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Preface

This book is aimed at postgraduate students in applied mathematics as well
as at engineering and physics students with a firm background in mathemat-
ics. The first four chapters can be used as the material for a first course on
inverse problems with a focus on computational and statistical aspects. On
the other hand, Chapters 3 and 4, which discuss statistical and nonstation-
ary inversion methods, can be used by students already having knowldege of
classical inversion methods.

There is rich literature, including numerous textbooks, on the classical
aspects of inverse problems. From the numerical point of view, these books
concentrate on problems in which the measurement errors are either very
small or in which the error properties are known exactly. In real-world prob-
lems, however, the errors are seldom very small and their properties in the
deterministic sense are not well known. For example, in classical literature the
error norm is usually assumed to be a known real number. In reality, the error
norm is a random variable whose mean might be known.

Furthermore, the classical literature usually assumes that the operator
equations that describe the observations are exactly known. Again, usually
when computational solutions based on real-world measurements are required,
one should take into account that the mathematical models are themselves
only approximations of real-world phenomena. Moreover, for computational
treatment of the problem, the models must be discretized, and this introduces
additional errors. Thus, the discrepancy between the measurements and the
predictions by the observation model are not only due to the “noise that has
been added to the measurements.” One of the central topics in this book is
the statistical analysis of errors generated by modelling.

There is rich literature also in statistics, especially concerning Bayesian
statistics, that is fully relevant in inverse problems. This literature has been
fairly little known to the inverse problems community, and thus the main aim
of this book is to introduce the statistical concepts to this community. As for
statisticians, the book contains probably little new information regarding, for
example, sampling methods. However, the development of realistic observation
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models based, for example, on partial differential equations and the analysis
of the associated modelling errors might be useful.

As for citations, in Chapters 1–6 we mainly refer to books for further read-
ing and do not discuss historical development of the topics. Chapter 7, which
discusses our previous and some new research topics, also does not contain
reviews of the applications. Here we refer mainly to the original publications
as well as to sources that contain modifications and extensions which serve to
illustrate the potential of the statistical approach.

Chapters 5–7, which form the second part of the book, focus on problems
for which the models for measurement errors, errorless observations and the
unknown are really taken as models, which themselves may contain uncertain-
ties. For example, several observation models are based on partial differential
equations and boundary value problems. It might be that part of the boundary
value data are inherently unknown. We would then attempt to model these
boundary data as random variables that could either be treated as secondary
unknowns or taken as a further source of uncertainty and compute its contri-
bution to the discrepancy between the observation model and the predictions
given by the observation model.

In the examples, especially in Chapter 7 that discusses nontrivial problems,
we concentrate on research that we have carried out earlier. However, we also
treat topics that either have not yet been published or are discussed here with
more rigor than in the original publications.

We have tried to enhance the readibility of the book by avoiding citations
in the main text. Every chapter has a section called “Notes and Comments”
where the citations and further reading, as well as brief comments on more
advanced topics, are given.

We are grateful to our colleague and friend, Markku Lehtinen, who has ad-
vocated the statistical approach to inverse problems for decades and brought
this topic to our attention. Much of the results in Chapter 7 have been done in
collaboration with our present and former graduate students - as well as other
scientists. We have been privileged to work with them and thank them all. We
mention here only the people who have contributed directly to this book by
making modifications to their computational implementations or otherwise:
Dr. Ville Kolehmainen for Sections 7.2 and 7.9, Dr. Arto Voutilainen for Sec-
tion 7.4, Mr. Aku Seppänen for Sections 7.5 and 7.7 and Ms. Jenni Heino for
Section 7.8. We are also much obliged to Daniela Calvetti for carefully reading
and commenting the whole manuscript and to the above-mentioned people for
reading some parts of the book. For possible errors that remain we assume
full responsibility.

This work was financially supported by the Academy of Finland and the
Finnish Academy of Science and Letters (JPK) to whom thanks are due.
Thanks are also due to the inverse problems group at the University of Kuopio
and to vice head of the Applied Physics department, Dr. Ari Laaksonen, who
saw to the other author’s duties during his leave. Thanks are also due to Dr.
Geoff Nicholls and Dr. Colin Fox from the University of Auckland, NZ, where
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much of the novel material in this book was conceived during the authors’
visits there.

Helsinki and Kuopio Jari P. Kaipio
June 2004 Erkki Somersalo
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1

Inverse Problems and Interpretation of
Measurements

Inverse problems are defined, as the term itself indicates, as the inverse of di-
rect or forward problems. Clearly, such a definition is empty unless we define
the concept of direct problems. Inverse problems are encountered typically in
situations where one makes indirect observations of a quantity of interest. Let
us consider an example: one is interested in the air temperature. Temperature
itself is a quantity defined in statistical physics, and despite its usefulness and
intuitive clarity it is not directly observable. A ubiquitous thermometer that
gives us information of the air temperature relies on the fact that materials
such as quicksilver expand in a very predictable way in normal conditions as
the temperature increases. Here the forward model is the function relating
the volume of the quicksilver as a function of the temperature. The inverse
problem in this case is trivial, and therefore it is not usually considered as
a separate inverse problem at all, namely the problem of determining the
temperature from the volume measured. A more challenging inverse problem
arises if we try to measure the temperature in a furnace. Due to the high
temperature, the traditional thermometer is useless and we have to use more
advanced methods. One possibility is to use ultrasound. The high tempera-
ture renders the gases in the furnace turbulent, thus changing their acoustic
properties which in turn is reflected in the acoustic echoes. Now the forward
model consists of the challenging problem of describing the turbulence as a
function of temperature plus acoustic wave propagation in the medium, and
its even more challenging inverse counterpart of determining the temperature
from acoustic observations.

It is the legacy of Newton, Leibniz and others that laws of nature are often
expressed as systems of differential equations. These equations are local in the
sense that at a given point they express the dependence of the function and
its derivatives on physical conditions at that location. Another typical feature
of the laws is causality: later conditions depend on the previous ones. Locality
and causality are features typically associated with direct models. Inverse
problems on the other hand are most often nonlocal and/or noncausal. In
our example concerning the furnace temperature measurement, the acoustic
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echo observed outside depends on the turbulence everywhere, and due to the
finite signal speed, we can hope to reconstruct the temperature distribution
in a time span prior to the measurement, i.e., computationally we try to go
upstream in time.

The nonlocality and noncausality of inverse problems greatly contribute to
their instability. To understand this, consider heat diffusion in materials. Small
changes in the initial temperature distributions smear out in time, leaving the
final temperature distribution practically unaltered. The forward problem is
then stable as the result is little affected by changes in the initial data.

Going in the noncausal direction, if we try to estimate the initial temper-
ature distribution based on the observed temperature distribution at the final
time, we find that vastly different initial conditions may have produced the
final condition, at least within the accuracy limit of our measurement. On
the one hand, this is a serious problem that requires a careful analysis of the
data; on the other hand we need to incorporate all possible information about
the initial data that we may have had prior to the measurement. The statis-
tical inversion theory, which is the main topic of this book, solves the inverse
problems systematically in such a way that all the information available is
properly incorporated in the model.

Statistical inversion theory reformulates inverse problems as problems of
statistical inference by means of Bayesian statistics. In Bayesian statistics all
quantities are modeled as random variables. The randomness, which reflects
the observer’s uncertainty concerning their values, is coded in the probability
distributions of the quantities. From the perspective of statistical inversion
theory, the solution to an inverse problem is the probability distribution of
the quantity of interest when all information available has been incorporated
in the model. This distribution, called the posterior distribution, describes
the degree of confidence about the quantity after the measurement has been
performed.

This book, unlike many of the inverse problems textbooks, is not con-
cerned with analytic results such as questions of uniqueness of the solution of
inverse problems or their a priori stability. This does not mean that we do not
recognize the value of such results; to the contrary, we believe that uniqueness
and stability results are very helpful when analyzing what complementary in-
formation is needed in addition to the actual measurement. In fact, designing
methods that incorporate all prior information is one of the big challenges in
statistical inversion theory.

There is another line of textbooks on inverse problems, which empha-
size the numerical solution of ill-posed problems focusing on regularization
techniques. Their point of view is likewise different from ours. Regularization
techniques are typically aimed at producing a reasonable estimate of the quan-
tities of interest based on the data available. In statistical inversion theory,
the solution to an inverse problem is not a single estimate but a probability
distribution that can be used to produce estimates. But it gives more than just
a single estimate: it can produce very different estimates and evaluate their
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reliability. This book contains a chapter discussing the most commonly used
regularization schemes, not only because they are useful tools for their own
right but also since it is informative to interpret and analyze those methods
from the Bayesian point of view. This, we believe, helps to reveal what sort
of implicit assumptions these schemes are based on.

1.1 Introductory Examples

In this section, we illustrate the issues discussed above with characteristic
examples. The first example concerns the problems arising from the noncausal
nature of inverse problems.

Example 1: Assume that we have a rod of unit length and unit ther-
mal conductivity with ends set at a fixed temperature, say 0. According to
the standard model, the temperature distribution u(x, t) satisfies the heat
equation

∂2u

∂t2
− ∂u

∂t
= 0, 0 < x < 1, t > 0,

with the boundary conditions

u(0, t) = u(1, t) = 0

and with given intial condition

u(x, 0) = u0(x).

The inverse problem that we consider is the following: Given the temperature
distribution at time T > 0, what was the initial temperature distribution?

Let us write first the solution in terms of its Fourier components,

u(x, t) =
∞∑

n=1

cne−(nπ)2t sin nπx.

The coefficients cn are the Fourier sine coefficients of the initial state u0, i.e.,

u0(x) =
∞∑

n=1

cn sin nπx.

Thus, to determine u0, one has only to find the coefficients cn from the final
data. Assume that we have two initial states u

(j)
0 , j = 1, 2, that differ only by

a single high-frequency component, i.e.,

u
(1)
0 (x) − u

(2)
0 (x) = cN sin Nπx,

for N large. The corresponding solutions at the final time will differ by
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u(1)(x, T )− u(2)(x, T ) = cNe−(Nπ)2T sin Nπx,

i.e., the difference in the final data for the two initial states is exponentially
small; thus any information about high-frequency components will be lost in
the presence of measurement errors. �

Example 2: Consider the scattering of a time harmonic acoustic wave by
an inhomogeneity. The acoustic pressure field u satisfies, within the framework
of linear acoustic, the wave equation

∆u +
ω2

c2
u = 0 in R3, (1.1)

where ω > 0 is the angular frequency of the harmonic time dependence and
c = c(x) is the propagation speed. Assume that c = c0=constant outside a
bounded set D ⊂ R3. We shall denote

ω2

c(x)2
= k2(1 + q(x))

where k = ω/c0 is the wave number and q is a compactly supported pertur-
bation defined as

q(x) =
c2
0

c(x)2
− 1.

Assume that we send in a plane wave u0 traveling in the direction ω ∈ S2.
Then the total field is decomposed as

u(x) = u0(x) + usc(x) = eikω·x + usc(x),

where the scattered field usc satisfies the Sommerfeld radiation condition at
infinity,

lim
r→∞ r

(
∂usc

∂r
− ikusc

)
= 0, r = |x|. (1.2)

The field u satisfies the Lippmann–Schwinger integral equation

u(x) = u0(x) − k2

4π

∫
D

eik|x−y|

|x− y| q(y)u(y)dy. (1.3)

Expanding the integral kernel in Taylor series with respect to 1/r, we find
that asymptotically, the scattered part is of the form

usc =
eikr

4πr

(
u∞(x̂) +O

(
1
r

))
, x̂ =

x

r
,

where the function u∞, called the far field pattern, is obtained as

u∞(x̂) = −k2

∫
D

e−ix̂·yq(y)u(y)dy. (1.4)
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The forward scattering problem is to determine the pressure field u when the
wave speed c is known.

The inverse scattering problem wants to determine the unknown wave
speed from the knowledge of the far field patterns with different incoming
plane wave directions.

We observe the fundamental difference between the direct and inverse
problem. The direct problem requiress the solution of one linear differen-
tial equation (1.1) with the radiation condition (1.2) or equivalently the
Lippmann–Schwinger equation (1.3) which are linear problems. The inverse
problem on the other hand is highly nonlinear since u in the formula (1.4)
depends on q. Quite advanced techniques are needed to investigate the solv-
ability of this problem as well as to implement a numerical solution. �

1.2 Inverse Crimes

Throughout this book, we shall use the term inverse crime.1 By inverse crimes
we mean that the numerical methods contain features that effectively render
the inverse problem less ill-posed than it actually is, thus yielding unrealisti-
cally optimistic results. Inverse crimes can be summarized concisely by saying
that the model and the reality are identified, i.e., the researcher believes that
the computational model is exact. In practice, inverse crimes arise when

1. the numerically produced simulated data is produced by the same model
that is used to invert the data, and

2. the discretization in the numerical simulation is the same as the one used
in the inversion.

Throughout this book, these obvious versions of inverse crimes are avoided.
Moreover, we show that the statistical inversion theory allows us to analyze the
effects of modelling errors. We shall illustrate with examples what a difference
the inverse crimes can make in simulated examples and, more importantly,
how proper statistical error modelling effectively can remove problems related
to discretization.

1To the knowledge of the authors, this concept was introduced by Rainer Kress
in one of his survey talks on inverse problems.
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Classical Regularization Methods

In this section we review some of the most commonly used methods used when
ill-posed inverse problems are treated. These methods are called regulariza-
tion methods. Although the emphasis in this book is not on regularization
techniques, it is important to understand the philosophy behind them and
how the methods work. Later we analyze these methods also from the point
of view of statistics which is one of the main themes in this book.

2.1 Introduction: Fredholm Equation

To explain the basic ideas of regularization, we consider a simple linear inverse
problem. Following the traditions, the discussion in this chapter is formulated
in terms of Hilbert spaces. A brief review of some of the functional analytic
results can be found in Appendix A of the book.

Let H1 and H2 be separable Hilbert spaces of finite or infinite dimensions
and A : H1 → H2 a compact operator. Consider first the problem of finding
x ∈ H1 satisfying the equation

Ax = y, (2.1)

where y ∈ H2 is given. This equation is said to be a Fredholm equation of the
first kind. Since, clearly

1. the solution exists if and only if y ∈ Ran(A), and
2. the solution is unique if and only if Ker(A) = {0},

both conditions must be satisfied to ensure that the problem has a unique
solution. From the practical point of view, there is a third obstacle for finding
a useful solution. The vector y typically represents measured data which is
therefore contaminated by errors, i.e., instead of the exact equation (2.1), we
have an approximate equation

Ax ≈ y.
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It is well known that even when the inverse of A exists, it cannot be continuous
unless the spaces Hj are finite-dimensional. Thus, small errors in y may cause
errors of arbitrary size in x.

Example 1: A classical ill-posed inverse problem is the deconvolution
problem. Let H1 = H2 = L2(R) and define

A : L2(R)→ L2(R),
(
Af

)
(x) = φ ∗ f(x) =

∫ ∞

−∞
φ(x− y)f(y)dy,

where φ is a Gaussian convolution kernel,

φ(x) =
1√
2π

e−x2/2.

The operator A is injective, which is seen by applying the Fourier transform
on Af , yielding

F(Af
)
(ξ) =

∫ ∞

−∞
e−iξxAf(x)dx = φ̂(ξ)f̂(ξ)

with
φ̂(ξ) =

1√
2π

e−ξ2/2 > 0.

Therefore, if Af = 0, we have f̂ = 0, hence f = 0. Formally, the solution to
the equation Af = g is

f(x) = F−1
(
φ̂−1ĝ

)
(x).

However, the above formula is not well defined for general g ∈ L2(R) (or
even in the space of tempered distributions) since the inverse of φ̂ grows
exponentially. Measurement errors of arbitrarily small L2-norm in g can cause
g to be not in Ran(A) and the integral not to converge, thus making the
inversion formula practically useless. �

The following example shows that even when the Hilbert spaces are finite-
dimensional, serious practical problems may occur.

Example 2: Let f be a real function defined over the interval [0,∞). The
Laplace transform Lf of f is defined as the integral

Lf(s) =
∫ ∞

0

e−stf(t)dt,

provided that the integral is convergent. We consider the following problem:
Given the values of the Laplace transform at points sj , 0 < s1 < · · · < sn <∞,
we want to estimate the function f . To this end, we approximate first the
integral defining the Laplace transform by a finite sum,∫ ∞

0

e−sjtf(t)dt ≈
n∑

k=1

wke−sjtkf(tk),
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where, wk’s are the weights and tk’s are the nodes of the quadrature rule, e.g.,
Gauss quadrature, Simpson’s rule or the trapezoid rule. Let xk = f(tk), yj =
Lf(sj) and ajk = wke−sjtk , and write the numerical approximation of the
Laplace transform in the form (2.1), where A is an n×n square matrix. Here,
H1 = H2 = Rn. In this example, we choose the data points logarithmically
distributed, e.g.,

log(sj) =
(
−1 +

j − 1
20

)
log 10, 1 ≤ j ≤ 40,

to guarantee denser sampling near the origin. The quadrature rule is the 40-
point Gauss–Legendre rule and the truncated interval of integration (0, 5).
Hence, A ∈ R40×40.

Let the function f be

f(t) =

⎧⎨⎩
t, if 0 ≤ t < 1,
3
2 − 1

2 t, if 1 ≤ t < 3,
0, if t ≥ 3,

The Laplace transform can then be calculated analytically. We have

Lf(s) =
1

2s2
(2− 3e−s + e−3s).

The function f and its Laplace transform are depicted in Figure 2.1.
An attempt to estimate the values xj = f(tj) by direct solution of the

system (2.1) even without adding any error leads to the catastrophic results
shown also in Figure 2.1. The reason for the bad behaviour of this solution is
that in this example, the condition number of the matrix A, defined as

κ(A) = ‖A‖ ‖A−1‖
is very large, i.e., κ(A) ≈ 8.5×1020. Hence, even roundoff errors that in double
precision are numerical zeroes are negatively affecting the solution. �

The above example demonstrates that the conditions 1 and 2 that guar-
antee the unique existence of a solution of equation (2.1) are not sufficient in
practical applications. Even in the finite-dimensional problems, we must re-
quire further that the condition number is not excessively large. This can be
formulated more precisely using the singular value decomposition of operators
discussed in the following section.

Classical regularization methods are designed to overcome the obstacles
illustrated in the examples above. To summarize, the basic idea of regular-
ization methods is that, instead of trying to solve equation (2.1) exactly, one
seeks to find a nearby problem that is uniquely solvable and that is robust in
the sense that small errors in the data do not corrupt excessively this approx-
imate solution.

In this chapter, we review three families of classical methods. These meth-
ods are (1) regularization by singular value truncation, (2) the Tikhonov reg-
ularization and (3) regularization by truncated iterative methods.
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Figure 2.1. The original function (top), its Laplace transform (center) and the
estimator obtained by solving the linear system (bottom).

2.2 Truncated Singular Value Decomposition

In this section, H1 and H2 are Hilbert spaces of finite or infinite dimension,
equipped with the inner products 〈x, y〉j , x, y ∈ Hj , j = 1, 2, and A : H1 → H2

is a compact operator. When there is no risk of confusion, the subindices in
the inner products are suppressed. For the sake of keeping the notation fairly
straightforward, we assume that both H1 and H2 are infinite-dimensional.

The starting point in this section is the following proposition.

Proposition 2.1. Let H1, H2 and A be as above, and let A∗ be the adjoint
operator of A. Then

1. The spaces Hj, j = 1, 2, allow orthogonal decompositions

H1 = Ker(A) ⊕ (
Ker(A)

)⊥ = Ker(A) ⊕ Ran(A∗),

H2 = Ran(A)⊕ (
Ran(A)

)⊥ = Ran(A)⊕Ker(A∗).

2. There exists orthonormal sets of vectors (vn) ∈ H1, (un) ∈ H2 and a
sequence (λj) of positive numbers, λ↘ 0+ such that
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Ran(A) = span{un | n ∈ N}, (
Ker(A)

)⊥ = span{vn | n ∈ N},

and the operator A can be represented as

Ax =
∑

n

λj〈x, vn〉un.

The system (vn, un, λn) is called the singular system of the operator A.
3. The equation Ax = y has a solution if and only if

y =
∑

n

〈y, un〉un,
∑

n

1
λ2

n

|〈y, un〉|2 <∞.

In this case a solution is of the form

x = x0 +
∑

n

1
λj
〈y, un〉vn,

where x0 ∈ Ker(A) can be chosen arbitrarily.

The proofs of these results, with proper references, are briefly outlined in
Appendix A.

The representation of the operator A in terms of its singular system is
called the singular value decomposition of A, abbreviated as SVD of A. The
above proposition gives a good picture of the possible difficulties in solving
the equation Ax = y. First of all, let P denote the orthogonal projection on
the closure of the range of A. By the above proposition, we see that P is given
as

P : H2 → Ran(A), y �→
∑

n

〈y, un〉un. (2.2)

It follows that for any x ∈ H1, we have

‖Ax− y‖2 = ‖Ax− Py‖2 + ‖(1− P )y‖2 ≥ ‖(1− P )y‖2.

Hence, if y has a nonzero component in the subspace orthogonal to the range
of A, the equation Ax = y cannot be satisfied exactly. Thus, the best we can
do is to solve the projected equation,

Ax = PAx = Py. (2.3)

This projection removes the most obvious obstruction of the solvability of the
equation by replacing it with another substitute equation. However, given a
noisy data vector y, there is in general no guarantee that the components
〈y, un〉 tend to zero rapidly enough to guarantee convergence of the quadratic
sum in the solvability condition 3 of Proposition 2.1.

Let Pk denote the finite-dimensional orthogonal projection
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Pk : H2 → span{u1, . . . , uk}, y �→
k∑

n=1

〈y, un〉un. (2.4)

Since Pk is finite dimensional, we have Pky ∈ Ran(A) for all k ∈ N, and more
importantly, Pky → Py in H2 as k →∞. Thus, instead of equation (2.3), we
consider the projected equation

Ax = Pky, k ∈ N. (2.5)

This equation is always solvable. Taking on both sides the inner product with
un, we find that

λn〈x, vn〉 =
{ 〈y, un〉, 1 ≤ n ≤ k,

0, n > k.

Hence, the solution to equation (2.5) is

xk = x0 +
k∑

n=1

1
λj
〈y, un〉,

for some x0 ∈ Ker(A). Observe that since for increasing k,

‖Axk − Py‖2 = ‖(P − Pk)y‖2 → 0,

the residual of the projected equation can be made arbitrarily small.
Finally, to remove the ambiguity of the sought solution due to the possible

noninjectivity of A, we select x0 = 0. This choice minimizes the norm of xk,
since by orthogonality,

‖xk‖2 = ‖x0‖2 +
k∑

j=1

1
λ2

j

|〈y, uj〉|2.

These considerations lead us to the following definition.

Definition 2.2. let A : H1 → H2 be a compact operator with the singular sys-
tem (λn, vn, un). By the truncated SVD approximation (TSVD) of the problem
Ax = y we mean the problem of finding x ∈ H1 such that

Ax = Pky, x ⊥ Ker(A)

for some k ≥ 1.

We are now ready to state the following result.

Theorem 2.3. The problem given in Definition 2.2 has a unique solution xk,
called the truncated SVD (or TSVD) solution, which is

xk =
k∑

n=1

1
λj
〈y, un〉vn.
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Furthermore, the TSVD solution satisfies

‖Axk − y‖2 = ‖(1− P )y‖2 + ‖(P − Pk)y‖2 → ‖(1− P )y‖2

as k → ∞, where the projections P and Pk are given by formulas (2.2) and
(2.4), respectively.

Before presenting numerical examples, we briefly discuss the above reg-
ularization scheme in the finite-dimensional case. Therefore, let A ∈ Rm×n,
A �= 0, be a matrix defining a linear mapping Rn → Rm, and consider the
matrix equation

Ax = y.

In Appendix A, it is shown that the matrix A has a singular value decompo-
sition

A = UΛV T,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, i.e.,

UT = U−1, V T = V −1,

and Λ ∈ Rm×n is a diagonal matrix with diagonal elements

λ1 ≥ λ2 ≥ · · ·λmin(m,n) ≥ 0.

Let us denote by p, 1 ≤ p ≤ min(m, n), the largest index for which λp > 0,
and let us think of U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn] as arrays
of column vectors. The orthogonality of the matrices U and V is equivalent
to saying that the vectors vj and uj form orthonormal base for Rn and Rm,
respectively. Hence, the singular system of the mapping A is (vj , uj , λj)1≤j≤p.

We observe that If p = n,

Rn = span{v1, . . . , vn} = Ran(AT),

and consequently, Ker(A) = {0}. If p < n, then we have

Ker(A) = span{vp+1, . . . , vn}.
Hence, any vector x0 in the kernel of A is of the form

x0 = V0c, V0 = [vp+1, . . . , vn] ∈ Rn×(n−p)

for some c ∈ Rn−p.
In the finite-dimensional case, we need not to worry about the convergence

condition 3 of Proposition 2.1; hence the projected equation (2.3) always has
a solution,

x = x0 + A†y,

where x0 is an arbitrary vector in the kernel of A. The matrix A† is called the
pseudoinverse or Moore–Penrose inverse of A, and it is defined as
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A† = V Λ†UT,

where

Λ† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/λ1 0 · · · 0
0 1/λ2

. . .
... 1/λp

...
0

. . .
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×m.

Properties of the pseudoinverse are listed in the “Notes and Comments” at
the end of this chapter.

When x0 = 0, the solution x = A†y is called simply the minimum norm
solution of the problem Ax = y, since

‖A†y‖ = min{‖x‖ | ‖Ax− y‖ = ‖(1− P )y‖},
where P is the projection onto the range of A. Thus, the minimum norm
solution is the solution that minimizes the residual error and that has the
minimum norm. Observe that in this definition, there is no truncation since
we keep all the nonzero singular values.

In the case of inverse problems, the minimum norm solution is often useless
due to the ill-conditioning of the matrix A. The smallest positive singular
values are very close to zero and the minimum norm solution is sensitive to
errors in the vector y. Therefore, in practice we need to choose the truncation
index k < p in Definition 2.2. The question that arises is: what is a judicious
choice for the value of the for the truncation level k? There is a rule of thumb
that is often referred to as the discrepancy principle. Assume that the data
vector y is a noisy approximation of a noiseless vector y0. While y0 is unknown
to us, we may have an estimate of the noise level, e.g., we may have

‖y − y0‖ � ε (2.6)

for some ε > 0. The discrepancy principle states that we cannot expect the
approximate solution to yield a smaller residual error than the measurement
error, since otherwise we would be fitting the solution to the noise. This prin-
ciple leads to the following selection criterion for the truncation parameter k:
choose k, 1 ≤ k ≤ m the largest index that satisfies

‖y − Axk‖ = ‖y − Pky‖ ≤ ε.

In the following example, the use of the minimum norm solution and the
TSVD solution are demonstrated.

Example 3: We return to the Laplace inversion problem of Example 2.
Let A be the same matrix as before. A plot of the logarthms of its singular
values is shown in Figure 2.2.
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Figure 2.2. The singular values of the discretized Laplace transform on a loga-
rithmic scale. The solid line indicates the level of the machine epsilon.

Let ε0 denote the machine epsilon, i.e., the smallest floating point number
that the machine recognizes to be nonzero. In IEEE double precision arith-
metic, this number is of the order 10−16. In Figure 2.2, we have marked this
level by a solid horizontal line. The plot clearly demonstrates that the ma-
trix is numerically singular: Singular values smaller than ε0 represent roundoff
errors and should be treated as zeros.

First, we consider the case where only the roundoff error is present and
the data is precise within the arithmetic. We denote in this case y = y0. Here,
the minimum norm solution x = A†y0 should give a reasonable estimate for
the discrete values of f . It is also clear that although 22 of the singular values
are larger than ε0, the smallest ones above this level are quite close to ε0.

In Figure 2.3 we have plotted the reconstruction of f with x = A†y0

computed with p = 20, 21 and 22 singular values retained.
For comparison, let us add artificial noise, i.e., the data vector is

y = y0 + e,

where the noise vector e is normally distributed zero mean noise with the
standard deviation (STD) σ being 1% of the maximal data component, i.e.,
σ = 0.01 ‖y0‖∞. The logarithm of this level is marked in Figure 2.2 by a
dashed horizontal line. In this case only five singular values remain above σ.

When the standard deviation of the noise is given, it is not clear without
further analysis how one should select the parameter ε in the dsicrepancy
principle. In this example, expect somewhat arbitrarily the norm of the noise
to be of the order of σ. Figure 2.3 depicts the reconstructions of f obtained
from the TSVD solutions xk with k = 4, 5 and 6. We observe that for k = 6,
the solution is oscillatory.

Let us remark here that the noise level criterion in the discrepancy prin-
ciple does not take into account the stochastic properties of the noise. Later
in this chapter, we discuss in more detail how to choose the cutoff level.
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Let us further remark that single reconstructions such as those displayed
in Figure 2.3 are far from giving a complete picture of the stability of the
reconstruction. Instead, one should analyze the variance of the solutions by
performing several runs from independently generated data. This issue will be
discussed in Chapter 5, where the classical methods are revisited and analyzed
from the statistical point of view. �
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Figure 2.3. The inverse Laplace transform by using the singular value truncation.
The top figure corresponds to no artificial noise in the data, the bottom one with
1% additive artificial noise.

2.3 Tikhonov Regularization

The discussion in Section 2.2 demonstrates that when solving the equation
Ax = y, problems occur when the singular values of the operator A tend to
zero rapidly, causing the norm of the approximate solution xk to go to infinity
when k → ∞. The idea in the basic regularization scheme discussed in this
section is to control simultaneously the norm of the residual r = Ax− y and
the norm of the approximate solution x. We start with the following definition.

Definition 2.4. Let δ > 0 be a given constant. The Tikhonov regularized
solution xδ ∈ H1 is the minimizer of the functional

Fδ(x) = ‖Ax− y‖2 + δ‖x‖2,
provided that a minimizer exists. The parameter δ > 0 is called the regular-
ization parameter.
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Observe that the regularization parameter plays essentially the role of a
Lagrange multiplier, i.e., we may think that we are solving a minimization
problem with the constraint ‖x‖ = R, for some R > 0.

The following theorem shows that Definition 2.4 is reasonable.

Theorem 2.5. Let A : H1 → H2 be a compact operator with the singular
system (λn, vn, un). Then the Tikhonov regularized solution exists, is unique,
and is given by the formula

xδ = (A∗A + δI)−1A∗y =
∑

n

λn

λ2
n + δ

〈y, un〉vn. (2.7)

Proof: We have
〈x, (A∗A + δI)x〉 ≥ δ‖x‖2,

i.e., the operator (A∗A+ δI) is bounded from below. It follows from the Riesz
representation theorem (see Appendix A) that the inverse of this operator
exists and

‖(A∗A + δI)−1‖ ≤ 1
δ
. (2.8)

Hence, xδ in (2.7) is well defined. Furthermore, expressing the equation

(A∗A + δI)x = A∗y

in terms of the singular system of A, we have∑
n

(λ2
n + δ)〈x, vn〉vn + Px =

∑
λn〈y, un〉vn,

where P : H1 → Ker(A) is the orthogonal projector. By projecting onto the
eigenspaces sp{vn}, we find that Px = 0 and (λ2

n + δ)〈x, vn〉 = λn〈y, un〉.
To show that xδ minimizes the quadratic functional Fδ, let x be any vector

in H1. By decomposing x as

x = xδ + z, z = x− xδ,

and arranging the terms in Fδ(x) according to the degree with respect to z,
we obtain

Fδ(xδ + z) = Fδ(xδ) + 〈z, (A∗A + δI)xδ −A∗y〉+ 〈z, (A∗A + δI)z〉
= Fδ(xδ) + 〈z, (A∗A + δI)z〉

by definition of xδ. The last term is nonnegative and vanishes only if z = 0.
This proves the claim. �

Remark: When the spaces Hj are finite-dimensional and A is a matrix,
we may write

Fδ(x) =
∥∥∥∥[ A√

δI

]
x−

[
y
0

]∥∥∥∥2

.
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From the inequality (2.8) it follows that the singular values of the matrix

Kδ =
[

A√
δI

]
are bounded from below by

√
δ, so the minimizer of the functional Fδ is simply

xδ = K†
δ

[
y
0

]
.

This formula is particularly handy in numerical implementation of the Tikhonov
regularization method.

The choice of the value of the regularization parameter δ based on the
noise level of the measurement y is a central issue in the literature discussing
Tikhonov regularization. Several methods for choosing δ have been proposed.
Here, we discuss briefly only one of them, known as the Morozov discrepancy
principle. This principle is essentially the same as the discrepancy principle
discussed in connection with the singular value truncation method.

Let us assume that we have an estimate ε > 0 of the norm of the error in
the data vector as in (2.6). Then any x ∈ H1 such that

‖Ax− y‖ ≤ ε

should be considered an acceptable approximate solution. Let xδ be defined
by (2.7), and

f : R+ → R+, f(δ) = ‖Axδ − y‖ (2.9)

the discrepancy related to the parameter δ. The Morozov discrepancy principle
says that the regularization parameter δ should be chosen from the condition

f(δ) = ‖Axδ − y‖ = ε, (2.10)

if possible, i.e., the regularized solution should not try to satisfy the data more
accurately than up to the noise level.

The following theorem gives a condition when the discrepancy principle
can be used.

Theorem 2.6. The discrepancy function (2.9) is strictly increasing and

‖Py‖ ≤ f(δ) ≤ ‖y‖, (2.11)

where P : H2 → Ker(A∗) = Ran(A)⊥ is the orthogonal projector. Hence, the
equation (2.10) has a unique solution δ = δ(ε) if and only if ‖Py‖ ≤ ε ≤ ‖y‖.

Proof: By using the singular system representation of the vector xδ, we
have

‖Axδ − y‖2 =
∑(

λ2
n

λ2
n + δ

− 1
)2

〈y, un〉2 + ‖Py‖2

=
∑(

δ

λ2
n + δ

)2

〈y, un〉2 + ‖Py‖2.
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Since, for each term of the sum,

d

dδ

(
δ

λ2
n + δ

)2

=
2δλ2

n

(λ2
n + δ)3

> 0, (2.12)

the mapping δ �→ ‖Axδ − y‖2 is strictly increasing, and

‖Py‖2 = lim
δ→0+

‖Axδ − y‖2 ≤ ‖Axδ − y‖2 ≤ lim
δ→∞

‖Axδ − y‖2 = ‖y‖2,

as claimed. �

Remark The condition ‖Py‖ ≤ ε is natural in the sense that any compo-
nent in the data y that is orthogonal to the range of A must be due to noise.
On the other hand, the condition ε < ‖y‖ can be understood in the sense
that the error level should not exceed the signal level. Indeed, if ‖y‖ < ε, we
might argue that, from the viewpoint of the discrepancy principle, x = 0 is
an acceptable solution.

The Morozov discrepancy principle is rather straightforward to implement
numerically, apart of problems that arise from the size of the matrices. Indeed,
if A is a matrix with nonzero singular values λ1 ≥ · · · ≥ λr, one can employ
e.g., Newton’s method to find the unique zero of the function

f(δ) =
r∑

j=1

(
δ

λ2
n + δ

)2

〈y, un〉2 + ‖Py‖2 − ε2.

The derivative of this function with respect to the parameter δ can be ex-
pressed without a reference to the singular value decomposition. Indeed, from
formula (2.12), we find that

f ′(δ) =
∑ 2δλ2

n

(λ2
n + δ)3

〈un, y〉2 = 〈xδ , δ(A∗A + δI)−1xδ〉.

This formula is valuable in particular when A is a large sparse matrix and the
linear system with the matrix A∗A+δI is easier to calculate than the singular
value decomposition.

Example 4: Anticipating the statistical analysis of the inverse problems,
we consider the problem of how to set the noise level ε appearing in the
discrepancy principle. Assume that we have a linear inverse problem with
additive noise model, i.e., A ∈ Rk×m is a known matrix and the model is

y = Ax + e = y0 + e.

Furthermore, assume that we have information about the statistics of the noise
vector e ∈ Rk. The problem is, how does one determine a reasonable noise
level based on the probability distribution of the noise. In principle, there
are several possible candidates. Remembering that e is a random variable, we
might in fact define


