

CONTENTS

Part I: Internals

Chapter 1: SQL Server Architecture

Introduction

Database Transactions

The Life Cycle of a Query

SQL Server’s Execution Model and the SQLOS

Summary

Chapter 2: Demystifying Hardware

The Importance of Hardware

How Workload Affects Hardware and Storage

Considerations

Processor Vendor Selection

Choosing and Configuring Hardware for

Redundancy

Hardware Comparison Tools

Summary

Chapter 3: Understanding Memory

Introduction

Physical and Virtual Memory

SQL Server Memory

Optimizing SQL Server Memory Configuration

Summary

Chapter 4: Storage Systems

Introduction

SQL Server I/O

Storage Technology

Measuring Performance

Summary

Chapter 5: Query Processing and

Execution

Introduction

Query Processing

Query Optimization

Query Plans

Executing Your Queries

Summary

Chapter 6: Locking and Concurrency

Overview

Transactions

Database Transactions

The Dangers of Concurrency

Locks

Lock Escalation

Deadlocks

Isolation Levels

Summary

Chapter 7: Latches and Spinlocks

Overview

Symptoms

Susceptible Systems

Understanding Latches and Spinlocks

Latch Types

Latch Modes

SuperLatches/Sublatches

Monitoring Latches and Spinlocks

Latch Contention Examples

Summary

Chapter 8: Knowing Tempdb

Introduction

Overview and Usage

Troubleshooting Common Issues

Configuration Best Practices

Summary

Part II: Troubleshooting Tools and

Lessons From The Field

Chapter 9: Troubleshooting Methodology

and Practices

Introduction

Approaching Problems

Defining the Problem

Data Collection

Data Analysis

Validating and Implementing Resolution

Summary

Chapter 10: Viewing Server Performance

with Perfmon and The PAL Tool

Introduction

Performance Monitor Overview

Getting More from Performance Monitor

Performance Analysis of Logs

Other PerfMon Log Analysis Tools

Summary

Chapter 11: Consolidating Data Capture

with SQLdiag

The Data Collection Dilemma

An Approach to Data Collection

Getting Friendly with SQLdiag

Using SQLdiag Configuration Manager

Employing Best Practices

Summary

Chapter 12: Bringing It All Together with

SQL Nexus

Introducing SQL Nexus

Getting Familiar with SQL Nexus

Customizing SQL Nexus

Resolving Common Issues

Summary

Chapter 13: Diagnosing SQL Server 2012

Using Extended Events

Introduction to Extended Events

Getting Familiar with Extended Events

Why you should be Using Extended Events

What are Extended Events?

Creating Extended Events Sessions in SQL Server

2012

Viewing Data Captured by Extended Events

Summary

Chapter 14: Enhancing Your

Troubleshooting Toolset with Powershell

Introducing PowerShell

Getting Started with PowerShell

Using PowerShell to Investigate Server Issues

Proactively Tuning SQL Server Performance with

PowerShell

Summary

Chapter 15: Delivering A SQL Server

Health Check

The Importance of a SQL Server Health Check

Running DMV and DMF Queries

SQL Server Builds

Database-Level Queries

Summary

Chapter 16: Delivering Manageability and

Performance

Improve Efficiency with SQL Server Manageability

Features

Manageability Enhancements in SQL Server 2012

Policy-Based Management

Other Microsoft Tools for Managing SQL Server

Summary

Chapter 17: Running SQL Server in A

Virtual Environment

The Shift to Server Virtualization

An Overview of Virtualization

Why Virtualize a Server?

Common Virtualization Products

Virtualization Concepts

Extended Features of Virtualization

Managing Contention

Identifying Candidates for Virtualization

Architecting Successful Virtual Database Servers

Monitoring Virtualized Database Servers

Summary

Introduction

Advertisements

PART I

Internals

CHAPTER 1: SQL Server Architecture

CHAPTER 2: Demystifying Hardware

CHAPTER 3: Understanding Memory

CHAPTER 4: Storage Systems

CHAPTER 5: Query Processing and Execution

CHAPTER 6: Locking and Concurrency

CHAPTER 7: Latches and Spinlocks

CHAPTER 8: Knowing Tempdb

Chapter 1

SQL Server Architecture

WHAT’S IN THIS CHAPTER?

Understanding database transactions and the ACID

properties

Architectural components used to fulfill a read request

Architectural components used to fulfill an update

request

Database recovery and the transaction log

Dirty pages, checkpoints, and the lazy writer

Where the SQLOS fits in and why it’s needed

WROX.COM CODE DOWNLOADS FOR

THIS CHAPTER

The wrox.com code downloads for this chapter are found at

www.wrox.com/remtitle.cgi?isbn=1118177657 on the

Download Code tab. The code is in the Chapter 1 download

and individually named according to the names throughout

the chapter.

INTRODUCTION
A basic grasp of SQL Server’s database engine architecture

is fundamental to intelligently approach troubleshooting a

problem, but selecting the important bits to learn about can

be challenging, as SQL Server is such a complex piece of

software. This chapter distills the core architecture of SQL

Server, putting the most important components into the

http://wrox.com/
http://www.wrox.com/remtitle.cgi?isbn=1118177657

context of executing a simple query to help you understand

the fundamentals of the core engine.

You will learn how SQL Server deals with your network

connection, unravels what you’re asking it to do, decides

how it will execute your request, and finally how data is

retrieved and modified on your behalf.

You will also discover when the transaction log is used and

how it’s affected by the configured recovery model; what

happens when a checkpoint occurs and how you can

influence the frequency; and what the lazy writer does.

The chapter starts by defining a “transaction” and

outlining the database system’s requirements to reliably

process them. You’ll then look at the life cycle of a simple

query that reads data, looking at the components employed

to return a result set, before examining how the process

differs when data needs to be modified.

Finally, you’ll learn about the components and terminology

that support the recovery process in SQL Server, and the

SQLOS “framework” that consolidates a lot of the low-level

functions required by many SQL Server components.

NOTE

Coverage of some areas of the life cycle described in this chapter is

intentionally shallow in order to keep the flow manageable; where

that’s the case, you are directed to the chapter or chapters that cover

the topic in more depth.

DATABASE TRANSACTIONS
A transaction is a unit of work in a database that typically

contains several commands that read from and write to the

database. The most well-known feature of a transaction is

that it must complete all the commands in their entirety or

none of them. This feature, called atomicity, is just one of

four properties defined in the early days of database theory

as requirements for a database transaction, collectively

known as ACID properties.

ACID Properties

The four required properties of a database transaction are

atomicity, consistency, isolation, and durability.

Atomicity

Atomicity means that all the effects of the transaction must

complete successfully or the changes are rolled back. A

classic example of an atomic transaction is a withdrawal

from an ATM machine; the machine must both dispense the

cash and debit your bank account. Either of those actions

completing independently would cause a problem for either

you or the bank.

Consistency

The consistency requirement ensures that the transaction

cannot break the integrity rules of the database; it must

leave the database in a consistent state. For example, your

system might require that stock levels cannot be a negative

value, a spare part cannot exist without a parent object, or

the data in a sex field must be male or female. In order to

be consistent, a transaction must not break any of the

constraints or rules defined for the data.

Isolation

Isolation refers to keeping the changes of incomplete

transactions running at the same time separate from one

another. Each transaction must be entirely self-contained,

and changes it makes must not be readable by any other

transaction, although SQL Server does allow you to control

the degree of isolation in order to find a balance between

business and performance requirements.

Durability

Once a transaction is committed, it must persist even if

there is a system failure — that is, it must be durable. In

SQL Server, the information needed to replay changes made

in a transaction is written to the transaction log before the

transaction is considered to be committed.

SQL Server Transactions

There are two types of transactions in SQL Server, implicit

and explicit, and they are differentiated only by the way

they are created.

Implicit transactions are used automatically by SQL Server

to guarantee the ACID properties of single commands. For

example, if you wrote an update statement that modified 10

rows, SQL Server would run it as an implicit transaction so

that the ACID properties would apply, and all 10 rows would

be updated or none of them would.

Explicit transactions are started by using the BEGIN

TRANSACTION T-SQL command and are stopped by using the

COMMIT TRANSACTION or ROLLBACK TRANSACTION commands.

Committing a transaction effectively means making the

changes within the transaction permanent, whereas rolling

back a transaction means undoing all the changes that were

made within the transaction. Explicit transactions are used

to group together changes to which you want to apply the

ACID properties as a whole, which also enables you to roll

back the changes at any point if your business logic

determines that you should cancel the change.

THE LIFE CYCLE OF A

QUERY
To introduce the high-level components of SQL Server’s

architecture, this section uses the example of a query’s life

cycle to put each component into context to foster your

understanding and create a foundation for the rest of the

book.

It looks at a basic SELECT query first in order to reduce the

scope to that of a READ operation, and then introduces the

additional processes involved for a query that performs an

UPDATE operation. Finally, you’ll read about the terminology

and processes that SQL Server uses to implement recovery

while optimizing performance.

Figure 1-1 shows the high-level components that are used

within the chapter to illustrate the life cycle of a query.

FIGURE 1-1

The Relational and Storage

Engines

As shown in Figure 1–1, SQL Server is divided into two main

engines: the Relational Engine and the Storage Engine. The

Relational Engine is also sometimes called the query

processor because its primary function is query optimization

and execution. It contains a Command Parser to check

query syntax and prepare query trees; a Query Optimizer

that is arguably the crown jewel of any database system;

and a Query Executor responsible for execution.

The Storage Engine is responsible for managing all I/O to

the data, and it contains the Access Methods code, which

handles I/O requests for rows, indexes, pages, allocations

and row versions; and a Buffer Manager, which deals with

SQL Server’s main memory consumer, the buffer pool. It

also contains a Transaction Manager, which handles the

locking of data to maintain isolation (ACID properties) and

manages the transaction log.

The Buffer Pool

The other major component you need to know about before

getting into the query life cycle is the buffer pool, which is

the largest consumer of memory in SQL Server. The buffer

pool contains all the different caches in SQL Server,

including the plan cache and the data cache, which is

covered as the sections follow the query through its life

cycle.

NOTE

The buffer pool is covered in detail in Chapter 3.

A Basic SELECT Query

The details of the query used in this example aren’t

important — it’s a simple SELECT statement with no joins, so

you’re just issuing a basic read request. It begins at the

client, where the first component you touch is the SQL

Server Network Interface (SNI).

SQL Server Network Interface

The SQL Server Network Interface (SNI) is a protocol layer

that establishes the network connection between the client

and the server. It consists of a set of APIs that are used by

both the database engine and the SQL Server Native Client

(SNAC). SNI replaces the net-libraries found in SQL Server

2000 and the Microsoft Data Access Components (MDAC),

which are included with Windows.

SNI isn’t configurable directly; you just need to configure a

network protocol on the client and the server. SQL Server

has support for the following protocols:

Shared memory — Simple and fast, shared memory is

the default protocol used to connect from a client

running on the same computer as SQL Server. It can only

be used locally, has no configurable properties, and is

always tried first when connecting from the local

machine.

TCP/IP — This is the most commonly used access

protocol for SQL Server. It enables you to connect to SQL

Server by specifying an IP address and a port number.

Typically, this happens automatically when you specify

an instance to connect to. Your internal name resolution

system resolves the hostname part of the instance name

to an IP address, and either you connect to the default

TCP port number 1433 for default instances or the SQL

Browser service will find the right port for a named

instance using UDP port 1434.

Named Pipes — TCP/IP and Named Pipes are

comparable protocols in the architectures in which they

can be used. Named Pipes was developed for local area

networks (LANs) but it can be inefficient across slower

networks such as wide area networks (WANs).

To use Named Pipes you first need to enable it in SQL

Server Configuration Manager (if you’ll be connecting

remotely) and then create a SQL Server alias, which

connects to the server using Named Pipes as the

protocol.

Named Pipes uses TCP port 445, so ensure that the

port is open on any firewalls between the two

computers, including the Windows Firewall.

VIA — Virtual Interface Adapter is a protocol that

enables high-performance communications between two

systems. It requires specialized hardware at both ends

and a dedicated connection.

Like Named Pipes, to use the VIA protocol you first

need to enable it in SQL Server Configuration Manager

and then create a SQL Server alias that connects to

the server using VIA as the protocol. While SQL Server

2012 still supports the VIA protocol, it will be removed

from a future version so new installations using this

protocol should be avoided.

Regardless of the network protocol used, once the

connection is established, SNI creates a secure connection

to a TDS endpoint (described next) on the server, which is

then used to send requests and receive data. For the

purpose here of following a query through its life cycle,

you’re sending the SELECT statement and waiting to receive

the result set.

Tabular Data Stream (TDS) Endpoints

TDS is a Microsoft-proprietary protocol originally designed

by Sybase that is used to interact with a database server.

Once a connection has been made using a network protocol

such as TCP/IP, a link is established to the relevant TDS

endpoint that then acts as the communication point

between the client and the server.

There is one TDS endpoint for each network protocol and

an additional one reserved for use by the dedicated

administrator connection (DAC). Once connectivity is

established, TDS messages are used to communicate

between the client and the server.

The SELECT statement is sent to the SQL Server as a TDS

message across a TCP/IP connection (TCP/IP is the default

protocol).

Protocol Layer

When the protocol layer in SQL Server receives your TDS

packet, it has to reverse the work of the SNI at the client

and unwrap the packet to find out what request it contains.

The protocol layer is also responsible for packaging results

and status messages to send back to the client as TDS

messages.

Our SELECT statement is marked in the TDS packet as a

message of type “SQL Command,” so it’s passed on to the

next component, the Query Parser, to begin the path toward

execution.

Figure 1-2 shows where our query has gone so far. At the

client, the statement was wrapped in a TDS packet by the

SQL Server Network Interface and sent to the protocol layer

on the SQL Server where it was unwrapped, identified as a

SQL Command, and the code sent to the Command Parser

by the SNI.

FIGURE 1-2

Command Parser

The Command Parser’s role is to handle T-SQL language

events. It first checks the syntax and returns any errors

back to the protocol layer to send to the client. If the syntax

is valid, then the next step is to generate a query plan or

find an existing plan. A query plan contains the details

about how SQL Server is going to execute a piece of code. It

is commonly referred to as an execution plan.

To check for a query plan, the Command Parser generates

a hash of the T-SQL and checks it against the plan cache to

determine whether a suitable plan already exists. The plan

cache is an area in the buffer pool used to cache query

plans. If it finds a match, then the plan is read from cache

and passed on to the Query Executor for execution. (The

following section explains what happens if it doesn’t find a

match.)

Plan Cache

Creating execution plans can be time consuming and

resource intensive, so it makes sense that if SQL Server has

already found a good way to execute a piece of code that it

should try to reuse it for subsequent requests.

The plan cache, part of SQL Server’s buffer pool, is used to

store execution plans in case they are needed later. You can

read more about execution plans and plan cache in

Chapters 3 and 5.

If no cached plan is found, then the Command Parser

generates a query tree based on the T-SQL. A query tree is

an internal structure whereby each node in the tree

represents an operation in the query that needs to be

performed. This tree is then passed to the Query Optimizer

to process. Our basic query didn’t have an existing plan so a

query tree was created and passed to the Query Optimizer.

Figure 1-3 shows the plan cache added to the diagram,

which is checked by the Command Parser for an existing

query plan. Also added is the query tree output from the

Command Parser being passed to the optimizer because

nothing was found in cache for our query.

FIGURE 1-3

Query Optimizer

The Query Optimizer is the most prized possession of the

SQL Server team and one of the most complex and

secretive parts of the product. Fortunately, it’s only the low-

level algorithms and source code that are so well protected

(even within Microsoft), and research and observation can

reveal how the Optimizer works.

It is what’s known as a “cost-based” optimizer, which

means that it evaluates multiple ways to execute a query

and then picks the method that it deems will have the

lowest cost to execute. This “method” of executing is

implemented as a query plan and is the output from the

Query Optimizer.

Based on that description, you would be forgiven for

thinking that the Optimizer’s job is to find the best query

plan because that would seem like an obvious assumption.

Its actual job, however, is to find a good plan in a

reasonable amount of time, rather than the best plan. The

optimizer’s goal is most commonly described as finding the

most efficient plan.

If the Optimizer tried to find the “best” plan every time, it

might take longer to find the plan than it would to just

execute a slower plan (some built-in heuristics actually

ensure that it never takes longer to find a good plan than it

does to just find a plan and execute it).

As well as being cost based, the Optimizer also performs

multi-stage optimization, increasing the number of decisions

available to find a good plan at each stage. When a good

plan is found, optimization stops at that stage.

The first stage is known as pre-optimization, and queries

drop out of the process at this stage when the statement is

simple enough that there can only be one optimal plan,

removing the need for additional costing. Basic queries with

no joins are regarded as “simple,” and plans produced as

such have zero cost (because they haven’t been costed)

and are referred to as trivial plans.

The next stage is where optimization actually begins, and

it consists of three search phases:

Phase 0 — During this phase the optimizer looks at

nested loop joins and won’t consider parallel operators

(parallel means executing across multiple processors

and is covered in Chapter 5).

The optimizer will stop here if the cost of the plan it

has found is < 0.2. A plan generated at this phase is

known as a transaction processing, or TP, plan.

Phase 1 — Phase 1 uses a subset of the possible

optimization rules and looks for common patterns for

which it already has a plan.

The optimizer will stop here if the cost of the plan it

has found is < 1.0. Plans generated in this phase are

called quick plans.

Phase 2 — This final phase is where the optimizer pulls

out all the stops and is able to use all of its optimization

rules. It also looks at parallelism and indexed views (if

you’re running Enterprise Edition).

Completion of Phase 2 is a balance between the cost

of the plan found versus the time spent optimizing.

Plans created in this phase have an optimization level

of “Full.”

HOW MUCH DOES IT COST?

The term cost doesn’t translate into seconds or anything meaningful;

it is just an arbitrary number used to assign a value representing the

resource cost for a plan. However, its origin was a benchmark on a

desktop computer at Microsoft early in SQL Server’s life.

In a plan, each operator has a baseline cost, which is then multiplied

by the size of the row and the estimated number of rows to get the

cost of that operator — and the cost of the plan is the total cost of all

the operators.

Because cost is created from a baseline value and isn’t related to the

speed of your hardware, any plan created will have the same cost on

every SQL Server installation (like-for-like version).

The statistics that the optimizer uses to estimate the number of rows

aren’t covered here because they aren’t relevant to the concepts

illustrated in this chapter, but you can read about them in Chapter 5.

Because our SELECT query is very simple, it drops out of the

process in the pre-optimization phase because the plan is

obvious to the optimizer (a trivial plan). Now that there is a

query plan, it’s on to the Query Executor for execution.

Query Executor

The Query Executor’s job is self-explanatory; it executes the

query. To be more specific, it executes the query plan by

working through each step it contains and interacting with

the Storage Engine to retrieve or modify data.

NOTE

The interface to the Storage Engine is actually OLE DB, which is a

legacy from a design decision made in SQL Server’s history. The

development team’s original idea was to interface through OLE DB to

allow different Storage Engines to be plugged in. However, the

strategy changed soon after that.

The idea of a pluggable Storage Engine was dropped and the

developers started writing extensions to OLE DB to improve

performance. These customizations are now core to the product; and

while there’s now no reason to have OLE DB, the existing investment

and performance precludes any justification to change it.

The SELECT query needs to retrieve data, so the request is

passed to the Storage Engine through an OLE DB interface

to the Access Methods.

Figure 1-4 shows the addition of the query plan as the

output from the Optimizer being passed to the Query

Executor. Also introduced is the Storage Engine, which is

interfaced by the Query Executor via OLE DB to the Access

Methods (coming up next).

FIGURE 1-4

Access Methods

Access Methods is a collection of code that provides the

storage structures for your data and indexes, as well as the

interface through which data is retrieved and modified. It

contains all the code to retrieve data but it doesn’t actually

perform the operation itself; it passes the request to the

Buffer Manager.

Suppose our SELECT statement needs to read just a few

rows that are all on a single page. The Access Methods code

will ask the Buffer Manager to retrieve the page so that it

can prepare an OLE DB rowset to pass back to the Relational

Engine.

Buffer Manager

The Buffer Manager, as its name suggests, manages the

buffer pool, which represents the majority of SQL Server’s

memory usage. If you need to read some rows from a page

(you’ll look at writes when we look at an UPDATE query), the

Buffer Manager checks the data cache in the buffer pool to

see if it already has the page cached in memory. If the page

is already cached, then the results are passed back to the

Access Methods.

If the page isn’t already in cache, then the Buffer Manager

gets the page from the database on disk, puts it in the data

cache, and passes the results to the Access Methods.

NOTE

The PAGEIOLATCH wait type represents the time it takes to read a data

page from disk into memory. Wait types are covered later in this

chapter.

The key point to take away from this is that you only ever

work with data in memory. Every new data read that you

request is first read from disk and then written to memory

(the data cache) before being returned as a result set.

This is why SQL Server needs to maintain a minimum level

of free pages in memory; you wouldn’t be able to read any

new data if there were no space in cache to put it first.

The Access Methods code determined that the SELECT

query needed a single page, so it asked the Buffer Manager

to get it. The Buffer Manager checked whether it already

had it in the data cache, and then loaded it from disk into

the cache when it couldn’t find it.

Data Cache

The data cache is usually the largest part of the buffer pool;

therefore, it’s the largest memory consumer within SQL

Server. It is here that every data page that is read from disk

is written to before being used.

The sys.dm_os_buffer_descriptors DMV contains one row for

every data page currently held in cache. You can use this

script to see how much space each database is using in the

data cache:

SELECT count(*)*8/1024 AS 'Cached Size (MB)'

 ,CASE database_id

 WHEN 32767 THEN 'ResourceDb'

 ELSE db_name(database_id)

 END AS 'Database'

FROM sys.dm_os_buffer_descriptors

GROUP BY db_name(database_id),database_id

ORDER BY 'Cached Size (MB)' DESC

The output will look something like this (with your own

databases, obviously):

Cached Size (MB) Database

3287 People

34 tempdb

12 ResourceDb

4 msdb

In this example, the People database has 3,287MB of data

pages in the data cache.

The amount of time that pages stay in cache is

determined by a least recently used (LRU) policy.

The header of each page in cache stores details about the

last two times it was accessed, and a periodic scan through

the cache examines these values. A counter is maintained

that is decremented if the page hasn’t been accessed for a

while; and when SQL Server needs to free up some cache,

the pages with the lowest counter are flushed first.

The process of “aging out” pages from cache and

maintaining an available amount of free cache pages for

subsequent use can be done by any worker thread after

scheduling its own I/O or by the lazy writer process, covered

later in the section “Lazy Writer.”

You can view how long SQL Server expects to be able to

keep a page in cache by looking at the

MSSQL$<instance>:Buffer Manager\Page Life Expectancy

counter in Performance Monitor. Page life expectancy (PLE)

is the amount of time, in seconds, that SQL Server expects

to be able to keep a page in cache.

Under memory pressure, data pages are flushed from

cache far more frequently. Microsoft has a long standing

recommendation for a minimum of 300 seconds for PLE but

a good value is generally considered to be 1000s of seconds

these days. Exactly what your acceptable threshold should

be is variable depending on your data usage, but more often

than not, you’ll find servers with either 1000s of seconds

PLE or a lot less than 300, so it’s usually easy to spot a

problem.

The database page read to serve the result set for our

SELECT query is now in the data cache in the buffer pool and

will have an entry in the sys.dm_os_buffer_descriptors DMV.

Now that the Buffer Manager has the result set, it’s passed

back to the Access Methods to make its way to the client.

A Basic SELECT Statement Life Cycle

Summary

Figure 1-5 shows the whole life cycle of a SELECT query,

described here:

FIGURE 1-5

1. The SQL Server Network Interface (SNI) on the client

established a connection to the SNI on the SQL Server

using a network protocol such as TCP/IP. It then created a

connection to a TDS endpoint over the TCP/IP connection

and sent the SELECT statement to SQL Server as a TDS

message.

2. The SNI on the SQL Server unpacked the TDS

message, read the SELECT statement, and passed a “SQL

Command” to the Command Parser.

3. The Command Parser checked the plan cache in the

buffer pool for an existing, usable query plan that

matched the statement received. When it didn’t find

one, it created a query tree based on the SELECT

statement and passed it to the Optimizer to generate a

query plan.

4. The Optimizer generated a “zero cost” or “trivial” plan

in the pre-optimization phase because the statement

was so simple. The query plan created was then passed

to the Query Executor for execution.

5. At execution time, the Query Executor determined

that data needed to be read to complete the query plan

so it passed the request to the Access Methods in the

Storage Engine via an OLE DB interface.

6. The Access Methods needed to read a page from the

database to complete the request from the Query

Executor and asked the Buffer Manager to provision the

data page.

7. The Buffer Manager checked the data cache to see if

it already had the page in cache. It wasn’t in cache so it

pulled the page from disk, put it in cache, and passed it

back to the Access Methods.

8. Finally, the Access Methods passed the result set back

to the Relational Engine to send to the client.

A Simple Update Query

Now that you understand the life cycle for a query that just

reads some data, the next step is to determine what

happens when you need to write data. To answer that, this

section takes a look at a simple UPDATE query that modifies

the data that was read in the previous example.

The good news is that the process is exactly the same as

the process for the SELECT statement you just looked at until

you get to the Access Methods.

The Access Methods need to make a data modification this

time, so before the I/O request is passed on, the details of

the change need to be persisted to disk. That is the job of

the Transaction Manager.

Transaction Manager

The Transaction Manager has two components that are of

interest here: a Lock Manager and a Log Manager. The Lock

Manager is responsible for providing concurrency to the

data, and it delivers the configured level of isolation (as

defined in the ACID properties at the beginning of the

chapter) by using locks.

NOTE

The Lock Manager is also employed during the SELECT query life cycle

covered earlier, but it would have been a distraction; it is mentioned

here because it’s part of the Transaction Manager, but locking is

covered in depth in Chapter 6.

The real item of interest here is actually the Log Manager.

The Access Methods code requests that the changes it

wants to make are logged, and the Log Manager writes the

changes to the transaction log. This is called write-ahead

logging (WAL).

Writing to the transaction log is the only part of a data

modification transaction that always needs a physical write

to disk because SQL Server depends on being able to reread

that change in the event of system failure (you’ll learn more

about this in the “Recovery” section coming up).

What’s actually stored in the transaction log isn’t a list of

modification statements but only details of the page

changes that occurred as the result of a modification

statement. This is all that SQL Server needs in order to undo

any change, and why it’s so difficult to read the contents of

a transaction log in any meaningful way, although you can

buy a third-party tool to help.

Getting back to the UPDATE query life cycle, the update

operation has now been logged. The actual data

modification can only be performed when confirmation is

received that the operation has been physically written to

the transaction log. This is why transaction log performance

is so crucial.

