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PREFACE TO SECOND EDITION

The past 25 years have seen confirmation of the importance of density estimation
and nonparametric methods in modern data analysis, in this era of “big data.” This
updated version retains its focus on fostering an intuitive understanding of the under-
lying methodology and supporting theory. I have sought to retain as much of the
original material as possible and, in particular, the point of view of its development
from the histogram. In every chapter, new material has been added to highlight chal-
lenges presented by massive datasets, or to clarify theoretical opportunities and new
algorithms. However, no claim to comprehensive coverage is professed.

I have benefitted greatly from interactions with a number of gifted doctoral
students who worked in this field—Lynette Factor, Donna Nezames, Rod Jee,
Ferdie Wang, Michael Minnotte, Steve Sain, Keith Baggerly, John Salch, Will
Wojciechowski, H.-G. Sung, Alena Oetting, Galen Papkov, Eric Chi, Jonathan Lane,
Justin Silver, Jaime Ramos, and Yeshaya Adler—their work is represented here. In
addition, contributions were made by many students taking my courses. I would
also like to thank my colleagues and collaborators, especially my co-advisor Jim
Thompson and my frequent co-authors George Terrell (VPI), Bill Szewczyk (DoD)
and Masahiko Sagae (Kanazawa University). They have made the lifetime of learn-
ing, teaching, and discovery especially delightful and satisfying. I especially wish to
acknowledge the able help of Robert Kosar in assembling the final versions of the
color figures and reviewing new material.

Not a few mistakes have been corrected. For example, the constant in the expres-
sion for the asymptotic mean integrated squared error for the multivariate histogram
in Theorem 3.5 is now correct. The content of Tables 3.6 and 3.7 has been mod-
ified accordingly, and the effect of dimension on sample size is seen to be even
more dramatic in the corrected version. Any mistakes remain the responsibility of the
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author, who would appreciate hearing of such. All will be recorded in an appropriate
repository.

Steve Quigley of John Wiley & Sons was infinitely patient awaiting this second
edition until his retirement, and Kathryn Sharples completed the project. Steve made
a freshly minted LaTeX version available as a starting point. All figures in S-Plus have
been re-engineered into R. Figures in color or using color have been transformed to
gray scale for the printed version, but the original figures will also be available in the
same repository. In the original edition, I also neglected to properly acknowledge the
generous support of the ARO (DAAL-03-88-G-0074 through my colleague James
Thompson) and the ONR (N00014-90-J-1176).

As with the original edition, this revision would not have been possible with u the
tireless and enthusiastic support of my wife, Jean, and family. Thanks for everything.

David W. ScottHouston, Texas
August, 2014

o t
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PREFACE TO FIRST EDITION

With the revolution in computing in recent years, access to data of unprecedented
complexity has become commonplace. More variables are being measured, and the
sheer volume of data is growing. At the same time, advancements in the perfor-
mance of graphical workstations have given new power to the data analyst. With
these changes has come an increasing demand for tools that can detect and summa-
rize the multivariate structure in difficult data. Density estimation is now recognized
as a tool useful with univariate and bivariate data; my purpose is to demonstrate that
it is also a powerful tool in higher dimensions, with particular emphasis on trivari-
ate and quadrivariate data. I have written this book for the reader interested in the
theoretical aspects of nonparametric estimation as well as for the reader interested in
the application of these methods to multivariate data. It is my hope that the book can
serve as an introductory textbook and also as a general reference.

I have chosen to introduce major ideas in the context of the classical histogram,
which remains the most widely applied and most intuitive nonparametric estimator.
I have found it instructive to develop the links between the histogram and more statis-
tically efficient methods. This approach greatly simplifies the treatment of advanced
estimators, as much of the novelty of the theoretical context has been moved to the
familiar histogram setting.

The nonparametric world is more complex than its parametric counterpart. I have
selected material that is representative of the broad spectrum of theoretical results
available, with an eye on the potential user, based on my assessments of usefulness,
prevalence, and tutorial value. Theory particularly relevant to application or under-
standing is covered, but a loose standard of rigor is adopted in order to emphasize the
methodological and application topics. Rather than present a cookbook of techniques,
I have adopted a hierarchical approach that emphasizes the similarities among the
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different estimators. I have tried to present new ideas and practical advice, together
with numerous examples and problems, with a graphical emphasis.

Visualization is a key aspect of effective multivariate nonparametric analysis, and
I have attempted to provide a wide array of graphic illustrations. All of the figures
in this book were composed using S, S-PLUS, Exponent Graphics from IMSL, and
Mathematica. The color plates were derived from S-based software. The color graph-
ics with transparency were composed by displaying the S output using the MinneView
program developed at the Minnesota Geometry Project and printed on hardware under
development by the 3M Corporation. I have not included a great deal of computer
code. A collection of software, primarily Fortran-based with interfaces to the S lan-
guage, is available by electronic mail at scottdw@rice.edu. Comments and other
feedback are welcomed.

I would like to thank many colleagues for their generous support over the past
20 years, particularly Jim Thompson, Richard Tapia, and Tony Gorry. I have espe-
cially drawn on my collaboration with George Terrell, and I gratefully acknowledge
his major contributions and influence in this book. The initial support for the high-
dimensional graphics came from Richard Heydorn of NASA. This work has been
generously supported by the Office of Naval Research under grant N00014-90-J-
1176 as well as the Army Research Office. Allan Wilks collaborated on the creation
of many of the color figures while we were visiting the Geometry Project, directed by
Al Marden and assisted by Charlie Gunn, at the Minnesota Supercomputer Center.

I have taught much of this material in graduate courses not only at Rice but also
during a summer course in 1985 at Stanford and during an ASA short course in
1986 in Chicago with Bernard Silverman. Previous Rice students Lynette Factor,
Donna Nezames, Rod Jee, and Ferdie Wang all made contributions through their
theses. I am especially grateful for the able assistance given during the final phases
of preparation by Tim Dunne and Keith Baggerly, as well as Steve Sain, Monnie
McGee, and Michael Minnotte. Many colleagues have influenced this work, includ-
ing Edward Wegman, Dan Carr, Grace Wahba, Wolfgang Härdle, Matthew Wand,
Simon Sheather, Steve Marron, Peter Hall, Robert Launer, Yasuo Amemiya, Nils
Hjort, Linda Davis, Bernhard Flury, Will Gersch, Charles Taylor, Imke Janssen,
Steve Boswell, I.J. Good, Iain Johnstone, Ingram Olkin, Jerry Friedman, David
Donoho, Leo Breiman, Naomi Altman, Mark Matthews, Tim Hesterberg, Hal Stern,
Michael Trosset, Richard Byrd, John Bennett, Heinz-Peter Schmidt, Manny Parzen,
and Michael Tarter. Finally, this book could not have been written without the patience
and encouragement of my family.

David W. ScottHouston, Texas
February, 1992
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1
REPRESENTATION AND GEOMETRY
OF MULTIVARIATE DATA

A complete analysis of multidimensional data requires the application of an array of
statistical tools—parametric, nonparametric, and graphical. Parametric analysis is the
most powerful. Nonparametric analysis is the most flexible. And graphical analysis
provides the vehicle for discovering the unexpected.

This chapter introduces some graphical tools for visualizing structure in multidi-
mensional data. One set of tools focuses on depicting the data points themselves,
while another set of tools relies on displaying of functions estimated from those
points. Visualization and contouring of functions in more than two dimensions is
introduced. Some mathematical aspects of the geometry of higher dimensions are
reviewed. These results have consequences for nonparametric data analysis.

1.1 INTRODUCTION

Classical linear multivariate statistical models rely primarily on analysis of the covari-
ance matrix. So powerful are these techniques that analysis is almost routine for
datasets with hundreds of variables. While the theoretical basis of parametric mod-
els lies with the multivariate normal density, these models are applied in practice
to many kinds of data. Parametric studies provide neat inferential summaries and
parsimonious representation of the data.

For many problems second-order information is inadequate. Advanced model-
ing or simple variable transformations may provide a solution. When no simple

Multivariate Density Estimation, First Edition. David W. Scott.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 REPRESENTATION AND GEOMETRY OF MULTIVARIATE DATA

parametric model is forthcoming, many researchers have opted for fully “unpara-
metric” methods that may be loosely collected under the heading of exploratory data
analysis. Such analyses are highly graphical; but in a complex non-normal setting, a
graph may provide a more concise representation than a parametric model, because
a parametric model of adequate complexity may involve hundreds of parameters.

There are some significant differences between parametric and nonparametric
modeling. The focus on optimality in parametric modeling does not translate well
to the nonparametric world. For example, the histogram might be proved to be an
inadmissible estimator, but that theoretical fact should not be taken to suggest his-
tograms should not be used. Quite to the contrary, some methods that are theoretically
superior are almost never used in practice. The reason is that the ordering of algo-
rithms is not absolute, but is dependent not only on the unknown density but also on
the sample size. Thus the histogram is generally superior for small samples regard-
less of its asymptotic properties. The exploratory school is at the other extreme,
rejecting probabilistic models, whose existence provides the framework for defining
optimality.

In this book, an intermediate point of view is adopted regarding statistical effi-
cacy. No nonparametric estimate is considered wrong; only different components of
the solution are emphasized. Much effort will be devoted to the data-based calibra-
tion problem, but nonparametric estimates can be reasonably calibrated in practice
without too much difficulty. The “curse of optimality” might suggest that this is
an illogical point of view. However, if the notion that optimality is all important is
adopted, then the focus becomes matching the theoretical properties of an estimator
to the assumed properties of the density function. Is it a gross inefficiency to use a
procedure that requires only two continuous derivatives when the curve in fact has six
continuous derivatives? This attitude may have some formal basis but should be dis-
couraged as too heavy-handed for nonparametric thinking. A more relaxed attitude
is required. Furthermore, many “optimal” nonparametric procedures are unstable in
a manner that slightly inefficient procedures are not. In practice, when faced with the
application of a procedure that requires six derivatives, or some other assumption that
cannot be proved in practice, it is more important to be able to recognize the signs
of estimator failure than to worry too much about assumptions. Detecting failure at
the level of a discontinuous fourth derivative is a bit extreme, but certainly the effects
of simple discontinuities should be well understood. Thus only for the purposes of
illustration are the best assumptions given.

The notions of efficiency and admissibility are related to the choice of a criterion,
which can only imperfectly measure the quality of a nonparametric estimate. Unlike
optimal parametric estimates that are useful for many purposes, nonparametric esti-
mates must be optimized for each application. The extra work is justified by the extra
flexibility. As the choice of criterion is imperfect, so then is the notion of a single
optimal estimator. This attitude reflects not sloppy thinking, but rather the imperfect
relationship between the practical and theoretical aspects of our methods. Too rigid a
point of view leads one to a minimax view of the world where nonparametric methods
should be abandoned because there exist difficult problems.
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Visualization is an important component of nonparametric data analysis. Data
visualization is the focus of exploratory methods, ranging from simple scatterplots
to sophisticated dynamic interactive displays. Function visualization is a significant
component of nonparametric function estimation, and can draw on the relevant lit-
erature in the fields of scientific visualization and computer graphics. The focus of
multivariate data analysis on points and scatterplots has meant that the full impact
of scientific visualization has not yet been realized. With the new emphasis on
smooth functions estimated nonparametrically, the fruits of visualization will be
attained. Banchoff (1986) has been a pioneer in the visualization of higher dimen-
sional mathematical surfaces. Curiously, the surfaces of interest to mathematicians
contain singularities and discontinuities, all producing striking pictures when pro-
jected to the plane. In statistics, visualization of the smooth density surface in four,
five, and six dimensions cannot rely on projection, as projections of smooth surfaces
to the plane show nothing. Instead, the emphasis is on contouring in three dimensions
and slicing of surfaces beyond. The focus on three and four dimensions is natural
because one and two are so well understood. Beyond four dimensions, the ability to
explore surfaces carefully decreases rapidly due to the curse of dimensionality. For-
tunately, statistical data seldom display structure in more than five dimensions, so
guided projection to those dimensions may be adequate. It is these threshold dimen-
sions from three to five that are and deserve to be the focus of our visualization
efforts.

There is a natural flow among the parametric, exploratory, and nonparametric pro-
cedures that represents a rational approach to statistical data analysis. Begin with a
fully exploratory point of view in order to obtain an overview of the data. If a prob-
abilistic structure is present, estimate that structure nonparametrically and explore
it visually. Finally, if a linear model appears adequate, adopt a fully parametric
approach. Each step conceptually represents a willingness to more strongly smooth
the raw data, finally reducing the dimension of the solution to a handful of interest-
ing parameters. With the assumption of normality, the mind’s eye can easily imagine
the d-dimensional egg-shaped elliptical data clusters. Some statisticians may prefer
to work in the reverse order, progressing to exploratory methodology as a diagnostic
tool for evaluating the adequacy of a parametric model fit.

There are many excellent references that complement and expand on this sub-
ject. In exploratory data analysis, references include Tukey (1977), Tukey and Tukey
(1981), Cleveland and McGill (1988), and Wang (1978).

In density estimation, the classic texts of Tapia and Thompson (1978), Wertz
(1978), and Thompson and Tapia (1990) first indicated the power of the nonpara-
metric approach for univariate and bivariate data. Silverman (1986) has provided a
further look at applications in this setting. Prakasa Rao (1983) has provided a the-
oretical survey with a lengthy bibliography. Other texts are more specialized, some
focusing on regression (Müller, 1988; Härdle, 1990), some on a specific error cri-
terion (Devroye and Györfi, 1985; Devroye, 1987), and some on particular solution
classes such as splines (Eubank, 1988; Wahba, 1990). A discussion of additive models
may be found in Hastie and Tibshirani (1990).
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1.2 HISTORICAL PERSPECTIVE

One of the roots of modern statistical thought can be traced to the empirical discov-
ery of correlation by Galton in 1886 (Stigler, 1986). Galton’s ideas quickly reached
Karl Pearson. Although best remembered for his methodological contributions such
as goodness-of-fit tests, frequency curves, and biometry, Pearson was a strong pro-
ponent of the geometrical representation of statistics. In a series of lectures a century
ago in November 1891 at Gresham College in London, Pearson spoke on a wide-
ranging set of topics (Pearson, 1938). He discussed the foundations of the science
of pure statistics and its many divisions. He discussed the collection of observations.
He described the classification and representation of data using both numerical and
geometrical descriptors. Finally, he emphasized statistical methodology and discov-
ery of statistical laws. The syllabus for his lecture of November 11, 1891, includes
this cryptic note:

Erroneous opinion that Geometry is only a means of popular representation: it is a
fundamental method of investigating and analysing statistical material. (his italics)

In that lecture Pearson described 10 methods of geometrical data representation.
The most familiar is a representation “by columns,” which he called the “his-
togram.” (Pearson is usually given credit for coining the word “histogram” later in
a 1894 paper.) Other familiar-sounding names include “diagrams,” “chartograms,”
“topograms,” and “stereograms.” Unfamiliar names include “stigmograms,” “euthy-
grams,” “epipedograms,” “radiograms,” and “hormograms.”

Beginning 21 years later, Fisher advanced the numerically descriptive portion of
statistics with the method of maximum likelihood, from which he progressed on to the
analysis of variance and other contributions that focused on the optimal use of data
in parametric modeling and inference. In Statistical Methods for Research Workers,
Fisher (1932) devotes a chapter titled “Diagrams” to graphical tools. He begins the
chapter with this statement:

The preliminary examination of most data is facilitated by the use of diagrams.
Diagrams prove nothing, but bring outstanding features readily to the eye; they are
therefore no substitute for such critical tests as may be applied to the data, but are
valuable in suggesting such tests, and in explaining the conclusions founded upon
them.

An emphasis on optimization and the efficiency of statistical procedures has been
a hallmark of mathematical statistics ever since. Ironically, Fisher was criticized
by mathematical statisticians for relying too heavily upon geometrical arguments in
proofs of his results.

Modern statistics has experienced a strong resurgence of geometrical and graphi-
cal statistics in the form of exploratory data analysis (Tukey, 1977). Given the para-
metric emphasis on optimization, the more relaxed philosophy of exploratory data
analysis has been refreshing. The revolution has been fueled by the low cost of graph-
ical workstations and microcomputers. These machines have enabled current work on
statistics in motion (Scott, 1990), that is, the use of animation and kinematic display
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for visualization of data structure, statistical analysis, and algorithm performance. No
longer are static displays sufficient for comprehensive analysis.

All of these events were anticipated by Pearsonand his visionary statistical com-
puting laboratory. In his lecture of April 14, 1891, titled “The Geometry of Motion,”
he spoke of the “ultimate elements of sensations we represent as motions in space
and time.” In 1918, after his many efforts during World War I, he reminisced about
the excitement created by wartime work of his statistical laboratory:

The work has been so urgent and of such value that the Ministry of Munitions has
placed eight to ten computers and draughtsmen at my disposal . . . (Pearson, 1938,
p. 165).

These workers produced hundreds of statistical graphs, ranging from detailed maps of
worker availability across England (chartograms) to figures for sighting antiaircraft
guns (diagrams). The use of stereograms allowed for representation of data with three
variables. His “computers,” of course, were not electronic but human. Later, Fisher
would be frustrated because Pearson would not agree to allocate his “computers” to
the task of tabulating percentiles of the t-distribution. But Pearson’s capabilities for
producing high-quality graphics were far superior to those of most modern statisti-
cians prior to 1980. Given Pearson’s joint interests in graphics and kinematics, it is
tantalizing to speculate on how he would have utilized modern computers.

1.3 GRAPHICAL DISPLAY OF MULTIVARIATE DATA POINTS

The modern challenge in data analysis is to be able to cope with whatever complexi-
ties may be intrinsic to the data. The data may, for example, be strongly non-normal,
fall onto a nonlinear subspace, exhibit multiple modes, or be asymmetric. Dealing
with these features becomes exponentially more difficult as the dimensionality of the
data increases, a phenomenon known as the curse of dimensionality. In fact, datasets
with hundreds of variables and millions of observations are routinely compiled that
exhibit all of these features. Examples abound in such diverse fields as remote sens-
ing, the US Census, geological exploration, speech recognition, and medical research.
The expense of collecting and managing these large datasets is often so great that no
funds are left for serious data analysis. The role of statistics is clear, but too often
no statisticians are involved in large projects and no creative statistical thinking is
applied. The goal of statistical data analysis is to extract the maximum information
from the data, and to present a product that is as accurate and as useful as possible.

1.3.1 Multivariate Scatter Diagrams

The presentation of multivariate data is often accomplished in tabular form, par-
ticularly for small datasets with named or labeled objects. For example, Table B.1
contains economic data spanning the depression years of the 1930s, and Table B.2
contains information on a selected sample of American universities. It is easy enough
to scan an individual column in these tables, to make comparisons of library size,
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for example, and to draw conclusions one variable at a time (see Tufte (1983) and
Wang (1978)). However, variable-by-variable examination of multivariate data can
be overwhelming and tiring, and cannot reveal any relationships among the variables.
Looking at all pairwise scatterplots provides an improvement (Chambers et al., 1983).
Data on four variables of three species of Iris are displayed in Figure 1.1. (A listing
of the Fisher–Anderson Iris data, one of the few familiar four-dimensional datasets,
may be found in several references and is provided with the S package (Becker et al.,
1988)). What multivariate structure is apparent from this figure? The setosa variety
does not overlap the other two varieties. The versicolor and virginica varieties are not
as well separated, although a close examination reveals that they are almost nonover-
lapping. If the 150 observations were unlabeled and plotted with the same symbol,
it is likely that only two clusters would be observed. Even if it were known a priori
that there were three clusters, it would still be unlikely that all three clusters would be
properly identified. These alternative presentations reflect the two related problems
of discrimination and clustering, respectively.

If the observations from different categories overlap substantially or have differ-
ent sample sizes, scatter diagrams become much more difficult to interpret properly.
The data in Figure 1.2 come from a study of 371 males suffering from chest pain
(Scott et al., 1978): 320 had demonstrated coronary artery disease (occlusion or nar-
rowing of the heart’s own arteries) while 51 had none (see Table B.3). The blood fat
concentrations of plasma cholesterol and triglyceride are predictive of heart disease,
although the correlation is low. It is difficult to estimate the predictive power of these
variables in this setting solely from the scatter diagram. A nonparametric analysis
will reveal some interesting nonlinear interactions (see Chapters 5 and 9).

An easily overlooked practical aspect of scatter diagrams is illustrated by these
data, which are integer valued. To avoid problems of overplotting, the data have been
jittered or blurred (Chambers et al., 1983); that is, uniform U(−0.5,0.5) noise is

1

1
11

1
1

1 1

1
1

1
1

11

1

1

1

1
11

1
11
11

1

1 1
1

11
1

1 1

11
11

1

11

1

1
1
1

1

1

1

1

1
22 2

2

22

2

2

22

2

2

2

22
22

2

2
2

2

2
2

2 2
2

2
22

2
22

2 2
2

2

2

2

2

22

2

2
2

2

22 2

2
2

3

3

33 3 3

3

3

3

3

3

3
3

3
3

3
3

3

3

3

3

3 33

3
3

3
3

3
3

3

3

33
3

3

3
33 33 3

3

33
3

3

3

3

3

Se
pa

l w
id

th
Pe

ta
l l

en
gt

h
Pe

ta
l w

id
th

Sepal length Sepal width Petal length

1111 1 11 11 1 111
1 1111 11 11

1
11

11 1111 11 111 111 1111
11

1 11 11

22
2

2
22 2

2

2
2

2
2 2

2

2

22
2

2
2

2
2

22
22

22
2

222 2

2
2 2 22

22
2 2

2
2

2 22 2

2

2

3

3

33 3
3

3

3
3 3

33 3
3 3 33

33

3
3

3

3

3
3 3

33
3 3 3 3
3

3
3

3
33

3
33
33

33
33 333

11 11 1 1111 1 111
1 1 111 111 1

1
11

1 1 1111 1 1 11 1 111 1 11 1 1 1
1 11 11

22
2

2
22 2

2

2
2

2
22

2

2

22
2

2
2

2
2

2 2
2 2

2 2
2

222 2

2
2 222
22

2 2
2

2

2 222

2

2

3

3

33 3
3

3

3
3 3

33 3
3 3 33

33

3
3

3

3

3
33

3 3
3 33 3
3

3
3

3
33

3
3333

33
33 3 33

1111 1
1

1 11 1 1111
1

111 11 1
1

1
1

1 1
1

1111
1

1 111 111 1111
1
11 11 11

22 2
2

2
2

2

2
22

2

2

2
22 22

2

2

2

2

2
2

2 2
2 2

2
2

222
2

22 2
22222

2
2

2
2

2
2 2

2
2

3

3
3

3

3
3

3 33

3

33
33

3
3

3

33

3

3

3 3
3

3
333

3

3
3 3

3

33

33

33
3

3 3

3

3
3
3

3
3

3

3

11 11 1
1

111 1 1111
1

111 111
1

1
1
11
1

1111
1

1 11 1 111 1 11 1
1

11 11 11

222
2

2
2

2

2
22

2

2

2
22 22

2

2

2

2

2
2

2 2
22
2

2

222
2

2 2 2
22 22 2
2

2
2

2
2

22
2

2

3

3
3

3

3
3

3 33

3

33
33

3
3

3

33

3

3

33
3

3
33 3

3

3
3 3
3

33

3 3

33
3
33

3

3
3

3

3
3

3

3

11111
1

11111
111

1
111 111
1

1
1

11
1

11 11
1
1111111 1111
1

111111

22 2
2

2
2

2

2
22

2

2

2
22 22

2

2

2

2

2
2

22
2 2

2
2

2 22
2

222 2222 2
2

2
2

2
2
22

2
2

3

3
3

3

3
3

3 33

3

33
33

3
3

3

33

3

3

3 3
3

3
333

3

3
3 3

3

3 3

33

33
3
33

3

3
3

3

3
3

3

3

FIGURE 1.1 Pairwise scatter diagrams of the Iris data with the three species labeled.
1, setosa; 2, versicolor; 3, virginica.



“9780471697558c01” — 2015/2/25 — 16:16 — page 7 — #7

GRAPHICAL DISPLAY OF MULTIVARIATE DATA POINTS 7

No disease (n = 51)

100 150 200 300 400

With disease (n = 320)

100 150 200 300 400
Cholesterol (mg/dl)

T
ri

gl
yc

er
id

e 
(m

g/
dl

)

50

100

200

500

50

100

200

500

FIGURE 1.2 Scatter diagrams of blood lipid concentrations for 320 diseased and 51
nondiseased males.

added to each element of the original data. This trick should be regularly employed
for data recorded with three or fewer significant digits (with an appropriate range on
the added uniform noise). Jittering reduces visual miscues that result from the vertical
and horizontal synchronization of regularly spaced data.

The visual perception system can easily be overwhelmed if the number of points
is more than several thousand. Figure 1.3 displays three pairwise scatterplots derived
from measurements taken in 1977 by the Landsat remote sensing system over a 5 mile
by 6 mile agricultural region in North Dakota with n = 22,932 = 117× 196 pixels
or picture elements, each corresponding to an area approximately 1.1 acres in size
(Scott and Thompson, 1983; Scott and Jee, 1984). The Landsat instrument mea-
sures the intensity of light in four spectral bands reflected from the surface of the
earth. A principal components transformation gives two variables that are commonly
referred to as the “brightness” and “greenness” of each pixel. Every pixel is mea-
sured at regular intervals of approximately 3 weeks. During the summer of 1977, six
useful replications were obtained, giving 24 measurements on each pixel. Using an
agronometric growth model for crops, Badhwar et al. (1982) nonlinearly transformed
this 24-dimensional data to three dimensions. Badhwar described these synthetic vari-
ables, (x1,x2,x3), as (1) the calendar time at which peak greenness is observed, (2) the
length of crop ripening, and (3) the peak greenness value, respectively. The scat-
ter diagrams in Figure 1.3 have also been enhanced by jittering, as the raw data are
integers between (0,255). The use of integers allows compression to eight bits of
computer memory. Only structure in the boundary and tails is readily seen. The over-
plotting problem is apparent and the blackened areas include over 95% of the data.
Other techniques to enhance scatter diagrams are needed to see structure in the bulk
of the data cloud, such as plotting random subsets (see Tukey and Tukey (1981)).

Pairwise scatter diagrams lack one important property necessary for identifying
more than two-dimensional features—strong interplot linkage among the plots. In
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FIGURE 1.3 Pairwise scatter diagram of transformed Landsat data from 22,932 pixels over
a 5 by 6 nautical mile region. The range on all the axes is (0, 255).

principle, it should be possible to locate the same point in each figure, assuming
the data are free of ties. But it is not practical to do so for samples of any size. For
quadrivariate data, Diaconis and Friedman (1983) proposed drawing lines between
corresponding points in the scatterplots of (x1,x2) and (x3,x4) (see Problem 1.2). But a
more powerful dynamic technique that takes full advantage of computer graphics has
been developed by several research groups (McDonald, 1982; Becker and Cleveland,
1987; see the many references in Cleveland and McGill, 1988). The method is called
brushing or painting a scatterplot matrix. Using a pointing device such as a mouse,
a subset of the points in one scatter diagram is selected and the corresponding points
are simultaneously highlighted in the other scatter diagrams. Conceptually, a subset
of points in �d is tagged, for example, by painting the points red or making the points
blink synchronously, and that characteristic is inherited by the linked points in all the
“linked” graphs, including not only scatterplots but also histograms and regression
plots as well. The Iris example in Figure 1.1 illustrates the flavor of brushing with
three tags. Usually the color of points is changed rather than the symbol type. Brush-
ing is an excellent tool for identifying outliers and following well-defined clusters. It
is well-suited for conditioning on some variable, for example, 1 < x3 < 3.

These ideas are illustrated in Figure 1.4 for the PRIM4 dataset (Friedman and
Tukey, 1974; the data summarize 500 high-energy particle physics scattering exper-
iments) provided in the S language. Using the brushing tool in S-PLUS (1990), the
left cluster in the 1–2 scatterplot was brushed, and then the left cluster in the 2–4
scatterplot was brushed with a different symbol. Try to imagine linking the clusters
throughout the scatterplot matrix without any highlighting.
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FIGURE 1.4 Pairwise scatterplots of the transformed PRIM4s data using the ggobi visual-
ization system. Two clumps of points are highlighted by brushing.

There are limitations to the brushing technique. The number of pairwise scat-
terplots is

(d
2

)
, so viewing more than 5 or 10 variables at once is impractical.

Furthermore, the physical size of each scatter diagram is reduced as more variables
are added, so that fewer distinct data points can be plotted. If there are more than
a few variables, the eye cannot follow many of the dynamic changes in the pattern
of points during brushing, except with the simplest of structure. It is, however, an
open question as to the number of dimensions of structure that can be perceived by
this method of linkage. Brushing remains an important and well-used tool that has
proven successful in real data analysis.

If a 2-D array of bivariate scatter diagrams is useful, then why not construct a
3-D array of trivariate scatter diagrams? Navigating the collection of

(d
3

)
trivariate

scatterplots is difficult even with modest values of d. But a single 3-D scatterplot
can easily be rotated in real time with significant perceptual gain compared to three
bivariate diagrams in the scatterplot matrix. Many statistical packages now provide
this capability. The program MacSpin (Donoho et al., 1988) was the first widely used
software of this type. The top middle panel in Figure 1.4 displays a particular ori-
entation of a rotating 3-D scatterplot. The kinds of structure available in 3-D data
are more complex (and hence more interesting) than in 2-D data. Furthermore, the
overplotting problem is reduced as more data points can be resolved in a rotating 3-D
scatterplot than in a static 2-D view (although this is resolution dependent—a 2-D
view printed by a laser device can display significantly more points than is possible
on a computer monitor). Density information is still relatively difficult to perceive,
however, and the sample size definitely influences perception.

Beyond three dimensions, many novel ideas are being pursued (see Tukey and
Tukey (1981)). Six-dimensional data could be viewed with two rotating 3-D scat-
ter diagrams linked by brushing. Carr and Nicholson (1988) have actively pursued
using stereography as an alternative and adjunct to rotation. Some workers report
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that stereo viewing of static data can be more precise than viewing dynamic rotation
alone. Unfortunately, many individuals suffer from color blindness and various depth
perception limitations, rendering some techniques useless. Nevertheless, it is clear
that there is no limit to the possible combinations of ideas one might consider imple-
menting. Such efforts can easily take many months to program without any fancy
interface. This state of affairs would be discouraging but for the fact that a LISP-
based system for easily prototyping such ideas is now available using object-oriented
concepts (see Tierney (1990)). RStudio has made the shiny app available for this pur-
pose as well: see http://shiny.rstudio.com. A collection of articles is devoted to the
general topic of animation (Cleveland and McGill, 1988).

The idea of displaying 2- or 3-D arrays of 2- or 3-D scatter diagrams is perhaps
too closely tied to the Euclidean coordinate system. It might be better to examine
many 2- or 3-D projections of the data. An orderly way to do approximately just
that is the “grand tour” discussed by Asimov (1985). Let P be a d × 2 projection
matrix, which takes the d-dimensional data down to a plane. The author proposed
examining a sequence of scatterplots obtained by a smoothly changing sequence of
projection matrices. The resulting kinematic display shows the n data points mov-
ing in a continuous (and sometimes seemingly random) fashion. It may be hoped
that most interesting projections will be displayed at some point during the first sev-
eral minutes of the grand tour, although for even 10 variables several hours may be
required (Huber, 1985).

Special attention should be drawn to representing multivariate data in the bivariate
scatter diagram with points replaced by glyphs, which are special symbols whose
shapes are determined by the remaining data variables (x3, . . . ,xd). Figure 1.5 displays
the Iris data in such a form following Carr et al. (1986). The length and angle of the
glyph are determined by the sepal length and width, respectively. Careful examination
of the glyphs shows that there is no gap in 4-D between the versicolor and virginica
species, as the angles and lengths of the glyphs are similar near the boundary.
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FIGURE 1.5 Glyph scatter diagram of the Iris data.


