 



CHAPTER 2 SOLUTIONS 
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2.3 f'(x) = 4(1 + x 2 ) - 3 - 24x2(l + x 2 ) - 4 . Setting the derivative equal to zero 
and multiplying by (1 -f x2)4 give the equation 4(1 + x2) — 24x2 = 0. This is 
equivalent to x2 = 1/5. The only positive solution is the mode of l / \ /5· 

2.4 The survival function can be recovered as 

0.5 = 5(0.4) = e-fi'*
A+*2xdx 

-Ax-0.5e2x\°'1 

= e '» 
_ e-0.4A-0.5e( )-8+0.5 

Taking logarithms gives 

-0.693147 = -0.4Λ - 1.112770 -f 0.5, 

and thus A = 0.2009. 
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2.5 The ratio is 

/ 10,000 \ 2 

V10,000 + d/ 
/ 20,000 \ 2 

\20,000+ cp) 

( 20,000 + cP\2 

\20,000 + 2(iJ 
20,0002 + 40,000^ + d4 

20,0002 + 80,000d + AcP' 

Prom observation or two applications of L'Höpital's rule, we see that the limit 
is infinity. 



SECTION 2.2 7 

2.5 The ratio is 

/ 10,000 \ 2 

V10,000 + d/ 
/ 20,000 \ 2 

\20,000+ cp) 

( 20,000 + cP\2 

\20,000 + 2(iJ 
20,0002 + 40,000^ + d4 

20,0002 + 80,000d + AcP' 

Prom observation or two applications of L'Höpital's rule, we see that the limit 
is infinity. 



CHAPTER 3 

CHAPTER 3 SOLUTIONS 

3.1 SECTION 3.1 

3.1 
/

OO /»OO 

(x - μ)3/(χ)άχ = (x3 - 3χ2μ + 3χμ2 - μ3)/(χ)άχ 
-OO J — OO 

= /4 -3^2M + 2/i3, 

/

OO 

(x - μ)4/(χ)άχ 
-OO 

/ O O 

(x4 - 4χ3μ + 6 x V - 4χμ3 + μ4)/(χ)άχ 
-OO 

= ^4 -V3/X + 6/X2M2-3/i4· 

3.2 For Model 1, σ2 = 3,333.33 - 502 = 833.33, σ = 28.8675. 
/4 = Jo10" *3(0·01)<ίχ = 250,000, μ3 = 0, Ί ι = 0. 
μ4 = /0

100χ4(0.01)(/χ = 20,000,000, μ4 = 1,250,000, 7 2 = 1·8· 
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10 CHAPTER 3 SOLUTIONS 

For Model 2, σ2 = 4,000,000 - Ι,ΟΟΟ2 - 3,000,000, σ - 1,732.05. μ'3 and 
μ4 are both infinite so the skewness and kurtosis are not defined. 

For Model 3, σ2 = 2.25 - .932 = 1.3851, σ = 1.1769. 
μ!> = 0(0.5) + 1(0.25) + 8(0.12) + 27(0.08) + 64(0.05) = 6.57, μ3 = 1.9012, 
7 1 = 1.1663, μ\ = 0(0.5) + 1(0.25) + 16(0.12) + 81(0.08) + 256(0.05) = 21.45, 
μ4 = 6.4416, 72 = 3.3576. 

For Model 4, σ2 = 6,000,000,000 - 30,0002 = 5,100,000,000, σ = 71,414. 
μ>3 = 03(0.7) + J T x3(0.000003)e-0 0 0 0 1^x = 1.8 χ 1015, 
μ3 = 1.314 χ 10**, 7ι = 3.6078. 
μ'Α = /0

oox4(0.000003)e-00001:E(ia: - 7.2 χ 1020, μ4 = 5.3397 χ 1020, 
72 = 20.5294. 

For Model 5, σ2 = 2,395.83 - 43.752 - 481.77, σ = 21.95. 
μ'3 = /ο

50 x3(0.01)dx + /57
0
5 χ3(0.02)ώ = 142,578.125, μ3 = -4,394.53, 

7α = -0.4156. 
μ'Α - /0

5° x4{0.0l)dx + J5
7
0
5 x4(0.02)da; - 8,867,187.5, μ4 = 439,758.30, 

72 = 1.8947. 

3.3 The standard deviation is the mean times the coefficient of variation, or 4, 
and so the variance is 16. From (3.3) the second raw moment is 16 4- 22 = 20. 
The third central moment is (using Exercise 3.1) 136 - 3(20)(2) + 2(2)3 = 32. 
The skewness is the third central moment divided by the cube of the standard 
deviation, or 32/43 = 1/2. 

3.4 For a gamma distribution the mean is αθ. The second raw moment 
is a(a + 1)#2, and so the variance is αθ2. The coefficient of variation is 

= a l'z = 1. Therefore a — 1. The third raw moment is a(a -f 
1)(α + 2)θ = 6Θ . From Exercise 3.1, the third central moment is 60' — 
3(2<92)<9 + 2(93 = 203 and the skewness is 2<93/(02)3/2 = 2. 

100 -d 
2 

2,000 + d 
2 

3.5 For Model 1, 

_ />-».»■» 
1 - O.Old 

For Model 2, 

f°° ( 2,000 \ 3 

J d U + 2,000j 
' 2,000 N 3 

ci + 2,000 
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For Model 3, 

0.25(1 - d) + 0.12(2 - d) + 0.08(3 - d) + 0.05(4 - d) 

= < 

0.5 
= 1.86 - d, 

0.12(2 - d) + 0.08(3 -d)+ 0.05(4 - d) 0 „ 0 ^ 
0.25 ~ ^ d ' 

0 .08(3-d) + 0 . 0 5 ( 4 - d ) = 3 3 8 4 6 _ d ; 

U. l o 

O 0 5 ( 4 - d ) _ 
l 0.05 ' 

ar Model 4, 

r?°0.3e-000001^x 
e W = J " 0.3e-o.oooolrf = 1 0 0 ' 0 0 0 · 

0 < d < 1, 

2 < d < 3, 

3 < d < 4. 

The functions are straight lines for Models 1, 2, and 4. Model 1 has negative 
slope, Model 2 has positive slope, and Model 4 is horizontal. 

3.6 For a uniform distribution on the interval from 0 to w, the density function 
is f(x) = 1/w. The mean residual life is 

e(d) = 
f™(x — d)w ldx 

rW 

Id w 

(x - d)2 

2w 
w — d 

w 
{w - d)2 

2(w - d) 
w — d 

ldx 

w 

d 

The equation becomes 

w - 30 100 - 30 
+ 4, 

with a solution of w — 108. 

3.7 From the definition, 

e(A) 
S™(x-\)\-le-x'xdx 

/~A _ 1 e-*Adar 
= λ. 
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Ε(Χ) = / xf(x)dx = / xf(x)dx 4- / d/(a;)da; + / (z - d)f(x)dx 
JO Jo Jd Jd 

= [ xf(x)dx 4- d[l - F(d)} 4- e(d)S(d) = E[X Ad}+ e(d)S(d). 
Jo 

3.9 For Model 1, from (3.8), 

E [ l A w ] = / x(0.01)dx 4- M(1 - 0 .01M) = M(1 - 0 . 005M) 
Jo 

and from (3.10), 

E[X Λ u] = 50 - 1 Q Q U(l - 0 .01M) = M(1 - 0 . 0 0 5 M ) . 

From (3.9), 

0 .01M 2 

Odx+ 1 - O.Olxdx = M - ~ ' ^ ~ = M(1 - 0 . 0 0 5 M ) . 
-oo JO 2 

For Model 2, from (3.8), 

r [ v , Γ 3(2,000)3 , 
L J 7o (z + 2,000)4 (2, 

and from (3.10), 

2,0003 

000 4- M)3 
- 1 0 0 0 

E[X Au] = 1,000 

From (3.9), 

2,000 + u ( 2,000 
2,000 4- u 

1,000 

4,000,000 
" (2,000 4- u)2 

4,000,000 

(2,000+ M)2J 

[ J 7o V 2,000 + * ; 

-2,0003 

2(2,000 4- x)2 

= 1,000 1 -
4,000,000 

(2,000 + u)2 

For Model 3, from (3.8), 

( 0 ( 0 . 5 ) + M ( 0 . 5 ) = 0.5M, 

0(0.5) 4-1(0.25) 4- M ( 0 . 2 5 ) - 0.25 4- 0 .25M, 

E[X Aw] = 0(0.5) + 1(0.25) + 2(0.12) + M ( 0 . 1 3 ) 
= 0.49 4 -0 .13M, 

0(0.5) 4-1(0.25) 4- 2(0.12) 4- 3(0.08) + M ( 0 . 0 5 ) 
= 0.73 4- 0 .05M, 

0 < M< 1, 

1 < M < 2, 

2 < M < 3, 

3 < M < 4, 
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and from (3.10), 

E[X A u] = \ 

{ 0.93 - (1.86 - M)(0.5) = 0.5u, 0 < u < 1, 
0.93 - (2.72 - M)(0.25) = 0.25 + 0.25M, 1 < u < 2, 
0.93 - (3.3846 - M)(0.13) = 0.49 + 0.13M, 2 < u < 3, 

[ 0.93 - (4 - M)0(.05) - 0.73 + 0.05M, 3 < u < 4. 

For Model 4, from (3.8), 

E[X Λ M] = Γx(0 .000003)e- 0 0 0 0 0 1 ^x + M(0.3)e-°oooolu 

Jo 

= 30 ,000[ l - e - o o o o o l w ] , 
and from (3.10), 

E[X Au} = 30,000 - 100,000(0.3e-°oooolu) = 30,000[1 - e-00000lM] 

3.10 For a discrete distribution (which all empirical distributions are), the 
mean residual life function is 

3(d ) = 
Y,Xj>d(

x3 - d)p(xj) 

EXj>dp(x3) 

When d is equal to a possible value of X, the function cannot be continuous 
because there is jump in the denominator but not in the numerator. For an 
exponential distribution, argue as in Exercise 3.7 to see that it is constant. 
For the Pareto distribution, 

e(d) 
E(X) - E(X A d) 

S{d) 

_θ θ_ 
a — 1 a —1 \θ+ά) 

a - 1 

\e+d) 
Θ θ + d θ + d 

a-1 Θ a-V 

which is increasing in d. Only the second statement is true. 

3.11 Applying the formula from the solution to Exercise 3.10 gives 

10,000 + 10,000 
0 . 5 - 1 

-40,000, 
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which cannot be correct. Recall that the numerator of the mean residual life 
is E(X)—E(X Λ d). However, when a < 1, the expected value is infinite and 
so is the mean residual life. 

3.12 The right t runcated variable is defined as Y = X given that X < u. 
When X > u, this variable is not defined. The fcth moment is 

E ( y } = F(u) = - ^ ) · 

3.13 This is a single parameter Pareto distribution with parameters a — 2.5 
and Θ = 1. The moments are μλ = 2.5/1.5 = 5/3 and μ2 = 2.5/.5 — (5/3) 2 = 
20/9. The coefficient of variation is ^ 2 0 / 9 / ( 5 / 3 ) = 0.89443. 

3.14 μ = 0.05(100) + 0.2(200) + 0.5(300) + 0.2(400) + 0.05(500) = 300. 
σ2 - 0 .05(-200) 2 + 0 .2( -100) 2 + 0.5(0)2 + 0.2(100)2 + 0.05(20())2 = 8,000. 
μ3 - 0 .05(-200) 3 + 0 .2 ( -100) 3 + 0.5(0)3 H- 0.2(100)3 + 0.05(200)3 = 0. 
μ4 = 0 .05(-200) 4 +0.2( -100) 4 +0.5(0) 4 +0.2(100) 4 +0.05(200) 4 - 200,000,000. 
Skewness is ηλ = μ 3 / σ 3 = 0. Kurtosis is η2 = μ 4 / σ 4 = 200,000,000/8,0002 = 
3.125. 

3.15 The Pareto mean residual life function is 

and so e x ( 2 0 ) / e x ( 0 ) - (2Θ -l· θ)/(θ + Θ) = 1.5. 

3.16 Sample mean: 0.2(400) + 0.7(800) 4- 0.1(1,600) - 800. Sample vari-
ance: 0 .2 ( -400) 2 + 0.7(0)2 + 0.1(800)2 = 96,000. Sample third central mo-
ment: 0 .2 ( -400) 3 + 0.7(0)3 + 0.1(800)3 = 38,400,000. Skewness coefficient: 
38,400,000/96,0001 5 = 1.29. 

3.2 SECTION 3.2 

3.17 The pdf is f(x) = 2 x " 3 , x > 1. The mean is / ~ 2x~2dx = 2. The 
median is the solution to .5 = F(x) = 1 — a:-2, which is 1.4142. The mode is 
the value where the pdf is highest. Because the pdf is strictly decreasing, the 
mode is at its smallest value, 1. 

3.18 For Model 2, solve p= l - ^ ^ g ^ - V and so πρ - 2 , 0 0 0 [ ( l - p ) - 1 / 3 - l ] 
and the requested percentiles are 519.84 and 1419.95. 
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For Model 4, the distribution function jumps from 0 to 0.7 at zero and 
so 7Γ0.5 = 0. For percentile above 70, solve p = 1 - 0.3e~0OOOOl7r^, and so 
πρ = -100,000 ln[(l - p ) / 0 . 3 ] and π0 . 8 = 40,546.51. 

For Model 5, the distribution function has two specifications. From x = 0 
to x — 50 it rises from 0.0 to 0.5, and so for percentiles at 50 or below, 
the equation to solve is p = 0.01πρ for πρ — 100p. For 50 < x < 75, the 
distribution function rises from 0.5 to 1.0, and so for percentiles from 50 to 
100 the equation to solve is p = 0.02πρ — 0.5 for πρ — 50p + 25. The requested 
percentiles are 50 and 65. 

3.19 The two percentiles imply 

Θ 
0.1 = 1 -

β + θ-k 

0.9 = 1 
» + 5 0 - 3 f c y 

Rearranging the equations and taking their ratio yield 

0.9 / 6 f l - 3 f c \ Q 

0.1 \2e-k ) 

Taking logarithms of both sides gives In 9 = a In 3 for a = In 9 / In 3 = 2. 

3.20 The two percentiles imply 

0.25 = l - e - O . o o o / T , 
0.75 = 1 - e~(ioo,ooo/ör 

Subtracting and then taking logarithms of both sides give 

In 0.75 = -( l ,OOO/0) r , 
ln0.25 = -(1OO,OOO/0)T. 

Dividing the second equation by the first gives 

In 0.25 
In 0.75 

100T. 

Finally, taking logarithms of both sides gives r In 100 = In [In 0.25/ In 0.75] for 
r - 0.3415. 

3.3 SECTION 3.3 

3.21 The sum has a gamma distribution with parameters a — 16 and Θ = 250. 
Then, P r ( S i 6 > 6,000) = 1 - Γ(16; 6,000/250) = 1 - Γ(16;24). From the 
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Central Limit Theorem, the sum has an approximate normal distribution 
with mean αθ = 4,000 and variance αθ2 = 1,000,000 for a standard deviation 
of 1000. The probability of exceeding 6,000 is 1 - Φ[(6,000 - 4,000)/l,000] = 
1 - Φ(2) = 0.0228. 

3.22 A single claim has mean 8,000/(5/3) = 4,800 and variance 

2(8,000)2/[(5/3)(2/3)] - 4,8002 = 92,160,000. 

The sum of 100 claims has mean 480,000 and variance 9,216,000,000, which 
is a standard deviation of 96,000. The probability of exceeding 600,000 is 
approximately 

1 - Φ[(600,000 - 480,000)/96,000] = 1 - Φ(1.25) = 0.106. 

3.23 The mean of the gamma distribution is 5(1,000) = 5,000 and the variance 
is 5(1,000)2 = 5,000,000. For 100 independent claims, the mean is 500,000 
and the variance is 500,000,000 for a standard deviation of 22,360.68. The 
probability of total claims exceeding 525,000 is 

1 - Φ[(525,000 - 500,000)/22,360.68] = 1 - Φ(1.118) = 0.13178. 

3.24 The sum of 2,500 contracts has an approximate normal distribution with 
mean 2,500(1,300) = 3,250,000 and standard deviation V

/275ÖÖ(400) = 20,000. 
The answer is Pr(X > 3,282,500) = Pr[Z > (3,282,500-3,250,000)/20,000] = 
Pr(Z > 1.625) = 0.052. 

3.4 SECTION 3.4 

3.25 While the Weibull distribution has all positive moments, for the inverse 
Weibull moments exist only for fc < r . Thus by this criterion, the inverse 
Weibull distribution has a heavier tail. With regard to the ratio of density 
functions, it is (with the inverse Weibull in the numerator and marking its 
parameters with asterisks) 

n-*fi*T* π-τ*-1,>-(θ*/x)T* 
r θ x e ocx-T-r\-(r/xV +(*/*)T. 

rQ-rxr-xe-^lQy 

The logarithm is 
(χ/θ)τ -(θ*/χ)τ* - ( τ + τ*)1ηχ. 

The middle term goes to zero, so the issue is the limit of (χ/θ)τ — (τ + τ*) Ιηχ, 
which is clearly infinite. With regard to the hazard rate, for the Weibull 
distribution we have 


