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Chapter 1

.NET Architecture

WHAT’S IN THIS CHAPTER?

Compiling and running code that targets .NET

Advantages of Microsoft Intermediate Language (MSIL)

Value and reference types

Data typing

Understanding error handling and attributes

Assemblies, .NET base classes, and namespaces

WROX.COM CODE DOWNLOADS FOR

THIS CHAPTER

There are no code downloads for this chapter.

THE RELATIONSHIP OF C#

TO .NET
This book emphasizes that the C# language must be

considered in parallel with the .NET Framework, rather than

viewed in isolation. The C# compiler specifically targets

.NET, which means that all code written in C# always runs

within the .NET Framework. This has two important

consequences for the C# language:

1. The architecture and methodologies of C# reflect the

underlying methodologies of .NET.

2. In many cases, specific language features of C#

actually depend on features of .NET or of the .NET base



classes.

Because of this dependence, you must gain some

understanding of the architecture and methodology of .NET

before you begin C# programming, which is the purpose of

this chapter.

C# is a programming language newly designed for .NET.

and is significant in two respects:

It is specifically designed and targeted for use with

Microsoft’s .NET Framework (a feature-rich platform for

the development, deployment, and execution of

distributed applications).

It is a language based on the modern object-oriented

design methodology, and when designing it Microsoft

learned from the experience of all the other similar

languages that have been around since object-oriented

principles came to prominence 20 years ago.

C# is a language in its own right. Although it is designed to

generate code that targets the .NET environment, it is not

part of .NET. Some features are supported by .NET but not

by C#, and you might be surprised to learn that some

features of the C# language are not supported by .NET (for

example, some instances of operator overloading).

However, because the C# language is intended for use

with .NET, you must understand this Framework if you want

to develop applications in C# effectively. Therefore, this

chapter takes some time to peek underneath the surface of

.NET.

THE COMMON LANGUAGE

RUNTIME
Central to the .NET Framework is its runtime execution

environment, known as the Common Language Runtime



(CLR) or the .NET runtime. Code running under the control

of the CLR is often termed managed code.

However, before it can be executed by the CLR, any

source code that you develop (in C# or some other

language) needs to be compiled. Compilation occurs in two

steps in .NET:

1. Compilation of source code to Microsoft Intermediate

Language (IL).

2. Compilation of IL to platform-specific code by the CLR.

This two-stage compilation process is important because the

existence of the Microsoft Intermediate Language is the key

to providing many of the benefits of .NET.

IL shares with Java byte code the idea that it is a low-level

language with a simple syntax (based on numeric codes

rather than text), which can be quickly translated into

native machine code. Having this well-defined universal

syntax for code has significant advantages: platform

independence, performance improvement, and language

interoperability.

Platform Independence

First, platform independence means that the same file

containing byte code instructions can be placed on any

platform; at runtime, the final stage of compilation can then

be easily accomplished so that the code can run on that

particular platform. In other words, by compiling to IL you

obtain platform independence for .NET in much the same

way as compiling to Java byte code gives Java platform

independence.

The platform independence of .NET is only theoretical at

present because, at the time of writing, a complete

implementation of .NET is available only for Windows.

However, a partial, cross-platform implementation is

available (see, for example, the Mono project, an effort to



create an open source implementation of .NET, at www.go-

mono.com).

Performance Improvement

Although previously compared to Java, IL is actually a bit

more ambitious than Java byte code. IL is always Just-in-

Time compiled (known as JIT compilation), whereas Java

byte code was often interpreted. One of the disadvantages

of Java was that, on execution, the process to translate from

Java byte code to native executable resulted in a loss of

performance (with the exception of more recent cases in

which Java is JIT compiled on certain platforms).

Instead of compiling the entire application at one time

(which could lead to a slow startup time), the JIT compiler

simply compiles each portion of code as it is called (just in

time). When code has been compiled once, the resultant

native executable is stored until the application exits so that

it does not need to be recompiled the next time that portion

of code is run. Microsoft argues that this process is more

efficient than compiling the entire application code at the

start because of the likelihood that large portions of any

application code will not actually be executed in any given

run. Using the JIT compiler, such code can never be

compiled.

This explains why you can expect that execution of

managed IL code will be almost as fast as executing native

machine code. What it does not explain is why Microsoft

expects that you get a performance improvement. The

reason given for this is that because the final stage of

compilation takes place at runtime, the JIT compiler knows

exactly what processor type the program runs on. This

means that it can optimize the final executable code to take

advantage of any features or particular machine code

instructions offered by that particular processor.

http://www.go-mono.com/


Traditional compilers optimize the code, but they can

perform optimizations that are only independent of the

particular processor that the code runs on. This is because

traditional compilers compile to native executable code

before the software is shipped. This means that the compiler

does not know what type of processor the code runs on

beyond basic generalities, such as that it is an x86-

compatible processor or an Alpha processor.

Language Interoperability

The use of IL not only enables platform independence, but it

also facilitates language interoperability. Simply put, you

can compile to IL from one language, and this compiled

code should then be interoperable with code that has been

compiled to IL from another language.

You are probably now wondering which languages aside

from C# are interoperable with .NET. The following sections

briefly discuss how some of the other common languages fit

into .NET.

Visual Basic 2012

Visual Basic .NET 2002 underwent a complete revamp from

Visual Basic 6 to bring it up to date with the first version of

the .NET Framework. The Visual Basic language had

dramatically evolved from VB6, which this meant that VB6

was not a suitable language to run .NET programs. For

example, VB6 is heavily integrated into Component Object

Model (COM) and works by exposing only event handlers as

source code to the developer — most of the background

code is not available as source code. Not only that, it does

not support implementation inheritance, and the standard

data types that Visual Basic 6 uses are incompatible with

.NET.



Visual Basic 6 was upgraded to Visual Basic .NET in 2002,

and the changes that were made to the language are so

extensive you might as well regard Visual Basic as a new

language. Existing Visual Basic 6 code does not compile to

the present Visual Basic 2012 code (or to Visual Basic .NET

2002, 2003, 2005, 2008, and 2010 for that matter).

Converting a Visual Basic 6 program to Visual Basic 2012

requires extensive changes to the code. However, Visual

Studio 2012 (the upgrade of Visual Studio for use with .NET)

can do most of the changes for you. If you attempt to read a

Visual Basic 6 project into Visual Studio 2012, it can upgrade

the project for you, which means that it can rewrite the

Visual Basic 6 source code into Visual Basic 2012 source

code. Although this means that the work involved for you is

heavily reduced, you need to check through the new Visual

Basic 2012 code to make sure that the project still works as

intended because the conversion is not perfect.

One side effect of this language upgrade is that it is no

longer possible to compile Visual Basic 2012 to native

executable code. Visual Basic 2012 compiles only to IL, just

as C# does. If you need to continue coding in Visual Basic 6,

you can do so, but the executable code produced

completely ignores the .NET Framework, and you need to

keep Visual Studio 6 installed if you want to continue to

work in this developer environment.

Visual C++ 2012

Visual C++ 6 already had a large number of Microsoft-

specific extensions on Windows. With Visual C++ .NET,

extensions have been added to support the .NET

Framework. This means that existing C++ source code will

continue to compile to native executable code without

modification. It also means, however, that it will run

independently of the .NET runtime. If you want your C++



code to run within the .NET Framework, you can simply add

the following line to the beginning of your code:

#using <mscorlib.dll>

You can also pass the flag /clr to the compiler, which then

assumes that you want to compile to managed code and will

hence emit IL instead of native machine code. The

interesting thing about C++ is that when you compile to

managed code, the compiler can emit IL that contains an

embedded native executable. This means that you can mix

managed types and unmanaged types in your C++ code.

Thus, the managed C++ code

class MyClass 

{

defines a plain C++ class, whereas the code

ref class MyClass 

{

gives you a managed class, just as if you had written the

class in C# or Visual Basic 2012. The advantage to use

managed C++ over C# code is that you can call

unmanaged C++ classes from managed C++ code without

resorting to COM interop.

The compiler raises an error if you attempt to use features

not supported by .NET on managed types (for example,

templates or multiple inheritances of classes). You can also

find that you need to use nonstandard C++ features when

using managed classes.

Writing C++ programs that uses .NET gives you different

variants of interop scenarios. With the compiler setting /clr

for Common Language Runtime Support, you can

completely mix all native and managed C++ features. Other

options such as /clr:safe and /clr:pure restrict the use of

native C++ pointers and thus enable writing safe code like

with C# and Visual Basic.

Visual C++ 2012 enables you to create programs for the

Windows Runtime (WinRT) with Windows 8. This way C++



does not use managed code but instead accesses the WinRT

natively.

COM and COM+

Technically speaking, COM and COM+ are not technologies

targeted at .NET — components based on them cannot be

compiled into IL. (Although you can do so to some degree

using managed C++ if the original COM component were

written in C++). However, COM+ remains an important tool

because its features are not duplicated in .NET. Also, COM

components can still work — and .NET incorporates COM

interoperability features that make it possible for managed

code to call up COM components and vice versa (discussed

in Chapter 23, “Interop”). In general, you will probably find it

more convenient for most purposes to code new

components as .NET components so that you can take

advantage of the .NET base classes and the other benefits

of running as managed code.

Windows Runtime

Windows 8 offers a new runtime used by the new

applications. You can use this runtime from Visual Basic, C#,

C++, and JavaScript. When using the runtime with these

different environments, it looks different. Using it from C# it

looks like classes from the .NET Framework. Using it from

JavaScript it looks like what JavaScript developers are used

to with JavaScript libraries. And using it from C++, methods

looks like the Standard C++ Library. This is done by using

language projection. The Windows Runtime and how it looks

like from C# is discussed in Chapter 31, “Windows

Runtime.”



A CLOSER LOOK AT

INTERMEDIATE LANGUAGE
From what you learned in the previous section, Microsoft

Intermediate Language obviously plays a fundamental role

in the .NET Framework. It makes sense now to take a closer

look at the main features of IL because any language that

targets .NET logically needs to support these characteristics.

Here are the important features of IL:

Object orientation and the use of interfaces

Strong distinction between value and reference types

Strong data typing

Error handling using exceptions

Use of attributes

The following sections explore each of these features.

Support for Object Orientation

and Interfaces

The language independence of .NET does have some

practical limitations. IL is inevitably going to implement

some particular programming methodology, which means

that languages targeting it need to be compatible with that

methodology. The particular route that Microsoft has chosen

to follow for IL is that of classic object-oriented

programming, with single implementation inheritance of

classes.

In addition to classic object-oriented programming, IL also

brings in the idea of interfaces, which saw their first

implementation under Windows with COM. Interfaces built

using .NET produce interfaces that are not the same as COM

interfaces. They do not need to support any of the COM

infrastructure. (For example, they are not derived from



IUnknown and do not have associated globally unique

identifiers, more commonly known as GUIDs.) However,

they do share with COM interfaces the idea that they

provide a contract, and classes that implement a given

interface must provide implementations of the methods and

properties specified by that interface.

You have now seen that working with .NET means

compiling to IL, and that in turn means that you need to use

traditional object-oriented methodologies. However, that

alone is not sufficient to give you language interoperability.

After all, C++ and Java both use the same object-oriented

paradigms but are still not regarded as interoperable. You

need to look a little more closely at the concept of language

interoperability.

So what exactly is language interoperability?

After all, COM enabled components written in different

languages to work together in the sense of calling each

other’s methods. What was inadequate about that? COM, by

virtue of being a binary standard, did enable components to

instantiate other components and call methods or

properties against them, without worrying about the

language in which the respective components were written.

To achieve this, however, each object had to be instantiated

through the COM runtime and accessed through an

interface. Depending on the threading models of the relative

components, there may have been large performance losses

associated with marshaling data between apartments or

running components or both on different threads. In the

extreme case of components hosted as an executable rather

than DLL files, separate processes would need to be created

to run them. The emphasis was very much that components

could talk to each other but only via the COM runtime. In no

way with COM did components written in different

languages directly communicate with each other, or

instantiate instances of each other — it was always done


