COVERS SQL SERVER 2012

Professional

SOL Server 2012

Internals and Troubleshooting

Christian Bolton, Justin Langford, Glenn Berry, Gavin Payne, Amit Banerjee, Rob Farley

CONTENTS

Part |: Internals

Chapter 1: SQL Server Architecture

Introduction

Database Transactions

The Life Cycle of a Query

SQL Server’'s Execution Model and the SQLOS
Summary

Chapter 2: Demystifying Hardware

The Importance of Hardware

How Workload Affects Hardware and Storage
Considerations

Processor Vendor Selection

Choosing_and Configuring Hardware for
Redundancy

Hardware Comparison Tools
Summary

Chapter 3: Understanding_ Memory

Introduction

Physical and Virtual Memory

SQL Server Memory

Optimizing_SQL Server Memory Configuration
Summary

Chapter 4: Storage Systems

Introduction

SQL Server 1/0

Storage Technology
Measuring_Performance
Summary

Chapter 5: Query Processing and
Execution

Introduction

Query Processing
Query Optimization
Query Plans
Executing_Your Queries
Summary

Chapter 6: Locking_and Concurrency

Overview

Transactions

Database Transactions

The Dangers of Concurrency
Locks

Lock Escalation

Deadlocks

Isolation Levels

Summary

Chapter 7: Latches and Spinlocks

Overview

Symptoms

Susceptible Systems
Understanding_Latches and Spinlocks
Latch Types

Latch Modes
SuperLatches/Sublatches
Monitoring_Latches and Spinlocks
Latch Contention Examples
Summary

Chapter 8: Knowing Tempdb

Introduction

Overview and Usage
Troubleshooting_ Common Issues
Configuration Best Practices
Summary

Part |I: Troubleshooting_Tools and
Lessons From The Field

Chapter 9: Troubleshooting_Methodology
and Practices

Introduction

Approaching_Problems

Defining_the Problem

Data Collection

Data Analysis

Validating_and Implementing_Resolution

Summary

Chapter 10: Viewing_Server Performance
with Perfmon and The PAL Tool

Introduction

Performance Monitor Overview
Getting_More from Performance Monitor
Performance Analysis of Logs

Other PerfMon Log Analysis Tools
Summary

Chapter 11: Consolidating Data Capture
with SQLdiag
The Data Collection Dilemma
An Approach to Data Collection
Getting_Friendly with SQLdiag
Using SQLdiag_Configuration Manager
Employing_Best Practices
Summary

Chapter 12: Bringing_It All Together with
SQL Nexus

Introducing SQL Nexus
Getting_Familiar with SQL Nexus
Customizing_ SQL Nexus
Resolving_ Common Issues
Summary

Chapter 13: Diagnhosing SQL Server 2012
Using_Extended Events

Introduction to Extended Events

Getting_Familiar with Extended Events

Why you should be Using Extended Events

What are Extended Events?

Creating_Extended Events Sessions in SQL Server
2012

Viewing_Data Captured by Extended Events
Summary

Chapter 14: Enhancing_Your
Troubleshooting Toolset with Powershell

Introducing_PowerShell

Getting_Started with PowerShell
Using_PowerShell to Investigate Server Issues
Proactively Tuning SQL Server Performance with
PowerShell

Summary

Chapter 15: Delivering A SQL Server
Health Check

The Importance of a SQL Server Health Check
Running DMV and DMF Queries

SQL Server Builds

Database-Level Queries

Summary

Chapter 16: Delivering_Manageability and
Performance
Improve Efficiency with SQL Server Manageability
Features
Manageability Enhancements in SQL Server 2012
Policy-Based Management
Other Microsoft Tools for Managing_SQL Server
Summary

Chapter 17: Running SQL Server in A
Virtual Environment

The Shift to Server Virtualization

An Overview of Virtualization

Why Virtualize a Server?

Common Virtualization Products
Virtualization Concepts

Extended Features of Virtualization
Managing_Contention
Identifying_Candidates for Virtualization
Architecting_Successful Virtual Database Servers
Monitoring_Virtualized Database Servers
Summary

Introduction

Advertisements

CHAPTER 1:
CHAPTER 2:
CHAPTER 3:
CHAPTER 4:
CHAPTER 5:
CHAPTER 6:
CHAPTER 7:
CHAPTER 8:

PART |

Internals

SQL Server Architecture
Demystifying Hardware
Understanding Memory
Storage Systems

Query Processing and Execution
Locking and Concurrency
Latches and Spinlocks

Knowing Tempdb

Chapter 1l

SQL Server Architecture

WHAT'’S IN THIS CHAPTER?

» Understanding database transactions and the ACID
properties

» Architectural components used to fulfill a read request

« Architectural components used to fulfill an update
request

» Database recovery and the transaction log

» Dirty pages, checkpoints, and the lazy writer
e Where the SQLOS fits in and why it's needed

WROX.COM CODE DOWNLOADS FOR
THIS CHAPTER

The wrox.com code downloads for this chapter are found at
www.wrox.com/remtitle.cqi?isbn=1118177657 on the
Download Code tab. The code is in the Chapter 1 download
and individually named according to the names throughout
the chapter.

INTRODUCTION

A basic grasp of SQL Server’s database engine architecture
is fundamental to intelligently approach troubleshooting a
problem, but selecting the important bits to learn about can
be challenging, as SQL Server is such a complex piece of
software. This chapter distills the core architecture of SQL
Server, putting the most important components into the

http://wrox.com/
http://www.wrox.com/remtitle.cgi?isbn=1118177657

context of executing a simple query to help you understand
the fundamentals of the core engine.

You will learn how SQL Server deals with your network
connection, unravels what you're asking it to do, decides
how it will execute your request, and finally how data is
retrieved and modified on your behallf.

You will also discover when the transaction log is used and
how it's affected by the configured recovery model; what
happens when a checkpoint occurs and how you can
influence the frequency; and what the lazy writer does.

The chapter starts by defining a “transaction” and
outlining the database system’s requirements to reliably
process them. You'll then look at the life cycle of a simple
query that reads data, looking at the components employed
to return a result set, before examining how the process
differs when data needs to be modified.

Finally, you'll learn about the components and terminology
that support the recovery process in SQL Server, and the
SQLOS “framework” that consolidates a lot of the low-level
functions required by many SQL Server components.

NOTE

Coverage of some areas of the life cycle described in this chapter is
intentionally shallow in order to keep the flow manageable; where
that’s the case, you are directed to the chapter or chapters that cover
the topic in more depth.

DATABASE TRANSACTIONS

A transaction is a unit of work in a database that typically
contains several commands that read from and write to the
database. The most well-known feature of a transaction is
that it must complete all the commands in their entirety or
none of them. This feature, called atomicity, is just one of
four properties defined in the early days of database theory

as requirements for a database transaction, collectively
known as ACID properties.

ACID Properties

The four required properties of a database transaction are
atomicity, consistency, isolation, and durability.

Atomicity

Atomicity means that all the effects of the transaction must
complete successfully or the changes are rolled back. A
classic example of an atomic transaction is a withdrawal
from an ATM machine; the machine must both dispense the
cash and debit your bank account. Either of those actions
completing independently would cause a problem for either
you or the bank.

Consistency

The consistency requirement ensures that the transaction
cannot break the integrity rules of the database; it must
leave the database in a consistent state. For example, your
system might require that stock levels cannot be a negative
value, a spare part cannot exist without a parent object, or
the data in a sex field must be male or female. In order to
be consistent, a transaction must not break any of the
constraints or rules defined for the data.

Isolation

Isolation refers to keeping the changes of incomplete
transactions running at the same time separate from one
another. Each transaction must be entirely self-contained,
and changes it makes must not be readable by any other
transaction, although SQL Server does allow you to control

the degree of isolation in order to find a balance between
business and performance requirements.

Durability

Once a transaction is committed, it must persist even if
there is a system failure — that is, it must be durable. In
SQL Server, the information needed to replay changes made
in a transaction is written to the transaction log before the
transaction is considered to be committed.

SQL Server Transactions

There are two types of transactions in SQL Server, implicit
and explicit, and they are differentiated only by the way
they are created.

Implicit transactions are used automatically by SQL Server
to guarantee the ACID properties of single commands. For
example, if you wrote an update statement that modified 10
rows, SQL Server would run it as an implicit transaction so
that the ACID properties would apply, and all 10 rows would
be updated or none of them would.

Explicit transactions are started by using the BEGIN
TRANSACTION T-SQL command and are stopped by using the
COMMIT TRANSACTION Or ROLLBACK TRANSACTION commands.

Committing a transaction effectively means making the
changes within the transaction permanent, whereas rolling
back a transaction means undoing all the changes that were
made within the transaction. Explicit transactions are used
to group together changes to which you want to apply the
ACID properties as a whole, which also enables you to roll
back the changes at any point if your business logic
determines that you should cancel the change.

THE LIFE CYCLE OF A
QUERY

To introduce the high-level components of SQL Server’s
architecture, this section uses the example of a query’s life
cycle to put each component into context to foster your
understanding and create a foundation for the rest of the
book.

It looks at a basic SELECT query first in order to reduce the
scope to that of a READ operation, and then introduces the
additional processes involved for a query that performs an
UPDATE operation. Finally, you’ll read about the terminology
and processes that SQL Server uses to implement recovery
while optimizing performance.

Figure 1-1 shows the high-level components that are used
within the chapter to illustrate the life cycle of a query.

FIGURE 1-1

/’ \ r” »
A 4 . ¥ amm
Cmd Parser
|
SQL Server
Optimizer Query Executor SNI Network Interface
- r - 4 - ’
\H:Iatlonal Engine / Eﬂr;t::nl
% 7
Plan Cache
Transaction Log / \
r ~ e,
II |
1
M l\h Access Methods
Transaction Data Cache
Mgr) | || memeememeeemeeeameea—a-

Data file

Buffer
Manager
\Stnrage Engine \ _//' Buffer Pool

The Relational and Storage
Engines

As shown in Figure 1-1, SQL Server is divided into two main
engines: the Relational Engine and the Storage Engine. The
Relational Engine is also sometimes called the query
processor because its primary function is query optimization
and execution. It contains a Command Parser to check
query syntax and prepare query trees; a Query Optimizer
that is arguably the crown jewel of any database system;
and a Query Executor responsible for execution.

The Storage Engine is responsible for managing all 1/O to
the data, and it contains the Access Methods code, which
handles 1/O requests for rows, indexes, pages, allocations
and row versions; and a Buffer Manager, which deals with
SQL Server’'s main memory consumer, the buffer pool. It

also contains a Transaction Manager, which handles the
locking of data to maintain isolation (ACID properties) and
manages the transaction log.

The Buffer Pool

The other major component you need to know about before
getting into the query life cycle is the buffer pool, which is
the largest consumer of memory in SQL Server. The buffer
pool contains all the different caches in SQL Server,
including the plan cache and the data cache, which is
covered as the sections follow the query through its life
cycle.

NOTE

The buffer pool is covered in detail in Chapter 3.

A Basic SELECT Query

The details of the query used in this example aren’t
important — it's a simple SELECT statement with no joins, so
you're just issuing a basic read request. It begins at the
client, where the first component you touch is the SQL
Server Network Interface (SNI).

SQL Server Network Interface

The SQL Server Network Interface (SNI) is a protocol layer
that establishes the network connection between the client
and the server. It consists of a set of APIs that are used by
both the database engine and the SQL Server Native Client
(SNAC). SNI replaces the net-libraries found in SQL Server
2000 and the Microsoft Data Access Components (MDAC),
which are included with Windows.

SNI isn’t configurable directly; you just need to configure a
network protocol on the client and the server. SQL Server

has support for the following protocols:

« Shared memory — Simple and fast, shared memory is
the default protocol used to connect from a client
running on the same computer as SQL Server. It can only
be used locally, has no configurable properties, and is
always tried first when connecting from the local
machine.

e TCP/IP — This is the most commonly used access
protocol for SQL Server. It enables you to connect to SQL
Server by specifying an IP address and a port number.
Typically, this happens automatically when you specify
an instance to connect to. Your internal name resolution
system resolves the hostname part of the instance name
to an IP address, and either you connect to the default
TCP port number 1433 for default instances or the SQL
Browser service will find the right port for a named
instance using UDP port 1434.

« Named Pipes — TCP/IP and Named Pipes are
comparable protocols in the architectures in which they
can be used. Named Pipes was developed for local area
networks (LANs) but it can be inefficient across slower
networks such as wide area networks (WANs).

To use Named Pipes you first need to enable it in SQL
Server Configuration Manager (if you’'ll be connecting
remotely) and then create a SQL Server alias, which
connects to the server using Named Pipes as the
protocol.

Named Pipes uses TCP port 445, so ensure that the
port is open on any firewalls between the two
computers, including the Windows Firewall.

e VIA — Virtual Interface Adapter is a protocol that
enables high-performance communications between two
systems. It requires specialized hardware at both ends
and a dedicated connection.

Like Named Pipes, to use the VIA protocol you first
need to enable it in SQL Server Configuration Manager
and then create a SQL Server alias that connects to
the server using VIA as the protocol. While SQL Server
2012 still supports the VIA protocol, it will be removed
from a future version so new installations using this
protocol should be avoided.

Regardless of the network protocol used, once the
connection is established, SNI creates a secure connection
to a TDS endpoint (described next) on the server, which is
then used to send requests and receive data. For the
purpose here of following a query through its life cycle,
you're sending the SELECT statement and waiting to receive
the result set.

Tabular Data Stream (TDS) Endpoints

TDS is a Microsoft-proprietary protocol originally designed
by Sybase that is used to interact with a database server.
Once a connection has been made using a network protocol
such as TCP/IP, a link is established to the relevant TDS
endpoint that then acts as the communication point
between the client and the server.

There is one TDS endpoint for each network protocol and
an additional one reserved for use by the dedicated
administrator connection (DAC). Once connectivity is
established, TDS messages are used to communicate
between the client and the server.

The SELECT statement is sent to the SQL Server as a TDS
message across a TCP/IP connection (TCP/IP is the default
protocol).

Protocol Layer

When the protocol layer in SQL Server receives your TDS
packet, it has to reverse the work of the SNI at the client

and unwrap the packet to find out what request it contains.
The protocol layer is also responsible for packaging results
and status messages to send back to the client as TDS
messages.

Our SELECT statement is marked in the TDS packet as a
message of type “SQL Command,” so it's passed on to the
next component, the Query Parser, to begin the path toward
execution.

Figure 1-2 shows where our query has gone so far. At the
client, the statement was wrapped in a TDS packet by the
SQL Server Network Interface and sent to the protocol layer
on the SQL Server where it was unwrapped, identified as a
SQL Command, and the code sent to the Command Parser
by the SNI.

FIGURE 1-2

Language Event

4)

Cmd Parser

SAL Server
Metwork Interface

Optimizer Cuery Executor
- V' - /

Relational Engine

Command Parser

The Command Parser’'s role is to handle T-SQL language
events. It first checks the syntax and returns any errors
back to the protocol layer to send to the client. If the syntax
is valid, then the next step is to generate a query plan or
find an existing plan. A query plan contains the details

about how SQL Server is going to execute a piece of code. It
is commonly referred to as an execution plan.

To check for a query plan, the Command Parser generates
a hash of the T-SQL and checks it against the plan cache to
determine whether a suitable plan already exists. The plan
cache is an area in the buffer pool used to cache query
plans. If it finds a match, then the plan is read from cache
and passed on to the Query Executor for execution. (The
following section explains what happens if it doesn’t find a
match.)

Plan Cache

Creating execution plans can be time consuming and
resource intensive, so it makes sense that if SQL Server has
already found a good way to execute a piece of code that it
should try to reuse it for subsequent requests.

The plan cache, part of SQL Server’s buffer pool, is used to
store execution plans in case they are needed later. You can
read more about execution plans and plan cache in
Chapters 3 and 5.

If no cached plan is found, then the Command Parser
generates a query tree based on the T-SQL. A query tree is
an internal structure whereby each node in the tree
represents an operation in the query that needs to be
performed. This tree is then passed to the Query Optimizer
to process. Our basic query didn’t have an existing plan so a
query tree was created and passed to the Query Optimizer.

Figure 1-3 shows the plan cache added to the diagram,
which is checked by the Command Parser for an existing
query plan. Also added is the query tree output from the
Command Parser being passed to the optimizer because
nothing was found in cache for our query.

FIGURE 1-3

Cmd Parser

SQOL Server
Metwork Interface

Query Plan

Optimizer Cluery Executor

Relational Engine

Plan Cache

Data Cache

Buffer Pool

Query Optimizer

The Query Optimizer is the most prized possession of the
SQL Server team and one of the most complex and
secretive parts of the product. Fortunately, it's only the low-
level algorithms and source code that are so well protected
(even within Microsoft), and research and observation can
reveal how the Optimizer works.

It is what’'s known as a “cost-based” optimizer, which
means that it evaluates multiple ways to execute a query
and then picks the method that it deems will have the
lowest cost to execute. This “method” of executing is
implemented as a query plan and is the output from the
Query Optimizer.

Based on that description, you would be forgiven for
thinking that the Optimizer’s job is to find the best query
plan because that would seem like an obvious assumption.
Ilts actual job, however, is to find a good plan in a
reasonable amount of time, rather than the best plan. The
optimizer’s goal is most commonly described as finding the
most efficient plan.

If the Optimizer tried to find the “best” plan every time, it
might take longer to find the plan than it would to just
execute a slower plan (some built-in heuristics actually
ensure that it never takes longer to find a good plan than it
does to just find a plan and execute it).

As well as being cost based, the Optimizer also performs
multi-stage optimization, increasing the number of decisions
available to find a good plan at each stage. When a good
plan is found, optimization stops at that stage.

The first stage is known as pre-optimization, and queries
drop out of the process at this stage when the statement is
simple enough that there can only be one optimal plan,
removing the need for additional costing. Basic queries with
no joins are regarded as “simple,” and plans produced as
such have zero cost (because they haven’t been costed)
and are referred to as trivial plans.

The next stage is where optimization actually begins, and
it consists of three search phases:

« Phase 0 — During this phase the optimizer looks at
nested loop joins and won't consider parallel operators
(parallel means executing across multiple processors
and is covered in Chapter 5).

The optimizer will stop here if the cost of the plan it
has found is < 0.2. A plan generated at this phase is
known as a transaction processing, or TP, plan.

e Phase 1 — Phase 1 uses a subset of the possible
optimization rules and looks for common patterns for
which it already has a plan.

The optimizer will stop here if the cost of the plan it
has found is < 1.0. Plans generated in this phase are
called quick plans.

« Phase 2 — This final phase is where the optimizer pulls
out all the stops and is able to use all of its optimization
rules. It also looks at parallelism and indexed views (if
you're running Enterprise Edition).

Completion of Phase 2 is a balance between the cost
of the plan found versus the time spent optimizing.
Plans created in this phase have an optimization level
of “Full.”

HOW MUCH DOES IT COST?

The term cost doesn’t translate into seconds or anything meaningful;
it is just an arbitrary number used to assign a value representing the
resource cost for a plan. However, its origin was a benchmark on a
desktop computer at Microsoft early in SQL Server’s life.

In a plan, each operator has a baseline cost, which is then multiplied
by the size of the row and the estimated number of rows to get the
cost of that operator — and the cost of the plan is the total cost of all
the operators.

Because cost is created from a baseline value and isn’t related to the
speed of your hardware, any plan created will have the same cost on
every SQL Server installation (like-for-like version).

The statistics that the optimizer uses to estimate the number of rows
aren’t covered here because they aren’t relevant to the concepts
illustrated in this chapter, but you can read about them in Chapter 5.

Because our SELECT query is very simple, it drops out of the
process in the pre-optimization phase because the plan is
obvious to the optimizer (a trivial plan). Now that there is a
query plan, it’'s on to the Query Executor for execution.

Query Executor

The Query Executor’s job is self-explanatory; it executes the
query. To be more specific, it executes the query plan by
working through each step it contains and interacting with
the Storage Engine to retrieve or modify data.

NOTE

The interface to the Storage Engine is actually OLE DB, which is a
legacy from a design decision made in SQL Server’s history. The
development team’s original idea was to interface through OLE DB to
allow different Storage Engines to be plugged in. However, the
strategy changed soon after that.

The idea of a pluggable Storage Engine was dropped and the
developers started writing extensions to OLE DB to improve
performance. These customizations are now core to the product; and
while there’s now no reason to have OLE DB, the existing investment
and performance precludes any justification to change it.

The SELECT query needs to retrieve data, so the request is
passed to the Storage Engine through an OLE DB interface
to the Access Methods.

Figure 1-4 shows the addition of the query plan as the
output from the Optimizer being passed to the Query
Executor. Also introduced is the Storage Engine, which is
interfaced by the Query Executor via OLE DB to the Access
Methods (coming up next).

FIGURE 1-4

Qluery Tree Language Event

TDS

Query Plan 50L Server
Metwaork Interface

Plan Cache

Buffer Pool

Access Methods

Access Methods is a collection of code that provides the
storage structures for your data and indexes, as well as the
interface through which data is retrieved and modified. It
contains all the code to retrieve data but it doesn’t actually
perform the operation itself; it passes the request to the
Buffer Manager.

Suppose our SELECT statement needs to read just a few
rows that are all on a single page. The Access Methods code
will ask the Buffer Manager to retrieve the page so that it
can prepare an OLE DB rowset to pass back to the Relational
Engine.

Buffer Manager

The Buffer Manager, as its name suggests, manages the
buffer pool, which represents the majority of SQL Server’s
memory usage. If you need to read some rows from a page
(you'll look at writes when we look at an UPDATE query), the
Buffer Manager checks the data cache in the buffer pool to
see if it already has the page cached in memory. If the page
is already cached, then the results are passed back to the
Access Methods.

If the page isn’t already in cache, then the Buffer Manager
gets the page from the database on disk, puts it in the data
cache, and passes the results to the Access Methods.

NOTE

The PAGEIOLATCH wait type represents the time it takes to read a data
page from disk into memory. Wait types are covered later in this
chapter.

The key point to take away from this is that you only ever
work with data in memory. Every new data read that you
request is first read from disk and then written to memory
(the data cache) before being returned as a result set.

This is why SQL Server needs to maintain a minimum level
of free pages in memory; you wouldn’t be able to read any
new data if there were no space in cache to put it first.

The Access Methods code determined that the SELECT
query needed a single page, so it asked the Buffer Manager
to get it. The Buffer Manager checked whether it already
had it in the data cache, and then loaded it from disk into
the cache when it couldn’t find it.

Data Cache

The data cache is usually the largest part of the buffer pool;
therefore, it's the largest memory consumer within SQL

Server. It is here that every data page that is read from disk
is written to before being used.

The sys.dm os buffer descriptors DMV contains one row for
every data page currently held in cache. You can use this
script to see how much space each database is using in the

data cache:
SELECT count(*)*8/1024 AS 'Cached Size (MB)'
,CASE database id
WHEN 32767 THEN 'ResourceDb'
ELSE db name(database id)
END AS 'Database’
FROM sys.dm os buffer descriptors
GROUP BY db name(database id),database id
ORDER BY 'Cached Size (MB)' DESC

The output will look something like this (with your own

databases, obviously):
Cached Size (MB) Database

3287 People

34 tempdb

12 ResourceDb
4 msdb

In this example, the People database has 3,287MB of data
pages in the data cache.

The amount of time that pages stay in cache is
determined by a least recently used (LRU) policy.

The header of each page in cache stores details about the
last two times it was accessed, and a periodic scan through
the cache examines these values. A counter is maintained
that is decremented if the page hasn’t been accessed for a
while; and when SQL Server needs to free up some cache,
the pages with the lowest counter are flushed first.

The process of “aging out” pages from cache and
maintaining an available amount of free cache pages for
subsequent use can be done by any worker thread after
scheduling its own 1/O or by the lazy writer process, covered
later in the section “Lazy Writer.”

You can view how long SQL Server expects to be able to
keep a page in cache by looking at the
MSSQL$</instance>:Buffer Manager\Page Life Expectancy
counter in Performance Monitor. Page life expectancy (PLE)
is the amount of time, in seconds, that SQL Server expects
to be able to keep a page in cache.

Under memory pressure, data pages are flushed from
cache far more frequently. Microsoft has a long standing
recommendation for a minimum of 300 seconds for PLE but
a good value is generally considered to be 1000s of seconds
these days. Exactly what your acceptable threshold should
be is variable depending on your data usage, but more often
than not, you’'ll find servers with either 1000s of seconds
PLE or a lot less than 300, so it's usually easy to spot a
problem.

The database page read to serve the result set for our
SELECT query is now in the data cache in the buffer pool and
will have an entry in the sys.dm os buffer descriptors DMV.
Now that the Buffer Manager has the result set, it's passed
back to the Access Methods to make its way to the client.

A Basic SELECT Statement Life Cycle

Summary

Figure 1-5 shows the whole life cycle of a SELECT query,
described here:

FIGURE 1-5

Ql Language Event

Query Plan
Optimizer Query Executor

hecess Methods
Data fle ¢ || eeeeeeeeeemeeseeee—aaa--
Buffer
M
Bl Buffer Pool

Data Cache
- "y

1. The SQL Server Network Interface (SNI) on the client
established a connection to the SNI on the SQL Server
using a network protocol such as TCP/IP. It then created a
connection to a TDS endpoint over the TCP/IP connection
and sent the SELECT statement to SQL Server as a TDS
message.

2. The SNI on the SQL Server unpacked the TDS
message, read the SELECT statement, and passed a “SQL
Command” to the Command Parser.

3. The Command Parser checked the plan cache in the
buffer pool for an existing, usable query plan that
matched the statement received. When it didn't find
one, it created a query tree based on the SELECT
statement and passed it to the Optimizer to generate a
query plan.

SOL Server
Metwork Interface

Plan Cache

4. The Optimizer generated a “zero cost” or “trivial” plan
in the pre-optimization phase because the statement
was so simple. The query plan created was then passed
to the Query Executor for execution.

5. At execution time, the Query Executor determined
that data needed to be read to complete the query plan
so it passed the request to the Access Methods in the
Storage Engine via an OLE DB interface.

6. The Access Methods needed to read a page from the
database to complete the request from the Query
Executor and asked the Buffer Manager to provision the
data page.

7. The Buffer Manager checked the data cache to see if
it already had the page in cache. It wasn’t in cache so it
pulled the page from disk, put it in cache, and passed it
back to the Access Methods.

8. Finally, the Access Methods passed the result set back
to the Relational Engine to send to the client.

A Simple Update Query

Now that you understand the life cycle for a query that just
reads some data, the next step is to determine what
happens when you need to write data. To answer that, this
section takes a look at a simple UPDATE query that modifies
the data that was read in the previous example.

The good news is that the process is exactly the same as
the process for the SELECT statement you just looked at until
you get to the Access Methods.

The Access Methods need to make a data modification this
time, so before the I/O request is passed on, the details of
the change need to be persisted to disk. That is the job of
the Transaction Manager.

Transaction Manager

The Transaction Manager has two components that are of
interest here: a Lock Manager and a Log Manager. The Lock
Manager is responsible for providing concurrency to the
data, and it delivers the configured level of isolation (as
defined in the ACID properties at the beginning of the
chapter) by using locks.

NOTE

The Lock Manager is also employed during the SELECT query life cycle
covered earlier, but it would have been a distraction; it is mentioned
here because it’s part of the Transaction Manager, but locking is
covered in depth in Chapter 6.

The real item of interest here is actually the Log Manager.
The Access Methods code requests that the changes it
wants to make are logged, and the Log Manager writes the
changes to the transaction log. This is called write-ahead
logging (WAL).

Writing to the transaction log is the only part of a data
modification transaction that always needs a physical write
to disk because SQL Server depends on being able to reread
that change in the event of system failure (you’ll learn more
about this in the “Recovery” section coming up).

What's actually stored in the transaction log isn’t a list of
modification statements but only details of the page
changes that occurred as the result of a modification
statement. This is all that SQL Server needs in order to undo
any change, and why it’'s so difficult to read the contents of
a transaction log in any meaningful way, although you can
buy a third-party tool to help.

Getting back to the upDATE query life cycle, the update
operation has now been logged. The actual data
modification can only be performed when confirmation is
received that the operation has been physically written to
the transaction log. This is why transaction log performance
is so crucial.

