ASSESSIENT HANDBOOK A Guide for Environmentally Sustainable Products

Mary Ann Curran, Editor

Life Cycle Assessment Handbook

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Life Cycle Assessment Handbook

A Guide for Environmentally Sustainable Products

Edited by Mary Ann Curran Cincinnati, OH, USA

Copyright © 2012 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Kris Hackerott.

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-118-09972-8

Printed in the United States of America

Contents

Pr	eface			xix				
1	Env	vironm	ental Life Cycle Assessment: Background and Perspective	1				
	Gjalt Huppes and Mary Ann Curran							
	1.1	Histo	rical Roots of Life Cycle Assessment	1				
	1.2	Envir	onmental Life Cycle Concepts	2				
	1.3	LCA	Links to Environmental Policy	3				
	1.4	Micro	Applications of LCA Rising	5				
	1.5	The N	Лicro-Macro Divide	5				
	1.6	Macro	o Level LCA for Policy Support	6				
	1.7	Exam	ple Biofuels	7				
	1.8	Why	Ênvironmental LCA?	8				
	1.9	Over	view of the Book	11				
		1.9.1	Methodology and Current State of LCA Practice	11				
		1.9.2	LCA Applications	12				
		1.9.3	LCA Supports Decision Making and Sustainability	13				
		1.9.4	Operationalizing LCA	13				
	Refe	erences		14				
Pa	rt 1:	Meth	odology and Current State of LCA Practice					
2	An	Overvi	iew of the Life Cycle Assessment Method – Past, Present,					
	and	Future	e	15				
	Rei	nout H	eijungs and Jeroen B. Guinée					
	2.1	The P	resent-Day LCA Method	15				
		2.1.1	Goal and Scope Definition	17				
		2.1.2	Inventory Analysis	18				
		2.1.3	Impact Assessment	22				
		2.1.4	Interpretation	27				
		2.1.5	LCA in Practice	29				
	2.2	A Sho	ort History of LCA	30				
		2.2.1	Past LCA (1970–2000): Conception and Standardization	30				
			2.2.1.1 1970–1990: Decades of Conception	30				
			2.2.1.2 1990–2000: Decade of Standardization	31				
		2.2.2	Present LCA (2000–2010): Decade of Elaboration	32				
		2.2.3	Future LCA (2010–2020): Decade of Life Cycle					

Sustainability Analysis 34 ences 37

References

vi	Contents
-	

3.	Life	Cycle	Inventory Modeling in Practice	43				
	Beverly Sauer							
	3.1	Introc	luction	43				
	3.2	Study	Goal	44				
	3.3	Scope		45				
		3.3.1	Functional Unit	45				
		3.3.2	Boundaries	47				
	3.4	Metho	odology Issues	55				
		3.4.1	Feedstock Energy	55				
		3.4.2	Multi-Output Processes	57				
		3.4.3	Postconsumer Recycling	58				
		3.4.4	Converting Scrap	60				
		3.4.5	Water Use	61				
		3.4.6	Carbon Tracking Considerations	62				
	3.5	Evolu	tion of LCA Practice and Associated Issues	63				
	3.6	Concl	usion	65				
	Refe	erences		65				
	т.с.	C1-	Turner (A second sec					
4	Life	Cycle	Impact Assessment	67				
	IVIA1	Tuele IV	largni ana Wary Ann Curran	67				
	4.1	Introc	Introduction					
	4.2	Life	ycle Impact Assessment According to 150 14040-44	60				
		Kequi	Oversion	09 60				
		4.2.1	Man datama Elemente	09 70				
		4.2.2	Mandatory Elements	70				
		4.2.3	Optional Elements	72				
	10	4.2.4 Duin ai	Interpreting an LCIA Frome	73				
	4.3	Princi	iples and Framework of LCIA	74				
	4.4	Histo:	rical Developments and Overview of LCIA Methodologies	/8				
	4.5	Varia	bility in the LCIA Models	86				
	4.6	State-	of-the-Art LCIA	88				
	4.7	Futur	e Development	94				
		4.7.1	Spatially-Differentiated Assessment in LCIA	94				
		4./.2	Addressing Uncertainty and Variability in	05				
		4 7 2	Characterization Factors	95				
		4.7.3	Improving the Characterization of Resources	90				
		4.7.4	Integrating water Use and Consumption in LCIA	97				
		4.7.5	Resources and Ecosystem Services Areas of Protection	98				
		4.7.6	Expanding Land Use Burdens on Biodiversity	00				
	Refe	erences	In Ecosystem Services	99 99				
		- Citeo						
5	Sou	rcing I	ife Cycle Inventory Data	105				
	Mai	ry Ann	Curran					
	5.1	Introc	luction	105				
	5.2	Devel	loping LCI to Meet the Goal of the Study	107				
		5.2.1	Considerations in Choosing Data Sources	107				
		5.2.2	A Word on Consequential Life Cycle Assessment	108				

	5.3	Types	s of LCI Data	109		
	5.4	Priva	te Industrial Data	112		
	5.5	Publi	c Industrial Data	112		
	5.6	Dedic	cated LCI databases	113		
	5.7	Using	3 Non-LCI Data in LCAs	118		
	5.8 Creating Life Cycle Inventory using Economic Input/Output Data					
	5.9	Globa	al Guidance for Database Creation and Management	135		
	5.10 Future Knowledge Management					
	5.10.1 Creating a Federal Data Commons in the US					
	5.10.2 Open-Source Models					
		5.10.3	Crowdsourcing	139		
	5.11	Cone	clusion	140		
	Refe	erences	,	141		
6	Sof	tware f	or Life Cycle Assessment	143		
	And	lreas C	iroth			
	6.1	LCA a	and LCA Software	143		
		6.1.1	Introduction	143		
		6.1.2	Characteristics of LCA Software Systems	144		
			6.1.2.1 Web lools versus Desktop lools	144		
			6.1.2.2 Commercial loois versus Freeware	145		
			6.1.2.5 Open Source versus Closed Source	140		
			versus Add-One	147		
		613	Two Basic I CA Software User Types and their Needs	149		
		614	The LCA Software Market	150		
		0.1.1	6.1.4.1 Main LCA Software Systems	150		
			6.1.4.2 Other LCA Software Systems	152		
		6.1.5	Trends in LCA Software	152		
			6.1.5.1 Ideas that are No Longer Trends	153		
			6.1.5.2 Possible Future Trends	155		
		6.1.6	Outlook and Conclusions	156		
	Refe	erences		157		
Pa	rt 2:	LCA /	Applications			
7	Mo	deling	the Agri-Food Industry with Life Cycle Assessment	159		
-	Bru	no Not	arnicola. Giuseppe Tassielli and Pietro A. Renzulli			
	7.1	Introc	luction	159		
	7.2	Methe	odological Issues	161		
		7.2.1	Choice of Functional Unit	161		
		7.2.2	System Boundaries, Carbon Balance and Data Quality	165		
		7.2.3	Fertilizer and Pesticide Dispersion Models	167		
		7.2.4	Land Use and Water Use Impact Categories	170		
			7.2.4.1 Land Use	170		
			7.2.4.2 Water Use	173		
	7.3	Role of	of the Food Industry: Some Examples	174		
	7.4	Concl	usions	177		
	References 17					

8	Exe	rgy An	alysis an	d its Connection to Life Cycle Assessment	185		
	Mai	rc A. K	osen, Ibr	ahim Dincer and Ahmet Ozbilen	105		
	0.1				100		
	8.2		re Cycle Assessment				
		8.2.1	Goal an	a Scope Definition	188		
		8.2.2	2.2 Life Cycle Inventory Analysis				
		8.2.3	Life Cy	cle Impact Assessment	188		
		8.2.4	Lite Cy	cle Interpretation (Improvement Analysis)	190		
	8.3	Exergy and Exergy Analysis					
		8.3.1	Characteristics of Exergy				
		8.3.2	Exergy	Analysis	191		
	8.4	Exerg	etic Life	Cycle Assessment (ExLCA)	192		
		8.4.1	Linkage	es between Exergy Analysis and LCA	192		
		8.4.2	Rationa	ale of ExLCA	194		
		8.4.3	ExLCA	Methodology and Approach	195		
		8.4.4	4 Applications of ExLCA				
		8.4.5 Advantages of ExLCA					
	8.5	Case Study					
		8.5.1	System	Description and Data Analysis	201		
			8.5.1.1	Hydrogen Production Plant Based on a Cu-Cl			
				Thermochemical Cycle	202		
			8.5.1.2	Nuclear Plant	204		
			8.5.1.3	Fuel (Uranium) Processing	204		
		8.5.2	Analysi	is	205		
		0.0.1	8.5.2.1	LCA of Overall System	205		
			8.5.2.2	ExLCA of Overall System	206		
		853	LCA an	d ExLCA Results and Discussion	208		
	86	Concl	usions	a Exect Theballs and Discussion	211		
	A cknowledgements						
	Nomenclature Acronyms References						
	Ken	erences			215		
9	Acc	ountin	g for Eco	osystem Goods and Services in Life Cycle Asse	ssment		
	and	Proces	s Desig	n	217		

	anu	riocess Design	21/		
	Erin	1 F. Landers, Robert A. Urban and Bhavik R. Bakshi			
	9.1	Motivation	217		
	9.2	Life Cycle Assessment Background	219		
	9.3	Ecologically-Based Life Cycle Assessment	220		
	9.4	Case Study Comparing Process-Based and Hybrid Studies			
		Based on EIO-LCA and Eco-LCA	222		
	9.5	Overview of the Role of Ecosystems in Sustainable Design	226		
	9.6	Design Case Study: Integrated Design			
		of a Residential System	227		
	9.7	Conclusions	229		
References					

10	A Case Study of the Practice of Sustainable Supply						
	Chain Management						
	Annie Weisbrod and Larry Loftus						
	10.1	Introduction	233				
	10.2	Why Develop an Integrated Sustainable Supply					
	1014	Chain Management Program?	235				
	10.3	How Might the World's Largest Consumer Products	200				
	10.5	Company Measure and Drive Sustainability					
		in its Supply Chains?	226				
	10.4	In its Supply Chains: What is the State of Df. C/o Supply Chain Environmental	230				
	10.4	What is the State of P&G's Supply Chain Environmental	240				
	10 5	Sustainability?	240				
	10.5	Why is the Scorecard Effective for Driving Change					
		and Building Environmental Tracking Capability?	245				
	10.6	What is involved with Social Sustainability in Supply					
		Chain Management?	247				
	10.7	Conclusion	248				
	Refe	rences	248				
11	Life	Cycle Assessment and End of Life Materials Management	249				
	Keiti	h A. Weitz					
	11.1	Introduction	249				
	11.2 Value of Applying Life Cycle Principles and Concepts						
		to End-Of-Life Materials Management	250				
	11.3	LCA of Waste Management Versus GHG					
		Inventory/Reporting, Sustainability Reporting,					
		and Other Environmental Initiatives	251				
	11.4	Summary of Key Life Cycle Procedures and their					
		Application to End-Of-Life Systems	255				
		11.4.1 Goals and Scope	256				
		11.4.2 System Function and Functional Unit	256				
		11.4.2 Boundary Decisions	250				
		11.4.4 Concerentia Boundaries	200				
		11.4.4 Geographic boundaries	209				
		11.4.5 Time Scale Boundaries	260				
		11.4.6 Key LCA Modeling Decision Points	260				
	11.5	Overview of Existing Waste Related LCAs	261				
	11.6	Using Waste Management LCA Information					
		for Decision Making	265				
	Refe	rences	265				
10	A	lication of ICA in Mining and Minerals Processing Current					
12	Prog	reation of LCA in Mining and Minerals Processing – Current	267				
	Tiog	fams and Nonceable Gaps	207				
	Dr. A	lary Stewart, Dr. Peter nott and Mr. Koo Kouwette	0/F				
	12.1	Introduction	267				
	12.2	I ne Status Quo	268				
		12.2.1 LCA Use in the Mining and Mineral	-				
		Processing Industry	268				
		12.2.1.1 Low Overall Business Priority	271				

		12.2.2	Life Cycle	Inventory/Life Cycle Assessment in Mining	ç	
			and Proces	sing	272	
			12.2.2.1 C	Corporate Initiatives	272	
			12.2.2.2 A	Association Initiatives	273	
			12.2.2.3 S	upply Chain and Voluntary Initiatives	274	
			12.2.2.4 N	Aarket Positioning and Advocacy	276	
		12.2.3	Life Cycle	Management	276	
	12.3	What i	s LCA and I	CM Information Being Used for?	279	
		12.3.1	Internal De	ecision Taking	280	
		12.3.2	External D	ecision Taking	281	
	12.4	Gaps a	nd Constrai	nts	284	
		12.4.1	Methodolo	ogical Considerations	284	
		12.4.2	Value Chai	in Structures	286	
	12.5	Conclu	sions and R	ecommendations	288	
	Refe	rences			289	
13	Sust	ainable	Preservativ	e-Treated Forest Products,		
	Thei	r Life C	vcle Enviror	nmental Impacts, and End of		
	Life	Manage	, ment Oppo	rtunities: A Case Study	291	
	Chri	stovher	A. Bolin	5		
	13.1	Introd	uction		291	
	13.2	Life Cv	cle Invento	rv Analysis	293	
		13.2.1	Forestry an	nd Milling	293	
			13.2.1.1 F	orestry	293	
			13.2.1.2 N	Ailling	294	
			13.2.1.3 P	Properties of Wood	295	
		13.2.2	Preservativ	ve Manufacture and Treatment		
			of Lumber	Products	296	
		13.2.3	Preservativ	ve-Treated Wood Product Service Life	299	
		13.2.4	End of Life	Management	299	
			13.2.4.1 L	andfill Disposal	299	
			13.2.4.2 R	leuse	300	
			13.2.4.3 R	leuse for Energy	300	
	13.3	Energy	Reuse Con	siderations	301	
		13.3.1	Chemicals	in Preservative-treated Wood	301	
			13.3.1.1 L	umber Containing Copper-Based		
			F	reservative	301	
			13.3.1.2 L	umber Containing Boron-Based		
			F	reservatives	301	
		13.3.2	Lumber Co	ollection at the End of Service Life	302	
	13.4	Case S	tudy Scenar	ios	302	
	13.5	Carbo	Carbon Accounting, Impact Indicator Definition,			
		and Cl	assification		303	
		13.5.1	Carbon Ac	counting	303	
		13.5.2	Fossil Fuel	Usage	304	
		13.5.3	Total Energy	ЗУ	304	
		13.5.4	Other Imp	act Indicators Assessed	305	

	13.6	Lumber Life Cycle Assessment Findings	305			
	13.7	Conclusions	308			
	Refer	ences	308			
14	Build	lings, Systems Thinking, and Life Cycle Assessment	311			
	Joel A	Ann Todd				
	14.1	Introduction	311			
	14.2	Applying LCA to Buildings	314			
		14.2.1 Opportunities	314			
		14.2.2 Challenges	315			
	14.3	History and Progress in Applying LCA to Buildings	319			
		14.3.1 Databases, Tools, and Resources	319			
		14.3.1.1 AIA Environmental Resource Guide	319			
		14.3.1.2 BEES	320			
		14.3.1.3 US LCI Database	321			
		14.3.1.4 ATHENA Ecocalculator and Impact Estimator	321			
		14.3.1.5 Other Tools	321			
		14.3.2 International Standards and Codes	322			
		14.3.2.1 ISO	322			
		14.3.2.2 CEN TC350	322			
		14.3.2.3 ANSI/ASHRAE/USGBC/IES Standard 189 for				
		the Design of High-Performance Green Buildings,				
		Except Low-Rise Residential Buildings	323			
		14.3.2.4 International Green Construction Code (IGCC)	323			
		14.3.3 Assessment and Certification Systems	324			
		14.3.3.1 BREEAM	324			
		14.3.3.2 LEED	325			
		14.3.3.3 DGNB 14.2.2.4 Crean Clab as (UC)	325			
	144	14.3.3.4 Green Globes (US)	326			
	14.4 Defer	Evolution and Future Applications to the Built Environment	320			
	Kerer	ences	327			
15	Life (Cycle Assessment in Product Innovation	329			
	Nuno	ino Da Silva				
	15.1	Introduction	329			
	15.2	Background	330			
	15.3	What R&D is For	331			
	15.4	The Innovation Funnel	331			
	15.5	Idea Generation	332			
	15.6	Idea Assessment	334			
	15.7	Concept Development	335			
	15.8	Business Planning and Execution	337			
	15.9	where to Focus – Management Framework	337			
	15.10	Sustainable Portfolio Management	338			
	15.11	100IS Dete	340			
	13.12 Defe		242			
	kerer	ences	342			

16	Life Cycle Assessment as a Tool in Food Waste Reduction and Packaging Optimization – Packaging Innovation								
	and Optimization in a Life Cycle Perspective								
	Ole Jørgen Hanssen, Hanne Møller, Erik Svanes								
	and Vibeke Schakenda								
	16.1	Introd	uction		345				
	16.2	Food V	Vaste and	Packaging Optimization					
		in a Li	fe Cycle P	erspective	346				
	16.3	Princip	ples and N	Adels for Optimal Packaging					
		in a Li	fe Cycle/	Value Chain Perspective	350				
	16.4	Case S	tudies on	LCA of Food Waste and Packaging Optimization	354				
		16.4.1	Case Stu	idies on Packaging Optimization and					
			Food Wa	aste Reduction?	354				
		16.4.2	Case Stu	idy on Coffee Packing and Distribution	355				
			16.4.2.1	Packaging System and Effects of Implemented					
				Improvement Options	355				
			16.4.2.2	Effects of 20% Improvement in Strategies					
				for Packaging Optimization	356				
		16.4.3	Case study on Packing and Distribution of Whole Piece						
			of Chees	5e	356				
			16.4.3.1	Optimization of Degree of Filling on Pallet					
				for Cheese Packaging	357				
			16.4.3.2	Effects of 20% Improvement in Strategies					
				for Packaging Optimization	358				
			16.4.3.3	Comparison of the Value Chain for					
				Whole Pieces of Cheese and Sliced Cheese					
				and the Corresponding Packaging	359				
			16.4.3.4	Effects of 20% Improvement in Strategies for					
				Packaging Optimization	360				
		16.4.4	Case Stu	idy on Salad Packing and Distribution	361				
	16.5	Discus	sion and	Conclusions	363				
	Refe	rences			366				
17	Integ	gration o	of LCA ar	nd Life-Cycle Thinking within the Themes					
	of Sustainable Chemistry & Engineering								
	Shau	vn Hunt	ter, Richa	rd Helling and Dawn Shiang					
	17.1	Introd		369					
	17.2	The Fo	our Theme	es of Sustainable Chemistry & Engineering	370				
	17.3	Life Cy	ycle Asses	ssment as a Tool for Evaluating					
		SC&E	Opportur	nities	376				
		17.3.1	Importa	nce of Life Cycle Thinking for SC&E	376				
		17.3.2	What is	the Value of a Renewable Feedstock?	378				

		what is the value of a Renewable i coustoer.	0,0
		17.3.2.1 Natural Oil-Based Polyols	378
		17.3.2.2 Sugarcane-Based Polyethylene	380
	17.3.3	How Important is the Project Team's Piece	
		of the Life Cycle?	381

		17.3.3.1 New Coatings Technology	382			
		17.3.3.2 LCA of Tetrahydrofuran Synthesis in				
		High-Temperature Water	383			
		17.3.4 What is the Return on Life Cycle Investment?	384			
	17.4	LCA – One Tool in the Sustainability Toolbox	385			
		17.4.1 Screening Sustainability Assessment Tools	385			
		17.4.2 Economic Evaluation	386			
		17.4.3 Site-Specific Assessment Tools	386			
		17.4.3.1 Environmental Impact Assessment	387			
		17.4.3.2 Risk Assessment	387			
		17.4.3.3 Social Impact Assessment	387			
	17.5	Summary	388			
	Ackr	nowledgement	388			
	Refe	rences	388			
Pa	rt 3: I	LCA Supports Decision Making and Sustainability				
18	How to Approach the Assessment?					
	Iosé Potting, Shahhir Gheewala, Séhastien Bonnet					
	and	and loost van Buuren				
	18.1	Introduction	391			
	18.2	Assessment Methods	393			
		18.2.1 Technology Assessment	393			
		18.2.2 Environmental Impact Assessment	394			
		18.2.3 Risk Assessment	396			
		18.2.4 Life Cycle Assessment	398			
	18.3	Comparison of Assessment Methods	400			
	18.4	Guidance for Assessment	405			
	18.5	Discussion and Conclusions	409			
	Ackr	nowledgement	410			
	Refe	rences	410			
19	Integration of MCDA Tools in Valuation of Comparative					
	Life	Cycle Assessment	413			
	Vale	ntina Prado, Kristen Rogers and Thomas P. Seager PhD				
	19.1	19.1 Introduction				
	19.2	Current Practices in LCIA	415			
	19.3	Principles of External Normalization	416			
	19.4	Issues with External Normalization	417			
		19.4.1 Inherent Data Gaps	417			
		19.4.2 Masking Salient Aspects	417			

Masking Sallent Aspects
Compensation
Spatial Boundaries and Time Frames
Divergence in Data Bases

19.4.5Divergence in Data Bases41919.5Principles of Internal Normalization41919.5.1Compensatory Methods42019.5.2Partially Compensatory Methods421

	19.6	Weight	ing	423		
	19.7	Case 1:	Magnitude Sensitivity	424		
	19.8	Case 2:	Rank Reversal	426		
	19.9	Conclu	isions	428		
	Refer	rences		428		
20	Social Life Cycle Assessment: A Technique Providing a					
	New	Wealth	of Information to Inform Sustainability-Related			
	Deci	sion Ma	king	433		
	Catherine Benoît Norris					
	20.1	Histori	ical Development 4			
	20.2 Why Do Businesses Care?			435		
	20.3	Method	dology	436		
		20.3.1	Defining Social Issues	436		
		20.3.2	The Framework	437		
		20.3.3	Typical Phases of a Study	441		
			20.3.3.1 Iterative Process of Social Life Cycle Assessment	441		
			20.3.3.2 Goal and Scope	442		
			20.3.3.3 Life Cycle Inventory	444		
			20.3.3.4 Life Cycle Impact Assessment	444		
	20.4	SICA	20.5.5.5 Interpretation	440		
	20.4	and Inc	and other Rey Social Responsibility References	115		
	20.5	Conclu	ision	449		
	Refe	ences		450		
	1.0101	CIICCO		200		
21	Life Cycle Sustainability Analysis 4					
	Alessandra Zamagni, Jeroen Guinée, Reinout Heijungs					
	and I	Paolo M	asoni			
	21.1	LCA ar	nd Sustainability Questions	453		
		21.1.1	What is Sustainability?	453		
		21.1.2	Life Cycle Analysis and Sustainability	455		
	21.2	A Fram	nework for Life Cycle Sustainability Analysis	459		
		21.2.1	Broadening	461		
			21.2.1.1 Broadening of the Object of Analysis	461		
		21 2 2	21.2.1.2 Broadening of the Spectrum of Indicators	462		
		21.2.2	Deepening	400		
			21.2.2.1 Increasing Sophistication in LCI Modelling	400		
			21.2.2.2 Economic and Denavioral Mechanisms	407		
	21 3	Futuro	Directions for Research	400		
	21.0	21 3 1	Aligning Environmental with Economic	-07		
		21.0.1	and Social Indicators	470		
		21.3.2	Framing the Question	471		
		21.3.3	Modelling Options for Meso-Level and Economy-Wide	., 1		
		0.0	Applications	471		
	Refer	rences	* *	472		

22	Envi	ronmental Product Claims and Life Cycle Assessment	475			
	Mar	tha J. Stevenson and Wesley W. Ingwersen	_			
	22.1	Introduction	475			
	22.2	Typology of Claims: Three Different Claims per ISO Standards	477			
		22.2.1 Type I Ecolabels	477			
		22.2.2 Type II Environmental Claims	478			
		22.2.3 Type III Environmental Product Declarations	479			
		22.2.3.1 An EPD is a Document	479			
		22.2.3.2 An EPD is Primarily Based on LCA	479			
		22.2.3.3 An EPD is Developed by Following				
		a "Product Category Rule"	480			
		22.2.3.4 An EPD can Contain Information Beyond				
		the Scope of an LCA, Where Relevant to				
		that Product	480			
		22.2.4 Further Information on EPDs and PCRs	481			
		22.2.5 Reference Case Study on Dairy PCR & EPDs	481			
		22.2.5.1 Liquid Milk PCR	482			
		22.2.5.2 Granarolo Milk EPD	483			
	22.3	Other LCA-Based Product Claims	484			
	22.4	Other Relevant Environmental Information	485			
		22.4.1 Water Footprinting	486			
		22.4.2 Toxicity Risk Assessment	486			
		22.4.3 Ecosystem Services Assessment	487			
	22.5 Conclusion					
	Refe	References				
	Appendix 1: Global Update of PCR/EPD Activity					
	Appendix 2: Product Category Rules					
	App	Appendix 3: Environmental Product Declaration				
		for High-Quality Pasteurized Milk Packaged				
		in Pet Bottles	521			
Pa	rt 4: (Operationalizing LCA				
23	Build	ding Capacity for Life Cycle Assessment	- 4 -			
	in D	eveloping Countries	545			
	Prof.	Toolseeram Ramjeawon				
	23.1	Introduction	545			
	23.2	Status of LCA in Developing Countries	546			
	23.3	Challenges and opportunities	547			
		23.3.1 Challenges	547			
	00.4	23.3.2 Opportunities	549			
	23.4 23.5	A Roadmap for Capacity Building in LCA	550			
		in Developing Countries	555			
		23.5.1 Introduction of Life Cycle Topics in				
		Educational Programs and Research Activities	556			
		23.5.2 Networking	558			

		23.5.3	Setting up of a National Inventory Database		
			and Development of Tools to Set Up, Maintain		
			and Disseminate Data	558	
		23.5.4	Development of National Life Cycle		
			Impact Assessment (LCIA) Methodologies	559	
		23.5.5	Capacity Development to Apply LCA		
			in Industry and in Public Decision Making	559	
		23.5.6	Promotion of LCA Applications and Creating a Stock		
			of Success Stories and Dissemination	560	
		23.5.7	Policy Development	560	
	23.6	Conclu	isions	560	
	Refe	rences		561	
24	Envi	ronmen	tal Accountability: A New Paradigm for		
	Worl	d Trade	is Emerging	563	
	Ann	K. Ngo			
	24.1	Introdu	uction	563	
	24.2	The Pa	radigm Shift and LCA	564	
	24.3	Interna	ational Trade and LCA	568	
	24.4	Behavi	or Change and LCA	570	
		24.4.1	The Role of Businesses	571	
		24.4.2	The Role of Governments	572	
		24.4.3	The Role of Consumers	576	
		24.4.4	The Role of NGOs	577	
		24.4.5	The Role of Academia	578	
	24.5	Challe	nges and Opportunities for a World Shifting		
		to Usir	Ig LCA and Environmental Impacts as Components		
		of Reg	ulation and Commerce	580	
	App	endix I		582	
	Refe	rences		583	
	110101			000	
25	Life Cycle Knowledge Informs Greener Products 585				
	25.1 Introduction				
	25.1	Situati	on Analysis	586	
	20.2	25.2.1	How Could We Set a River on Fire?	586	
		25.2.1	After an Early I CA Study Coca-Cola Opted	500	
		20.2.2	to Challenge its Suppliers to Improve their Products		
			Rather than Simply Prohibiting the		
			Lise of Cortain Materials	587	
		2523	Duoling Dianor Dobatos Fueled the Initial	507	
		20.2.0	Understanding that all Products have Impacts		
			that may differ in Nature Scone and Medium	597	
		25.2.4	Morging found in Eluoroscont Light Bulbs is not	567	
		4J.4.4	the Predominant Source of Morgury that may		
			Enter the Environment as a Desult of Light Bulb		
			Lise and Disposal	200	
			Use and Dispusal	000	

	25.2.5	What if We would have Examined the Full Life	
		Cycle Impacts of MTBE Before it was Commercialized	
		to Reduce Smog in Cities?	590
	25.2.6	Quality and Safety are Imperative Considerations	
		in the Design and Development of Every Product	
		Made Today, but It was not Always so	591
	25.2.7	Geographical Information Systems (GIS) were Initially	
		Expensive and Data Collection was Time Consuming,	
		but Today GIS Systems are Commonplace in Most	
		Planning and Decision Support Functions	592
	25.2.8	In the 1970s, Carnival Led the Way in Making Cruising	
		Affordable for the Masses	592
25.3	Diagnostics and Interpretation		593
25.4	Conclu	Iding Remarks	595
Refe	rences		596
ex			597

Index

Preface

For a growing number of companies, global diversity is a business imperative. Manufacturing operations have increasingly become technically and geographically diverse in the sourcing of resources, manufacturing and assembly operations, usage, and final disposal. This expansion, along with a growing awareness of sustainability and the responsibilities to the environmental, economic, and social dimensions that go with it, has prompted environmental managers and decision makers everywhere to look holistically, from cradle to grave, at products and services. The need for a tool that helps users obtain data and information to accurately and consistently measure the resource consumption and environmental aspects of their activities has never been more acute. Most importantly, people now realize that decisions should not lead to improving one part of the industrial system at the expense of another. In other words, the identification and avoidance of unintended consequences are essential in the decision making process. Out of this need came Life Cycle Assessment (LCA). What started as an approach to compare the environmental goodness (greenness) of products has developed into a standardized method for providing a sound scientific basis for product stewardship in industry and government. When used within an environmental sustainability framework, LCA ultimately helps to advance the sustainability of products and processes as well as promote society's economic and social activities.

When I set out to create the "latest and greatest" book on Life Cycle Assessment (LCA), I had three very specific goals in mind. First, I wanted it to be comprehensive, covering every possible facet of methodology and application. This was quite a challenge, given the ever-growing scope that LCA has reached over the years. As can be seen in the table of contents, the subject is addressed from a wide range of perspectives and in many applications. Note, however, that this book is not a "how to" manual with step-by-step instructions for conducting an LCA. Instead, I designed this book to explain what LCA is, and, just as importantly, what it is not. The immense popularity of the "life cycle" concept led to its use in a variety of assessment approaches, even in those approaches that are focused on a single environmental aspect. For example, LCA is often used in writing about carbon accounting. In these times of heightened concern over climate change, individuals and organizations alike are eager to measure the release and impact of greenhouse gases. But the results only address climate change and not the other equally important impacts. The exact meaning of the methodology is frequently misunderstood, resulting in carbon footprint and LCA being used synonymously, and incorrectly so. By narrowing an assessment to a single issue of concern, the results will not reflect the important benefit that LCA offers of identifying potential trade-offs. There are several other similar examples, which I will not go into here. I trust that after reading this book, the differences will be clearer.

Second, I wanted the reader to hear from the experts and leaders in LCA. I asked recognized LCA professionals for their contributions. I felt it was important to hear all the representative voices from industry, academia, and of course, the LCA consultants. We even heard from non-governmental organizations (NGOs). The book contains writings from 47 authors from 10 countries. Despite their busy schedules, all of the authors came through with marvelous contributions. I give my sincere thanks to the authors for their dedication and hard work and their willingness to take time away from their extremely busy careers and lives to share their experiences, wisdom, observations, and guidance which made this book possible (the term "herding cats" was used frequently as I waited for final manuscripts). In the end, I am extremely pleased with the outcome. There is much the reader can learn by drawing from the wealth of experience and knowledge that is contained within the covers of this book.

Third, I wanted to capture the latest advancements in LCA methodology and application in one convenient place. I also wanted to indicate where further advancement in LCA is still needed. The book was designed with a particular flow in mind. It begins at the beginning, with an historical account of LCA and how it has developed over the years. The following chapters cover the basics of the LCA methodology, and discuss goal and scope definition, inventory analysis, impact assessment, and interpretation. Then, multiple examples of application are presented. This is followed by aspects of how LCA is used in decision making, and how it is now evolving as the underlying principle behind environmental sustainability. The book is best approached from beginning to end, as each chapter was designed to build on the last. However, each chapter is self-contained, and readers may benefit from skipping to the topic(s) of interest to them.

LCA and LCA-based tools give us a way to improve our understanding of the environmental impacts associated with product and process systems in order to support decision making and achieve sustainability goals. In the early 1990s (before the first ISO 14000 series on LCA was established), there was considerable confusion regarding how LCA should be conducted. Even the term itself was debated, and 'life cycle analysis' and 'life cycle assessment' were used interchangeably. Eventually, 'assessment' became the preferred choice in the ISO standards and within the LCA community. 'Analysis' is still used by some (usually those who are less familiar with LCA), but I asked the authors to use 'assessment' throughout their writing to be consistent with the ISO standard, and to appease me. Over the last 22 years, it has been fascinating to watch the evolution of LCA practice, from concept to standardized methodology and on to being the 'backbone' of sustainability.

I intend for this book to be a useful reference tool for a wide audience, including students in environmental studies, government policy makers, product designers and manufacturers, and environmental management professionals. That is, I hope it is useful to anyone who wants to implement a life cycle approach in their organization, be it in the private sector or public, as well as those who simply wish to have a better understanding of what all the fuss over LCA has been about.

Mary Ann Curran

Environmental Life Cycle Assessment: Background and Perspective

Gjalt Huppes¹ and Mary Ann Curran^{2*}

¹Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands ²US Environmental Protection Agency, Cincinnati, OH, USA

Abstract

Life Cycle Assessment (LCA) has developed into a major tool for sustainability decision support. Its relevance is yet to be judged in terms of the quality of the support it provides: does it give the information as required, or could it do a better job? This depends very much on the questions to be answered. The starting point was the application to relatively simple choices, such as making technical changes in products and choosing one material over another, with packaging as a main example. This was then followed by the use of LCA in consumer choices. Over time, there has been a shift to more encompassing questions, such as the attractiveness of biofuels and the relevance of lifestyle changes. This chapter describes the ongoing discussions on issues that still need to be addressed, such as allocation, substitution data selection, time horizon, attributional versus consequential, rebound mechanisms, and so forth. The chapter then describes how LCA might develop in the future. There are important tasks ahead for the LCA community.

Keywords: Life cycle assessment, LCA, allocation, attributional, consequential, decision support

1.1 Historical Roots of Life Cycle Assessment

The concept of exploring the life cycle of a product or function initially developed in the United States in the Fifties and Sixties within the realm of public purchasing. Back then, use cost often carried the main share of the total cost. A first mention of the life cycle concept, by that name, is by Novick (1959) in a report by the RAND Corporation, focusing on *Life Cycle Analysis* of cost. Costs of weapon systems, a main application at that time, include not only the purchasing cost, or only the use cost. They also cover the cost of

^{*} The views expressed in this chapter are those of the authors and do not necessarily reflect the views or policies of the US Environmental Protection Agency.

Mary Ann Curran (ed.) Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, (1–14) © 2012 Scrivener Publishing LLC

development and the cost of end-of-life operations. Life Cycle Analysis (not yet referred to as 'Assessment') became the tool for improved budget management, linking functionality to total cost of ownership. This was a first for government. Method issues and standardization questions soon followed. How should data on past performance be related to expected future performance? How is functionality defined? Can smaller systems like jet engines be taken out of overall airplane functioning? Should system boundaries encompass activities such as transport? How should accidents and mistakes be considered? How should overhead costs and multi-function processes be allocated? For public budget analysis, the life cycle approach led to general questions on methodology and standardization, as in Marks & Massey (1971), also linking to other "life cycle-like' tools for analysis, especially cost-benefit analysis.

The life cycle concept rapidly spread to the private sector where firms struggled with similar questions. By 1985, a survey paper (Gupta & Chow, 1985) showed over six hundred explicit life cycle studies that had been published, all focusing on relating system cost to functionality. The methodology issues were treated in an operational manner, for example by Dhillon (1989). Optimizing system development and system performance became a core goal for the now broadly applied public and private life cycle analysis of cost.

There is now over a half a century of experience with function-based life cycle analysis of system costs, see the survey in Huppes *et al.* (2004), continuing in parallel with environmental Life Cycle Assessment, or environmental LCA (moving now from 'Analysis' to 'Assessment'), and later to the life cycle concept related to Life Cycle Costing (LCC). Returning to these roots might be an interesting endeavor.

1.2 Environmental Life Cycle Concepts

This life cycle concept was already fully developed when environmental policy became a major issue in all industrialized societies, at the end of the Sixties and in the early Seventies. Environmental policies, mainly commandand-control type, were at first source-oriented with very substantial reductions in emissions being realized. It soon became clear that such end-of-pipe measures were increasingly expensive. However, other options were not easily introduced into the mainly command-and-control type regulatory framework as it had been developed. Shifts in mode of transport, for example, were clearly of broad environmental importance, but not easily brought into the regulations. The comparative analysis of such different techniques for a similar function was hardly developed in a practical way. Cost-Benefit Analysis (CBA), as an example, was focused at projects that aim to maximize welfare. It was made obligatory for environmental regulatory programs in the US, starting in 1971 with Executive Order 20503, on Quality of Life. Adapted substantially by consecutive US presidents, it still is a main contender for environmental LCA in the public domain applications, and increasingly so in the European Union (EU) as well. Environmental LCA first developed relatively unobserved by the private sector, before having the name shortened to simply "LCA" at the end of the Eighties. Both CBA and LCA have a life cycle concept at their core. The major difference between them is that CBA specifies activities in time and then uses a discounting method, in line with dominant modes of economic analysis, which is similar to the Life Cycle Analysis of cost. LCA, on the other hand, uses a timeless steady-state type of system analysis, without discounting effects. CBA also quantifies environmental effects in economic terms and then discounts them. In modeling welfare effects of climate policies, for example, the discounting mode is dominant. That dynamic analysis seems superior to the static GWP (Global Warming Potential) analysis used in LCA. How to quantify environmental effects in an economic sense and how to discount effects spread across time remains a core issue in CBA, open to further public and scientific debate. In LCA the time frame discussion is hardly present. Looped processes are not, and cannot, be specified in time. The only explicit treatment of time is found in the consideration of the different environmental themes in GWP impacts, with scores being limited to 20, 50 or 100 years, and in the toxic effects of heavy metals and the like that are assumed to extend virtually to eternity. The time frame discussion, then, might be part of Interpretation, which is problematic in itself while also hardly any guidance is given in the ISO standards or in any of the instructional guides that followed.

It would be interesting to have a discourse on overlapping issues and strategic choices in the domains of Cost-Benefit Analysis; Life Cycle Analysis of costs; and environmental Life Cycle Assessment.

1.3 LCA Links to Environmental Policy

The conceptual jump from life cycle cost analysis to the first life cycle-based waste and energy analysis, and then to the broader environmental LCA (how we view LCA today) was made through a series of small steps. Documented history starts with the famous Coca Cola study from 1969, see Hunt and Franklin (1996), who were involved in LCA right from that start. The environmental focus was on resource use and waste management, not yet the broad environmental aspects that are usual in LCA now. The broad conceptual jump to environmental LCA as contrasted with Life Cycle Analysis of cost was made in the Eighties and formalized in the Nineties with the work of SETAC and the standardization in the 14040 Series of ISO, see Klöpffer (2006). From the start with the RAND Corporation in the end of the Fifties, the system to be analyzed was clear. It should cover the supply chain, including research and development, the use stage, and the processing of wastes from all stages, including end-of-life of the product analyzed.

The link to public policy was made based on concepts first developed in the Netherlands, in the Eighties at the Department of Environmental Management headed by Pieter Winsemius. After the first stage of environmental policy, with command-and-control instruments directed at main sources, there was a shift to a systems view, and to a more general formulation of environmental policy goals in the Dutch Environmental Policy Plans, see also Winsemius (1990, original 1986). This shift from a source-oriented to an effect-oriented approach created a domain for environmental LCA from an environmental policy point of view, as contrasted to a business long-term cost view or a consumer interest point of view. Winsemius coined the environmental themes approach now dominant in LCA, looking for integration over the environmental compartments policies regarding water, air and soil. His overall policy strategy was based on now familiar themes: Acidification; eutrophication; diffusion of (toxic) substances; disposal of waste; and disturbance (including noise, odour, and local-only air pollution). Somewhat later, further national policy themes were added: climate change; dehydration; and squandering.

The theme-oriented policy formed the basis for a broadened view on environmental policy, now covering complementary entries like volume policy, product policy and substance policy. In their implementation it was no longer only chimneys and sewers but also people and organisations: the target groups of environmental policy, several groups of producers and consumers. The responsibility for consequences of actions shifted to these target groups, which had to internalise the goals of environmental policy as specified using the themes approach. If, how, and why this internalization happened is a subject of much debate; see de Roo (2003) for a first analysis. For doing so, the new metrics of the themes were most appropriate, indicating the environmental performance of business and consumers in a unified collective framework, that of (generalized) public environmental policy. Private organizations may have ideas on what themes should constitute the impact assessment. It is the collective point of view that creates the relevance of LCA outcomes. The themes approach remained specifically Dutch for a short while only. It inspired environmental policy of the EU; see the historic survey by Liefferink (1997). It was incorporated in LCA in an operational manner beginning in the Nineties, as the Life Cycle Impact Assessment method now dominant in LCA, of course with additions and adaptations. In the US the themes approach was not dominant in environmental policy, with more emphasis there on CBA. That probably was the reason that the introduction of the themes approach in environmental LCA followed later there.

It is an open question now if and how Life Cycle Impact Assessment can be linked to environmental themes as goals of public policy. These goals might be – but need not be – the goals of a specific country or of the EU. Public policy goals set as targets, for example as emission reduction targets for a substance, lack the integrative power of the themes approach. Goals set as general welfare maximation lack the link to specific domains of action. Themes can make the link. Also because product systems and LCA increasingly become global, passing the policy goals of specific countries, the foundations for the themes in LCA impact assessment should be clarified.

1.4 Micro Applications of LCA Rising

The last decades have seen a startling rise in the production of LCAs. There are consultants in virtually all countries, many with an international orientation. Databases and software have become widely available. There also are interesting in-firm developments. Two Netherlands-based firms we happen to know have their internal LCA capacity well developed, Philips and Unilever. Procter and Gamble contributes a chapter to this book on their LCA operations. The Unilever example is enlightening. They regularly produce internal LCAs on virtually all of their products, having produced well over a thousand LCAs by now. They use the LCAs for product system improvement, reducing easily avoidable impacts. These may seem tiny per product, but may be substantial from a dynamic improvement point of view. Tea bags used to have zinc plated iron staples to connect the bag and the carton handle to the connecting thread. This gave a dominant contribution to the overall life cycle impact of the tea bag system. The staples were first replaced by a glue connection and in many cases now by a sewing connection. Such product system improvement forms the core of LCA use. However, when having so many equivalent LCAs, new more strategic applications become possible. Can strategies be developed to reduce environmental impact covering more than one product, with more general guidelines for product development? Such applications are now developing in Unilever, see the box. Similarly, Philips has developed strategic guidelines at an operational level regarding the use of materials, reducing the number in each product and phasing out those with the largest contribution to environmental impacts.

LCA, in its micro level application, is now a two decade-old success story. With all caveats following, we should not throw out the baby with the bath water. LCA is here to stay, and the child is still growing.

1.5 The Micro-Macro Divide

The core goal of environmental LCA as was established in the Nineties was to help improve environmental quality, with product policy – internalized, private, and also in public regulations – as one entry into environmental policy. That role is based on the assumption that improved micro environmental performance of a product-function system corresponds to an environmental improvement at the macro level. That macro level in principle is global society at large in its environmental impacts, as product systems increasingly span the world. When looking at the mechanisms that link shifts or developments in micro level behavior to macro level performance it is perfectly clear that there is no direct correspondence. Cycling as mode of transport has a minor fraction of the impacts of car transport per kilometer traveled, but also has a minor fraction of the costs. Some elements of this discrepancy may be covered by eco-efficiency analysis of these transport systems, expressing environmental impacts not per functional unit but per Euro spent. Such micro level scores

6 LIFE CYCLE ASSESSMENT HANDBOOK

don't tell what the ultimate outcome of a shift to cycling in commuting will be. The income not spent on cars will be spent on something else, anything. The shift to cycling is also linked to a different spatial infrastructure, with different retail systems, different housing requirements, etc. Though one may be confident that this is all to the environmental good – there may be good reasons to believe so – that assessment is not just based on LCA. The analysis of the overall system effect can easily be set up in a way that cycling really is bad. If the income not spent on cars is assumed to be spent to a substantial degree on flight based holidays, the net environmental outcome of more cycling might well be negative. When reckoning with such behavioral mechanisms, the choice of mechanism will determine the outcome, quite haphazardly at the moment. So the question is if a strategy for analysis can be set up to include the most relevant mechanisms in an equitable way. The move towards consequential LCA is a possible step, but not the only one.

A core question is if dynamic, non-linear mechanisms can be incorporated in the comparative static or steady state framework of LCA, as consequential LCA. Or, should the micro level LCA technology system better be placed in a broader modeling system reckoning with income effects, dynamic market mechanisms, structural effects and constraints, and what more might be relevant? The modeling required definitely does not fit in the linear homogenous system of LCA based on matrix inversion for easy solutions. It seems wise to first investigate divergent cases with an open mind as to most relevant causalities, and to look into options for structured modeling later. Then a choice for micro-type consequential LCA might be substantiated, or not, or only for some applications.

1.6 Macro Level LCA for Policy Support

The use of LCA in public policy has been coming up, with an LCA-type of analysis being used. The domain of application of LCA has been that of specific product choices. However, the link to broader policy issues, never absent, seems on the rise. Biofuel, see below, is a major example, with unresolved discussion in the EU. The general feature of policy applications is that they should show how a change considered would work out, requiring an ex ante analysis of consequences of policy options, or an ex post analysis showing how a policy has worked out. In both cases we need to know 'how the world would have been different.' The functional unit with an arbitrary volume then is to be replaced by an analysis covering the total volumes. Policies tend to be set up in order to reach specified goals, not marginal effects of an unknown volume. Using traditional arbitrary-unit LCA for policy support assumes a correspondence between micro level LCA outcomes and macro level consequences for the choice at hand. This assumption should be substantiated. It also relates to the average versus marginal discussion, with causalities most easily established at a marginal level, but overall effects then requiring integration over all marginal changes, as increments. For substantiating the consequences of the policy choice at hand, the technical relations as covered in LCA should be part of the analysis, but also the broader behavioral mechanisms should be covered. If all mechanisms together come out negative, showing a rebound, simple LCA would have given the wrong advice.

A first step for the analysis is to place the choice in a framework of totals for society. Input-output analysis with environmental extensions can be set up in an LCA-type manner, with some details added to better cover the choice at hand. This hybrid analysis has come up as a theoretical tool, with one application related to the option of using fuel cell buses in urban transport, see Cantono *et al.* (2008). In the old Life Cycle Analysis of cost, the same link to input-output analysis was pointed out previously, see Staubus (1971). This IO framework allows one to specify one first secondary effect, the income effect. The higher cost of fuel cell buses replacing Diesel buses implies lower spending on other items, with lower environmental impacts there. However, this IO-analysis is static and cannot cover well broader causal mechanisms. Causal analysis can only be specified in time. It is the *before-after* analysis, of the situations *with-andwithout* specific alternative policies. So the second step involves a dynamic analysis, of all mechanisms leading to the overall, the macro level, consequences.

The conclusion is that for supporting policy choices with macro level consequences the arbitrary functional unit based LCA will often be too narrow to give valid answers. A broader framework for analysis is then required.

1.7 Example Biofuels

In the biofuels discussion, all levels of questions come up. They range from small-step improvement options for a given biotechnology to produce biofuels; to the comparison between different fuels, including biofuels; and to an evaluation of a global shift towards a more biobased energy system. When looking at a small system, one may assume the changes to be so small that indirect effects are negligible. But the sum of all these small changes adds up to a substantial change. A small change in biomass demand for energy will have a small effect on biomass production and a small effect on energy prices. However, such effects are additive, and often non-linearly increasing. If biofuel is relevant, it has to be produced in substantial amounts. This also holds for the minor improvement in biotechnology. So, indirect effects cannot be ignored. A next option for simplified analysis is the assumption that all mechanisms not covered remain equal or do not influence the outcome. Both assumptions generally are not true in the case of bio-energy, see the OECD (Organization for Economic Cooperation and Development) study by Doornbosch and Steenblik (2008). These should be investigated empirically. A final option is to make assumptions on the rest of the world. One may assume, for example, that all additional biomass will come from barren lands not fit for food producing agriculture. This assumption is often present in studies on second and third generation biofuels. However, the use of fertile grounds will mostly be cheaper than barren grounds to produce biomass – that is why they were barren. In

general, no mechanism exists to restrict biomass production for fuel to barren lands only. Therefore, to develop sound advice on biofuel choices we have to be comprehensive and cover 'all relevant mechanisms.'

What might these relevant mechanisms be for biofuels? A first set of mechanisms relates to the markets more or less directly involved. In the US case of corn based ethanol (first generation) or stover-based ethanol (second generation), this involves the fodder and food markets for these products. Directly connected are other products for these markets, especially wheat. Also directly linked are changes in land use, more corn and wheat pressing out other staple products like soy beans, increasing the price of soy beans a well. These three staple crops function on global markets, so even if the bioethanol is US-produced the effects are really global, in principle affecting all crops globally. The overall agricultural effect will include somewhat higher prices, an intensification of agriculture, with also higher nitrous oxides emission affecting climate, and an increase in the volume of agricultural land use. Two studies have investigated the impact on additionally induced conversion of tropical rainforest into agricultural land; see Searchinger et al. (2008) and Fargione et al. (2008). These two studies differ in set-up and outcomes and cannot directly be connected to LCA-type studies. They show however that such global effects of biofuel production cannot be neglected. One mechanism not covered by these studies is a feedback in spatial policy as has taken place in Brazil and Indonesia, with strengthened legislation and strengthened power in implementation. This administrative reaction to US, and similar EU, biofuel policy will of course have longer term effects mainly. Some of these issues will be treated in a bit more detail by Guinée in a later chapter, as the framework for Life Cycle based Sustainability Analysis (LCSA).

So here we are, with old-fashioned types of LCA studies showing how attractive biofuels may be, and a range of induced mechanisms often being detrimental in an environmental sense, both on the shorter, longer and very long term. What to do? The only answer seems to be: get on the job, make a framework for analysis, start filling in the framework with conceptual models, and produce first order quantifications on environmental outcomes. On the way to specifying the mechanisms involved one will encounter major social effects as well, with rising food prices in cities (with riots and possibly a major effect on the uprisings in the Middle East) and with rising agricultural incomes all over the world, also for the poorest farmers. How to come to an overall evaluation of several divergent effects spread out in time will be a next problem to solve, involving all problems that have already been encountered in Cost Benefit Analysis, but often have not been not solved adequately yet.

1.8 Why Environmental LCA?

The early development of cost-oriented LCA had clear goals: reducing cost while improving performance. That driver remains, with cost analysis an essential element in management accounting.