


CONTENTS

Part I: The C# Language

Chapter 1: .NET Architecture

The Relationship of C# to .NET

The Common Language Runtime

A Closer Look at Intermediate Language

Assemblies

.NET Framework Classes

Namespaces

Creating .NET Applications Using C#

The Role of C# in the .NET Enterprise

Architecture

Summary

Chapter 2: Core C#

Fundamental C#

Your First C# Program

Variables

Predefined Data Types

Flow Control

Enumerations

Namespaces

The Main() Method

More on Compiling C# Files

Console I/O

Using Comments



The C# Preprocessor Directives

C# Programming Guidelines

Summary

Chapter 3: Objects and Types

Creating and Using Classes

Classes and Structs

Classes

Anonymous Types

Structs

Weak References

Partial Classes

Static Classes

The Object Class

Extension Methods

Summary

Chapter 4: Inheritance

Inheritance

Types of Inheritance

Implementation Inheritance

Modifiers

Interfaces

Summary

Chapter 5: Generics

Generics Overview

Creating Generic Classes

Generics Features



Generic Interfaces

Generic Structs

Generic Methods

Summary

Chapter 6: Arrays and Tuples

Multiple Objects of the Same and Different Types

Simple Arrays

Multidimensional Arrays

Jagged Arrays

Array Class

Arrays as Parameters

Enumerations

Tuples

Structural Comparison

Summary

Chapter 7: Operators and Casts

Operators and Casts

Operators

Type Safety

Comparing Objects for Equality

Operator Overloading

User-Defined Casts

Summary

Chapter 8: Delegates, Lambdas, and

Events

Referencing Methods



Delegates

Lambda Expressions

Events

Summary

Chapter 9: Strings and Regular

Expressions

Examining System.String

Regular Expressions

Summary

Chapter 10: Collections

Overview

Collection Interfaces and Types

Lists

Queues

Stacks

Linked Lists

Sorted List

Dictionaries

Sets

Observable Collections

Bit Arrays

Concurrent Collections

Performance

Summary

Chapter 11: Language Integrated Query

LINQ Overview



Standard Query Operators

Parallel LINQ

Expression Trees

LINQ Providers

Summary

Chapter 12: Dynamic Language

Extensions

Dynamic Language Runtime

The Dynamic Type

Hosting the DLR ScriptRuntime

DynamicObject and ExpandoObject

Summary

Chapter 13: Asynchronous Programming

Why Asynchronous Programming Is Important

Asynchronous Patterns

Foundation of Asynchronous Programming

Error Handling

Cancellation

Summary

Chapter 14: Memory Management and

Pointers

Memory Management

Memory Management Under the Hood

Freeing Unmanaged Resources

Unsafe Code

Summary



Chapter 15: Reflection

Manipulating and Inspecting Code at Runtime

Custom Attributes

Using Reflection

Summary

Chapter 16: Errors and Exceptions

Introduction

Exception Classes

Catching Exceptions

User-Defined Exception Classes

Caller Information

Summary

Part II: Visual Studio

Chapter 17: Visual Studio 2012

Working with Visual Studio 2012

Creating a Project

Exploring and Coding a Project

Building a Project

Debugging Your Code

Refactoring Tools

Architecture Tools

Analyzing Applications

Unit Tests

Windows 8, WCF, WF, and More

Summary



Chapter 18: Deployment

Deployment as Part of the Application Life Cycle

Planning for Deployment

Traditional Deployment

ClickOnce

Web Deployment

Windows 8 Apps

Summary

Part III: Foundation

Chapter 19: Assemblies

What are Assemblies?

Application Domains

Shared Assemblies

Configuring .NET Applications

Versioning

Sharing Assemblies Between Different

Technologies

Summary

Chapter 20: Diagnostics

Diagnostics Overview

Code Contracts

Tracing

Event Logging

Performance Monitoring

Summary



Chapter 21: Tasks, Threads, and

Synchronization

Overview

Parallel Class

Tasks

Cancellation Framework

Thread Pools

The Thread Class

Threading Issues

Synchronization

Timers

Data Flow

Summary

Chapter 22: Security

Introduction

Authentication and Authorization

Encryption

Access Control to Resources

Code Access Security

Distributing Code Using Certificates

Summary

Chapter 23: Interop

.NET and COM

Using a COM Component from a .NET Client

Using a .NET Component from a COM Client

Platform Invoke

Summary



Chapter 24: Manipulating Files and The

Registry

File and the Registry

Managing the File System

Moving, Copying, and Deleting Files

Reading and Writing to Files

Mapped Memory Files

Reading Drive Information

File Security

Reading and Writing to the Registry

Reading and Writing to Isolated Storage

Summary

Chapter 25: Transactions

Introduction

Overview

Database and Entity Classes

Traditional Transactions

System.Transactions

Dependent Transactions

Isolation Level

Custom Resource Managers

File System Transactions

Summary

Chapter 26: Networking

Networking

The WebClient Class

WebRequest and WebResponse Classes



Displaying Output As an HTML Page

Utility Classes

Lower-Level Protocols

Summary

Chapter 27: Windows Services

What Is a Windows Service?

Windows Services Architecture

Creating a Windows Service Program

Monitoring and Controlling Windows Services

Troubleshooting and Event Logging

Summary

Chapter 28: Localization?

Global Markets

Namespace System.Globalization

Resources

Windows Forms Localization Using Visual Studio

Localization with ASP.NET Web Forms

Localization with WPF

A Custom Resource Reader

Creating Custom Cultures

Localization with Windows Store Apps

Summary

Chapter 29: Core XAML

Uses of XAML

XAML Foundation

Dependency Properties



Bubbling and Tunneling Events

Attached Properties

Markup Extensions

Reading and Writing XAML

Summary

Chapter 30: Managed Extensibility

Framework

Introduction

MEF Architecture

Defining Contracts

Exporting Parts

Importing Parts

Containers and Export Providers

Catalogs

Summary

Chapter 31: Windows Runtime

Overview

Windows Runtime Components

Windows 8 Apps

The Life Cycle of Applications

Application Settings

Webcam Capabilities

Summary

Part IV: Data

Chapter 32: Core ADO.NET



ADO.NET Overview

Using Database Connections

Commands

Fast Data Access: The Data Reader

Asynchronous Data Access: Using Task and Await

Managing Data and Relationships: The DataSet

Class

XML Schemas: Generating Code with XSD

Populating a DataSet

Persisting DataSet Changes

Working with ADO.NET

Summary

Chapter 33: ADO.NET Entity Framework

Programming with the Entity Framework

Entity Framework Mapping

Entities

Object Context

Relationships

Querying Data

Writing Data to the Database

Using POCO Objects

Using the Code First Programming Model

Summary

Chapter 34: Manipulating XML

XML

XML Standards Support in .NET

Introducing the System.Xml Namespace



Using System.Xml Classes

Reading and Writing Streamed XML

Using the DOM in .NET

Using XPathNavigators

XML and ADO.NET

Serializing Objects in XML

LINQ to XML and .NET

Working with Different XML Objects

Using LINQ to Query XML Documents

More Query Techniques for XML Documents

Summary

Part V: Presentation

Chapter 35: Core WPF

Understanding WPF

Shapes

Geometry

Transformation

Brushes

Controls

Layout

Styles and Resources

Triggers

Templates

Animations

Visual State Manager

3-D

Summary



Chapter 36: Business Applications with

WPF

Introduction

Menu and Ribbon Controls

Commanding

Data Binding

TreeView

DataGrid

Summary

Chapter 37: Creating Documents with WPF

Introduction

Text Elements

Flow Documents

Fixed Documents

XPS Documents

Printing

Summary

Chapter 38: Windows Store APPS

Overview

Windows 8 Modern UI Design

Sample Application Core Functionality

App Bars

Launching and Navigation

Layout Changes

Storage

Pickers

Sharing Contract



Tiles

Summary

Chapter 39: Core ASP.NET

.NET Frameworks for Web Applications

Web Technologies

Hosting and Configuration

Handlers and Modules

Global Application Class

Request and Response

State Management

Membership and Roles

Summary

Chapter 40: ASP.NET Web Forms

Overview

ASPX Page Model

Master Pages

Navigation

Validating User Input

Accessing Data

Security

Ajax

Summary

Chapter 41: ASP.NET MVC

ASP.NET MVC Overview

Defining Routes

Creating Controllers



Creating Views

Submitting Data from the Client

HTML Helpers

Creating a Data-Driven Application

Action Filters

Authentication and Authorization

ASP.NET Web API

Summary

Chapter 42: ASP.NET Dynamic Data

Overview

Creating Dynamic Data Web Applications

Customizing Dynamic Data Websites

Summary

Part VI: Communication

Chapter 43: Windows Communication

Foundation

WCF Overview

Creating a Simple Service and Client

Contracts

Service Behaviors

Binding

Hosting

Clients

Duplex Communication

Routing

Summary



Chapter 44: WCF Data Services

Overview

Custom Hosting with CLR Objects

HTTP Client Application

Queries with URLs

Using WCF Data Services with the ADO.NET Entity

Framework

Summary

Chapter 45: Windows Workflow Foundation

A Workflow Overview

Hello World

Activities

Custom Activities

Workflows

Summary

Chapter 46: Peer-to-Peer Networking

Peer-to-Peer Networking Overview

Peer Name Resolution Protocol (PNRP)

Building P2P Applications

Summary

Chapter 47: Message Queuing

Overview

Message Queuing Products

Message Queuing Architecture

Message Queuing Administrative Tools

Programming Message Queuing



Course Order Application

Receiving Results

Transactional Queues

Message Queuing with WCF

Message Queue Installation

Summary

Introduction

Advertisements



Part I

The C# Language

CHAPTER 1: .NET Architecture

CHAPTER 2: Core C#

CHAPTER 3: Objects and Types

CHAPTER 4: Inheritance

CHAPTER 5: Generics

CHAPTER 6: Arrays and Tuples

CHAPTER 7: Operators and Casts

CHAPTER 8: Delegates, Lambdas, and Events

CHAPTER 9: Strings and Regular Expressions

CHAPTER 10: Collections

CHAPTER 11: Language Integrated Query

CHAPTER 12: Dynamic Language Extensions

CHAPTER 13: Asynchronous Programming

CHAPTER 14: Memory Management and Pointers

CHAPTER 15: Reflection

CHAPTER 16: Errors and Exceptions



Chapter 1

.NET Architecture

WHAT’S IN THIS CHAPTER?

Compiling and running code that targets .NET

Advantages of Microsoft Intermediate Language (MSIL)

Value and reference types

Data typing

Understanding error handling and attributes

Assemblies, .NET base classes, and namespaces

WROX.COM CODE DOWNLOADS FOR

THIS CHAPTER

There are no code downloads for this chapter.

THE RELATIONSHIP OF C#

TO .NET
This book emphasizes that the C# language must be

considered in parallel with the .NET Framework, rather than

viewed in isolation. The C# compiler specifically targets

.NET, which means that all code written in C# always runs

within the .NET Framework. This has two important

consequences for the C# language:

1. The architecture and methodologies of C# reflect the

underlying methodologies of .NET.

2. In many cases, specific language features of C#

actually depend on features of .NET or of the .NET base



classes.

Because of this dependence, you must gain some

understanding of the architecture and methodology of .NET

before you begin C# programming, which is the purpose of

this chapter.

C# is a programming language newly designed for .NET.

and is significant in two respects:

It is specifically designed and targeted for use with

Microsoft’s .NET Framework (a feature-rich platform for

the development, deployment, and execution of

distributed applications).

It is a language based on the modern object-oriented

design methodology, and when designing it Microsoft

learned from the experience of all the other similar

languages that have been around since object-oriented

principles came to prominence 20 years ago.

C# is a language in its own right. Although it is designed to

generate code that targets the .NET environment, it is not

part of .NET. Some features are supported by .NET but not

by C#, and you might be surprised to learn that some

features of the C# language are not supported by .NET (for

example, some instances of operator overloading).

However, because the C# language is intended for use

with .NET, you must understand this Framework if you want

to develop applications in C# effectively. Therefore, this

chapter takes some time to peek underneath the surface of

.NET.

THE COMMON LANGUAGE

RUNTIME
Central to the .NET Framework is its runtime execution

environment, known as the Common Language Runtime



(CLR) or the .NET runtime. Code running under the control

of the CLR is often termed managed code.

However, before it can be executed by the CLR, any

source code that you develop (in C# or some other

language) needs to be compiled. Compilation occurs in two

steps in .NET:

1. Compilation of source code to Microsoft Intermediate

Language (IL).

2. Compilation of IL to platform-specific code by the CLR.

This two-stage compilation process is important because the

existence of the Microsoft Intermediate Language is the key

to providing many of the benefits of .NET.

IL shares with Java byte code the idea that it is a low-level

language with a simple syntax (based on numeric codes

rather than text), which can be quickly translated into

native machine code. Having this well-defined universal

syntax for code has significant advantages: platform

independence, performance improvement, and language

interoperability.

Platform Independence

First, platform independence means that the same file

containing byte code instructions can be placed on any

platform; at runtime, the final stage of compilation can then

be easily accomplished so that the code can run on that

particular platform. In other words, by compiling to IL you

obtain platform independence for .NET in much the same

way as compiling to Java byte code gives Java platform

independence.

The platform independence of .NET is only theoretical at

present because, at the time of writing, a complete

implementation of .NET is available only for Windows.

However, a partial, cross-platform implementation is

available (see, for example, the Mono project, an effort to



create an open source implementation of .NET, at www.go-

mono.com).

Performance Improvement

Although previously compared to Java, IL is actually a bit

more ambitious than Java byte code. IL is always Just-in-

Time compiled (known as JIT compilation), whereas Java

byte code was often interpreted. One of the disadvantages

of Java was that, on execution, the process to translate from

Java byte code to native executable resulted in a loss of

performance (with the exception of more recent cases in

which Java is JIT compiled on certain platforms).

Instead of compiling the entire application at one time

(which could lead to a slow startup time), the JIT compiler

simply compiles each portion of code as it is called (just in

time). When code has been compiled once, the resultant

native executable is stored until the application exits so that

it does not need to be recompiled the next time that portion

of code is run. Microsoft argues that this process is more

efficient than compiling the entire application code at the

start because of the likelihood that large portions of any

application code will not actually be executed in any given

run. Using the JIT compiler, such code can never be

compiled.

This explains why you can expect that execution of

managed IL code will be almost as fast as executing native

machine code. What it does not explain is why Microsoft

expects that you get a performance improvement. The

reason given for this is that because the final stage of

compilation takes place at runtime, the JIT compiler knows

exactly what processor type the program runs on. This

means that it can optimize the final executable code to take

advantage of any features or particular machine code

instructions offered by that particular processor.

http://www.go-mono.com/


Traditional compilers optimize the code, but they can

perform optimizations that are only independent of the

particular processor that the code runs on. This is because

traditional compilers compile to native executable code

before the software is shipped. This means that the compiler

does not know what type of processor the code runs on

beyond basic generalities, such as that it is an x86-

compatible processor or an Alpha processor.

Language Interoperability

The use of IL not only enables platform independence, but it

also facilitates language interoperability. Simply put, you

can compile to IL from one language, and this compiled

code should then be interoperable with code that has been

compiled to IL from another language.

You are probably now wondering which languages aside

from C# are interoperable with .NET. The following sections

briefly discuss how some of the other common languages fit

into .NET.

Visual Basic 2012

Visual Basic .NET 2002 underwent a complete revamp from

Visual Basic 6 to bring it up to date with the first version of

the .NET Framework. The Visual Basic language had

dramatically evolved from VB6, which this meant that VB6

was not a suitable language to run .NET programs. For

example, VB6 is heavily integrated into Component Object

Model (COM) and works by exposing only event handlers as

source code to the developer — most of the background

code is not available as source code. Not only that, it does

not support implementation inheritance, and the standard

data types that Visual Basic 6 uses are incompatible with

.NET.



Visual Basic 6 was upgraded to Visual Basic .NET in 2002,

and the changes that were made to the language are so

extensive you might as well regard Visual Basic as a new

language. Existing Visual Basic 6 code does not compile to

the present Visual Basic 2012 code (or to Visual Basic .NET

2002, 2003, 2005, 2008, and 2010 for that matter).

Converting a Visual Basic 6 program to Visual Basic 2012

requires extensive changes to the code. However, Visual

Studio 2012 (the upgrade of Visual Studio for use with .NET)

can do most of the changes for you. If you attempt to read a

Visual Basic 6 project into Visual Studio 2012, it can upgrade

the project for you, which means that it can rewrite the

Visual Basic 6 source code into Visual Basic 2012 source

code. Although this means that the work involved for you is

heavily reduced, you need to check through the new Visual

Basic 2012 code to make sure that the project still works as

intended because the conversion is not perfect.

One side effect of this language upgrade is that it is no

longer possible to compile Visual Basic 2012 to native

executable code. Visual Basic 2012 compiles only to IL, just

as C# does. If you need to continue coding in Visual Basic 6,

you can do so, but the executable code produced

completely ignores the .NET Framework, and you need to

keep Visual Studio 6 installed if you want to continue to

work in this developer environment.

Visual C++ 2012

Visual C++ 6 already had a large number of Microsoft-

specific extensions on Windows. With Visual C++ .NET,

extensions have been added to support the .NET

Framework. This means that existing C++ source code will

continue to compile to native executable code without

modification. It also means, however, that it will run

independently of the .NET runtime. If you want your C++



code to run within the .NET Framework, you can simply add

the following line to the beginning of your code:

#using <mscorlib.dll>

You can also pass the flag /clr to the compiler, which then

assumes that you want to compile to managed code and will

hence emit IL instead of native machine code. The

interesting thing about C++ is that when you compile to

managed code, the compiler can emit IL that contains an

embedded native executable. This means that you can mix

managed types and unmanaged types in your C++ code.

Thus, the managed C++ code

class MyClass 

{

defines a plain C++ class, whereas the code

ref class MyClass 

{

gives you a managed class, just as if you had written the

class in C# or Visual Basic 2012. The advantage to use

managed C++ over C# code is that you can call

unmanaged C++ classes from managed C++ code without

resorting to COM interop.

The compiler raises an error if you attempt to use features

not supported by .NET on managed types (for example,

templates or multiple inheritances of classes). You can also

find that you need to use nonstandard C++ features when

using managed classes.

Writing C++ programs that uses .NET gives you different

variants of interop scenarios. With the compiler setting /clr

for Common Language Runtime Support, you can

completely mix all native and managed C++ features. Other

options such as /clr:safe and /clr:pure restrict the use of

native C++ pointers and thus enable writing safe code like

with C# and Visual Basic.

Visual C++ 2012 enables you to create programs for the

Windows Runtime (WinRT) with Windows 8. This way C++



does not use managed code but instead accesses the WinRT

natively.

COM and COM+

Technically speaking, COM and COM+ are not technologies

targeted at .NET — components based on them cannot be

compiled into IL. (Although you can do so to some degree

using managed C++ if the original COM component were

written in C++). However, COM+ remains an important tool

because its features are not duplicated in .NET. Also, COM

components can still work — and .NET incorporates COM

interoperability features that make it possible for managed

code to call up COM components and vice versa (discussed

in Chapter 23, “Interop”). In general, you will probably find it

more convenient for most purposes to code new

components as .NET components so that you can take

advantage of the .NET base classes and the other benefits

of running as managed code.

Windows Runtime

Windows 8 offers a new runtime used by the new

applications. You can use this runtime from Visual Basic, C#,

C++, and JavaScript. When using the runtime with these

different environments, it looks different. Using it from C# it

looks like classes from the .NET Framework. Using it from

JavaScript it looks like what JavaScript developers are used

to with JavaScript libraries. And using it from C++, methods

looks like the Standard C++ Library. This is done by using

language projection. The Windows Runtime and how it looks

like from C# is discussed in Chapter 31, “Windows

Runtime.”



A CLOSER LOOK AT

INTERMEDIATE LANGUAGE
From what you learned in the previous section, Microsoft

Intermediate Language obviously plays a fundamental role

in the .NET Framework. It makes sense now to take a closer

look at the main features of IL because any language that

targets .NET logically needs to support these characteristics.

Here are the important features of IL:

Object orientation and the use of interfaces

Strong distinction between value and reference types

Strong data typing

Error handling using exceptions

Use of attributes

The following sections explore each of these features.

Support for Object Orientation

and Interfaces

The language independence of .NET does have some

practical limitations. IL is inevitably going to implement

some particular programming methodology, which means

that languages targeting it need to be compatible with that

methodology. The particular route that Microsoft has chosen

to follow for IL is that of classic object-oriented

programming, with single implementation inheritance of

classes.

In addition to classic object-oriented programming, IL also

brings in the idea of interfaces, which saw their first

implementation under Windows with COM. Interfaces built

using .NET produce interfaces that are not the same as COM

interfaces. They do not need to support any of the COM

infrastructure. (For example, they are not derived from



IUnknown and do not have associated globally unique

identifiers, more commonly known as GUIDs.) However,

they do share with COM interfaces the idea that they

provide a contract, and classes that implement a given

interface must provide implementations of the methods and

properties specified by that interface.

You have now seen that working with .NET means

compiling to IL, and that in turn means that you need to use

traditional object-oriented methodologies. However, that

alone is not sufficient to give you language interoperability.

After all, C++ and Java both use the same object-oriented

paradigms but are still not regarded as interoperable. You

need to look a little more closely at the concept of language

interoperability.

So what exactly is language interoperability?

After all, COM enabled components written in different

languages to work together in the sense of calling each

other’s methods. What was inadequate about that? COM, by

virtue of being a binary standard, did enable components to

instantiate other components and call methods or

properties against them, without worrying about the

language in which the respective components were written.

To achieve this, however, each object had to be instantiated

through the COM runtime and accessed through an

interface. Depending on the threading models of the relative

components, there may have been large performance losses

associated with marshaling data between apartments or

running components or both on different threads. In the

extreme case of components hosted as an executable rather

than DLL files, separate processes would need to be created

to run them. The emphasis was very much that components

could talk to each other but only via the COM runtime. In no

way with COM did components written in different

languages directly communicate with each other, or

instantiate instances of each other — it was always done


