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PREFACE

A KINASE FOR ALL SEASONS

In the twilight of his scientific life, the Nobel laureate Edwin G. Krebs became more 
and more attracted by protein kinase CK2. In a 1999 paper (Mol. Cell. Biochem. 
191: 3–12), tellingly entitled “CK2, a protein kinase of the next millennium,” he 
wrote that such a title was “intended to emphasize the fact that CK2 is such a rich 
topic for investigation that research involving this enzyme will continue for decades 
to come.” This statement is one of the justifications for devoting an entire book to 
an individual member of the human “kinome,” a huge gene family including more 
than 500 enzymes.

Indeed the long history of CK2, from its early—and in some ways “premature”—
discovery in 1954 to the present day, is unique and paradoxical in several respects. 
CK2 activity was the first example of an enzymatic phosphorylation reaction affect-
ing a protein rather than a small metabolite, leading Eugene Kennedy to coin the 
term “protein (phospho) kinase” (J. Biol. Chem. 211:: 969–980, 1954). For decades, 
however, and at variance with other protein kinases discovered between 1955 and 
1980, notably phophorylase kinase, PKA, PKG, and PKC, which were immediately 
recognized to participate in signal transduction pathways, the biological role of CK2 
remained obscure. Indeed, its physiological targets remained entirely unknown for 
many years, its activity being measured in vitro with proteins that were not its physi-
ological target, such as casein, leading to it being “misnamed” “casein kinase 2,” a 
historical name still hinted at by its current acronym of CK2.

The first physiological targets of CK2 were discovered in the late 1970s, causing 
CK2 to be independently “re-discovered” by a number of researchers working in 
different areas, for example as a “glycogen synthase kinase 5” (GSK-5) (Cohen P 
et al. Eur. J. Biochem. 124: 21–35, 1982) and a “Troponin-T kinase” (Villar-Palasi 
C et al. J. Biol. Chem. 256:7409–7415, 1981), as has been discussed elsewhere 
(Pinna LA Cell. Mol. Biol. Res. 40:391–399, 1994). Later, by a remarkable “snow-
balling” effect, the pleiotropy of CK2 eventually came to surpass that of any other 
individual protein kinase, with more than 300 substrates identified by 2003 (Meggio 
F and Pinna LA FASEB J. 17:349368, 2003). However, even this number is a huge 
underestimate of the total number of CK2 substrates that undoubtedly exist, bearing 
in mind that recent proteomic analyses have revealed that a large proportion of natu-
rally occurring phosphorylation sites in proteins display the unique acidic motif 
C-terminal to the phosphorylated residue that is recognized specifically by CK2. 
This suggests that more than 20% of the entire human phosphoproteome may be 
generated by this individual protein kinase (see Salvi and Cesaro’s discussion in 
Chapter 3 of this book).

The pleiotropy of CK2 is now considered to be just one facet of this remarkable 
enzyme, its unique feature being its “constitutive” activity, an intriguing property 
whose structural basis is discussed by Niefind and Battistutta in the first chapter of 
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this book. This is in contrast to many other protein kinases, which are silent under 
basal conditions and only become active in response to specific stimuli. CK2 seems 
to always be present in cells in an active conformation, without the need of phos-
phorylation events to sustain its activity. In this respect, it is therefore quite different 
from kinases that participate in signaling “cascades.” However, to exclude CK2 from 
participation in signaling pathways would be an incorrect inference, contradicted by 
the overwhelming evidence that CK2 impinges on many signaling pathways, but in 
a unique “lateral” fashion rather than a “vertical” linear manner (see Chapter 5 by 
Gabriel and Litchfield and Chapter 11 by Ruzzene in this book).

Constitutive activity also underlies another paradox of CK2: many oncogenes 
encode protein kinases endowed with inappropriate activity or a gain of function 
mutation. Although this might appear to exclude CK2 from being an oncogene, since 
no gain of function mutations have ever been reported, nonetheless CK2 is clearly 
implicated in many cell biology phenomena that are associated with cancer, and the 
expression and activity of this protein kinase is invariably high in malignant cells 
compared to untransformed cells. This issue is dealt with in several chapters of this 
book. An attractive explanation for this apparent contradiction seems to be that 
diverse neoplastic cells become “addicted” to abnormally high levels of CK2 to such 
an extent that pharmacological downregulation of CK2 can reverse the tumorigenic 
phenotype. There are two important consequences of this situation. Firstly, cells 
where CK2 is abnormally high are “predisposed” to malignant transformation, thus 
deserving the neologism “oncophilic” cells (Ruzzene et al. Mol. Cell. Biochem. 356: 
5–10, 2011). Secondly, CK2 may represent a pharmacological target for the treat-
ment of a wide range of neoplastic diseases. The structures and mode of binding of 
several inhibitors in complex with CK2 are described in the first chapter of this 
book, and a potent and selective CK2 inhibitor is now undergoing clinical trials for 
the treatment of different kinds of tumors as discussed in detail by Drygin in the 
last chapter of this book.

Another consequence of the constitutive activity of CK2 is that many viruses and 
other infectious agents have learned how to exploit its presence in the host cell for 
the phosphorylation of proteins that are essential to their life cycle. Therefore, CK2 
also represents an attractive target for anti-infectious therapies although in contrast 
to cancer, where a partial downregulation of abnormally high CK2 activity may 
suffice, the suppression of host cell CK2 activity may have undesired consequences 
that still have to be evaluated. Other pathologies where an involvement of CK2 is 
suspected, mostly based on the scrutiny of its protein targets, are neurodegenerative 
syndromes, cardiovascular diseases, inflammation, and cystic fibrosis as reviewed 
by Guerra and Issinger (Curr Med Chem. 15:1870–86, 2008). In these cases, 
however, the roles of CK2 still need to be unravelled, and it is unclear whether any 
beneficial effects will come from downregulation or upregulation of CK2 activity.

The widespread and continuously increasing interest in CK2 in the scientific 
community is obvious from even a cursory scrutiny of the literature, the number of 
paper mentioning “CK2” in their title rising from 94 in 2000, to 159 in 2005, and 
329 in 2011. This mainly reflects the increasing numbers of investigators who are 
inevitably coming across this kinase in the course of their studies. Although the 
“love affair” of most scientists with CK2 is transient, there remains a hard core 
group of “CK2 addicted” labs where this topic has been studied for decades, and 
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this community of CK2 investigators meets periodically to discuss their most recent 
findings and to try to delineate new perspectives in the field. The first conference 
was held in Heidelberg, Germany, in 1994, followed by other conferences in Villard 
de Lans, near Grenoble, France (1997), in San Esteban, Chile (2001), in London, 
Ontario, Canada (2004), in Padua, Italy (2007), and in Cologne, Germany (2010). 
These international conferences on CK2 have been sponsored and generously sup-
ported by IUBMB. It is therefore not surprising that a book of the Wiley-IUBMB 
series is now devoted to CK2.

The first part of this book will deal with structural aspects underlying the unique 
properties of CK2, its specific susceptibility to pharmacological inhibition, and its 
extraordinary pleiotropy. In the second part, the fundamental role of CK2 in a wide 
number of biological functions will be illustrated, and the third part will be devoted 
to the potential roles of CK2 in malignancy, which is providing new strategies and 
tools to treat neoplasia.

Chapter 1 by Karsten Niefind and Roberto Battistutta provides a thorough and 
detailed overview of present knowledge about structural features that underlie the 
enigmatic mode of regulation of CK2 and its susceptibility to a wide spectrum of 
potent, selective, and cell permeable inhibitors that are invaluable in helping to 
dissect the cellular functions of this kinase, as well as to counteract its oncogenic 
role. This theme will be exemplified throughout the book.

Chapters 2 and 3, by Mathias Montenarh and Claudia Götz and by Mauro Salvi 
and Luca Cesaro, respectively, deal with the pleiotropic nature of CK2 function, by 
presenting an updated repertoire of its interacting partners and a proteomic analysis 
that supports the concept that a substantial proportion of the whole human phosphor-
proteome is generated by this single kinase.

A global view of the biological role of CK2 from both an embryogenetic and 
phylogenetic standpoint is provided by Isabel Dominguez and collaborators in 
Chapter 4, where the phenotypes of CK2 deregulation in model organisms, with 
special reference to yeast, C. elegans, Drosophila, and mouse are described.

Chapter 5 by Michelle Gabriel and David Litchfield mainly focuses on the unusual 
mode of operation of CK2 in signaling pathways and on devices by which the appar-
ent “lack of control” of CK2 can be overcome. In this connection, special reference 
is made to “substrate level regulation” mediated by hierarchical phosphorylation.

The next three chapters by David Meek, Yoshihiko Miyata, and Olaf-Georg Iss-
inger and Barbara Guerra, respectively, deal with specific and relevant aspects of 
CK2 functionality, namely its potential role in the regulation of the tumor suppressor 
protein p53 (Chapter 6), its role in the Hsp90 chaperone machinery, which is essen-
tial for the survival of the “onco-kinome” (Chapter 7), and its involvement in cell 
survival (Chapter 8).

Chapter 9 by Montserrat Pagès and collaborators is entirely devoted to the distinc-
tive properties of CK2 in plants, where unique structural features of the kinase may 
reflect roles in a variety of specialized functions.

Chapter 10 is an introduction to the implied involvement of CK2 in neoplasia, 
where David Seldin and Esther Landesman-Bollag summarize studies that have 
proved that CK2 has the capability to act as an oncogene. They also show that the 
overexpression of CK2 is associated with reduced survival and with invasiveness of 
cancer cells.
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In a similar vein, albeit from a different angle, Maria Ruzzene provides evidence 
in Chapter 11 for a “vicious circle” whereby cells sporadically expressing abnor-
mally high levels of CK2 are predisposed to malignancy if an oncogenic mutation 
occurs, leading to the selective increase of these cells, which in turn are more sus-
ceptible than “normal” cells to the cytotoxic efficacy of CK2 inhibitors.

The concept that malignant cells are more susceptible to loss of CK2 activity than 
normal cells is also dealt with by Khalil Ahmed and collaborators in Chapter 12, 
whose important message is that CK2 is deregulated in all cancers examined and 
that its downregulation results in potent induction of apoptosis. The authors also 
describe recent progress in targeting CK2 cancer cells in a specific manner, leading 
to eradication of the cancer.

An overview of the role of CK2 in normal and malignant hematopoiesis is pre-
sented by Francesco Piazza in Chapter 13, showing that CK2 is upregulated in a 
variety of acute and chronic lymphoid and myeloid malignancies and suggesting 
that this protein kinase could be a suitable therapeutic target in these cases.

The role of CK2 in the progression of breast carcinoma through its control of 
epithelial cell plasticity is the topic addressed by Claude Cochet, Alexandre Deshiere, 
and Odile Filhol in Chapter 14, where the authors describe an unbalanced expression 
of CK2 subunits in a subset of breast tumor samples providing a detailed explanation 
for the molecular events underlying this process.

In Chapter 15, Denis Drygin provides a thorough and stringent survey of argu-
ments supporting the concept that CK2 is a “logical target” in cancer therapy, 
especially if its inhibition is combined with chemotherapeutic agents. In that chapter, 
the efficacy of CK2 inhibitors whose mode of action is detailed at the molecular 
level in Chapter 1, is highlighted by showing how the “first-in-class” CK2 inhibitors 
have entered clinical trials. This has demonstrated for the first time that CK2 can be 
safely and extensively inhibited in humans without unacceptable side effects.

Needless to say, I am enormously grateful to all of the authors for having partici-
pated in this editorial enterprise and for having provided such an excellent series of 
contributions.

I also wish to thank Professor Angelo Azzi, President of the IUBMB Executive 
Committee, Professor Willy Stalmans, Chairman of the IUBMB Publication Port-
folio, and Professor William J. Whelan, Editor-in-Chief, IUBMB Life, for having 
given me the opportunity to crown my academic career by editing a book devoted 
entirely to my “favorite” enzyme, which has monopolized my attention for decades 
and I hope will continue to keep me busy scientifically in the future.

Special thanks also to Justin Jeffryes, Wiley’s Executive Editor, for his encourage-
ment and continuous support, to Anna Ehler for her invaluable help in editorial 
matters, and to Luca Cesaro for his help in collecting and assembling the authors’ 
contributions and for preparing the cover figure of the book.

Lorenzo A. Pinna
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INTRODUCTION

“Protein Kinase CK2: A Challenge to Canons”

Protein kinase CK2—more precisely its catalytic subunit CK2α—is one of 518 
protein kinases of the human kinome (Manning et al., 2002). Like all protein 
kinases, it catalyzes the transfer of the terminal phospho group of a nucleotide to a 
substrate protein (Figure 1.1).

CK2 is not an “atypical” protein kinase (APK), meaning CK2α is one of those 
478 human protein kinases related by significant sequence homology and is a 
member of the eukaryotic protein kinase (EPK) superfamily (Hanks and Hunter, 
1995). Nevertheless, CK2 is “a challenge to canons” according to a commentary by 
Pinna (2002) in which the author emphasized some features of CK2 non-canonical 
within this EPK superfamily.

In fact, since its first mentioning in the literature nearly 60 years ago (Burnett 
and Kennedy, 1954), the particular enzymological profile of CK2 emerged in con-
tinuous comparison to the increasing list of EPKs, and during this process, a number 
of exceptional properties stood out. For some of them, the unconventional character 
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was relativized with increasing knowledge about EPKs while for others it was 
intensified, but as a whole, they define the unorthodox nature of CK2.

Acidophilic and Pleiotropic Features
From the beginning, acidic phosphoproteins like casein or phosvitin (Rodnight and 
Levin, 1964) served as artificial and eponymous substrates, whereas other early 
EPKs like glycogen phosphorylase kinase (Krebs and Fischer, 1956) or cAMP-
dependent protein kinase (CAPK) (Walsh et al., 1968) were basophilic with histones 
as typical in vitro substrates.

Consistently, negatively charged substrate residues around the phosphorylatable 
serine or threonine side chain were found to be crucial for substrate recognition by 
CK2 in the 1980s (Pinna et al., 1984).

In 1988, the minimal consensus sequence defining a CK2 substrate was published 
to be S/T-X-X-D/E (Marchiori et al., 1988). Such a small sequence motif occurs 
quite frequently in proteins so that the exponential growth of the number of CK2 
substrate proteins to more than 300 in the last census (Meggio and Pinna, 2003) was 
not fully surprising. Consistently, consensus sequence analyses of the human 
Phospho.ELM database (Diella et al., 2004) suggested that CK2 is responsible for 
the generation of a substantial proportion of the human phospho-proteome (Salvi  
et al., 2009). Due to this broad substrate spectrum CK2 belongs to EC class 2.7.11.1 
(Scheer et al., 2011) (i.e., to the non-specific serine/threonine protein phosphotrans-
ferases). A statistical analysis of the sequence regions around the phosphorylation 
(P + 0) site (Meggio and Pinna, 2003) confirmed the significance of the P + 3 posi-
tion but additionally emphasized the P + 1 site that, if negatively charged, strongly 
favors CK2-catalyzed protein phosphorylation.

Dual-Cosubstrate Specificity
Although ATP is the typical cosubstrate of an EPK, Rodnight and Lavin (1964) 
reported already in 1964 that CK2 (which they called “phosvitin kinase”) can alter-
natively utilize GTP. This ability indicated structural peculiarities in the cosubstrate 
binding site, and in the late 1960s (Pinna et al., 1969), it was the basis for the dis-
tinction between two acidophilic “phosvitin kinases,” one of them being ATP-
specific (later called “casein kinase 1” since it elutes earlier from a DEAE-anion 

Figure 1.1.  Scheme of the reaction catalyzed by a eukaryotic protein kinase (EPK). The 
reaction is essentially irreversible under physiological conditions. The hydroxy group of the 
protein substrate belongs to the side chain of serine, threonine, or tyrosine. In the case of 
CK2, the cosubstrate can be GTP as well as ATP.
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exchange column [Hathaway and Traugh, 1979]), while the other, that is, CK2, 
accepts either ATP or GTP.

Quaternary and Higher-Order Oligomeric Structure
When the knowledge to separate CK1 from CK2 and to distinguish them enzymati-
cally was established, it turned out very soon that the former is a monomer, and 
CK2, when prepared from natural animal tissues, exists as a heterotetrameric holo-
enzyme with α2β2-stoichiometry (Hathaway and Traugh, 1979; Thornburg and 
Lindell, 1977). Moreover, this quaternary structure is the prerequisite for the CK2’s 
strongly salt-dependent ability to form higher-order aggregates. These aggregates 
were observed directly for the first time by Glover (1986) and intensively studied in 
their correlation to catalytic activity by Valero et al. (1995), but they are also respon-
sible for a paradoxical phenomenon noticed earlier by Hathaway and Traugh (1979): 
CK2 binds so strongly to phosphocellulose columns that 700 mM NaCl is required 
for elution (leading to the name “PC0.7” [DePaoli-Roach et al., 1981]), but binding 
to the column does not occur below 250 mM NaCl.

For vertebrate CK2, a heterotetrameric architecture was consistently reported 
several times in the 1970s; however, for plant CK2, a different picture emerged in 
the early literature. In 1982, CK2 activity was found to be associated with monomers 
in wheat germs (Yan and Tao, 1982) and with homodimers in tobacco (Erdmann  
et al., 1982), and only 10 years later, a typical α2β2-holoenzyme of CK2 was dis-
covered in a plant tissue (Li and Roux, 1992). At almost the same period, evidence 
for CK2β-free CK2α was provided for the first time for animal (insect) cells (Stigare 
et al., 1993).

Polyanionic Inhibitors, Polycationic Activators
The 1970s were the golden decade of classical CK2 biochemistry and led, consistent 
to the acidophilic substrate preference of CK2, to the discovery of anionic substrate-
competitive CK2 inhibitors like 2,3-diphospho glycerate (Kumar and Tao, 1975) or 
heparin (Mäenpää, 1977]. The latter advanced to a standard test substance to probe 
biochemically whether a new protein kinase activity is due to CK2 or not. At the 
same time, polyamines such as putrescine, spermidine, and spermine (Mäenpää, 
1977) followed by polylysine (Criss et al., 1978) were reported to be stimulatory 
effectors of CK2. Later these stimulatory effects of polycations were specifically 
associated with the addiction of CK2 to form higher-order and filamentous aggre-
gates (Mamrack, 1989).

ATP-Competitive Inhibitors
The first effective ATP-competitive inhibitors of CK2 described in the literature were 
5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and quercetin (Zandomeni 
and Weinmann, 1984). The possibilities to probe the selectivity of these inhibitors 
were rudimentary at that time, but later DRB advanced as a mother substance for 
synthetic CK2 inhibitors (Meggio et al., 1990).

Constitutive Activity
The discovery of glycogen phosphorylase kinase (Krebs and Fischer, 1956) and of 
CAPK (Walsh et al., 1968) was guided by the integration of these enzymes into a 
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Figure 1.2.  Highlights of the initial phase of CK2 structural biology. (A) Structure of CK2α 
from Zea mays (Niefind et al., 1998; PDB 1A6O, later superseded by 1LR4). The most 
remarkable detail of the structure was the close attachment of the N-terminal segment (blue) 
with the activation segment (magenta) and the helix αC, a feature that was fully consistent 
with the constitutive activity of the enzyme and that was confirmed in all subsequent CK2α 
until now. Only major secondary structure elements (no 310-helices) are drawn. In the canoni-
cal catalytic core, they are designated in analogy to CAPK (Figure 1.4A). The names of 
noncanonical secondary structure elements are printed in italics. (B) Homodimeric structure 
of human CK2β1–182 (Chantalat et al., 1999; PDB 1QF8). The structure revealed the existence 
of a zinc-binding motif next to the dimerization interface. In CATH (Cuff et al., 2011), each 
CK2β subunit is divided into two domains as indicated in the lower monomer. (C) Structure 
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regulatory pathway, i.e., both enzymes are regulators (by catalyzing phosphoryla-
tion) and are simultaneously subject to regulation (by phosphorylation, second 
messenger binding, and/or disassembly). Therefore, it became common practice to 
characterize further protein kinase activities with respect to their regulatory behavior 
in vitro (and putatively in vivo). However, in the case of CK2, it turned out that this 
kinase is “constitutively active,” i.e., its activity does not depend on a phosphorylation 
event or on the binding of Ca2+, cAMP, or other second messenger molecules.

Even the important discovery that the catalytic α-subunit is enzymatically active 
alone and can be stimulated in vitro by the non-catalytic β-subunit (Cochet and 
Chambaz, 1983) did not resolve the puzzle of CK2 regulation since strongly dena-
turing conditions were required to separate the subunits so that a dissociation under 
physiological conditions was regarded as impossible.

Structural Biology of CK2

In summary, when the structure biology of CK2 started in the 1990s, a number of 
important and non-canonical properties of the enzyme were well characterized and 
awaited structure-based rationalization. CK2 crystallography could satisfy many of 
these expectations, in particular in the first phase producing the crystal structures 
of maize CK2α (Niefind et al., 1998), of human CK2β (Chantalat et al., 1999), of 
maize CK2α in complex with a human CK2β peptide (Battistutta et al., 2000a) and 
of the human CK2 holoenzyme (Niefind et al., 2001) (Fig. 1.2).

Moreover, the unique enzymological profile of CK2 suggested the possibility to 
create highly effective and selective inhibitors that could serve as tools in chemical 
biology approaches as well as drugs in pharmacology. To design such compounds 
assisted by structural data was suggested shortly after the first CK2α structure had 
been published (Guerra et al., 1999). This phase of “applied CK2 crystallography” 
started with the structure of the complex between CK2α and emodin (Battistutta 
et al., 2000b) and became very soon the main field of innovation in CK2 structural 
biology and a driving force of CK2 research in general.

of maize CK2α in complex with human CK2β181–203, i.e., with a peptide 
from the C-terminal region of human CK2β known to be critical for CK2α binding (Bat-
tistutta et al., 2000a; PDB 1DS5). With this structure, the CK2β-binding interface of CK2α 
was identified. The two CATH domains of CK2α are indicated in the figure. Noteworthy, the 
N-terminal part of the N-terminal segment belongs to the C-terminal CATH domain. (D) 
Structure of a heterotetrameric human CK2 holoenzyme complex (Niefind et al., 2001; PDB 
1JWH) merging the structural information from panel A to C and disclosing the fact that the 
CK2α/CK2β interface is formed by three protomers, namely one CK2α subunit and both 
CK2β chains. The extension of the structure compared to the sequences of the wildtype 
proteins is indicated in Figure 1.4.

Figure 1.2. cont’d
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Aim of This Chapter

We outlined these developments in the structural biology of CK2 in two recent 
articles in the context of a multi-author review about the enzyme (Niefind et al., 
2009; Battistutta, 2009). Here, we intend to supplement and update these contribu-
tions, giving our reasoned view of the state-of-art of the matter. Regarding the 
inhibitors section, here we want to focus the attention specifically on structural 
aspects of CK2 inhibition. Our purpose is not to survey the large and always increas-
ing ensemble of CK2 inhibiting compounds that have been discovered. For many of 
these classes of inhibitors, clear structural information is lacking, and their proper 
mode of action is still unclear. Therefore, they will be not covered in this context, 
and the interested reader is referred to the original publications.

BASIC STRUCTURE/FUNCTION RELATIONSHIPS OF CK2

Domains and Databases

PFAM
Eukaryotic protein kinases possess a conserved catalytic core of about 260 residues 
defined for the first time in 1988 (Hanks et al., 1988) on the basis of a multiple 
sequence alignment including 65 enzymes, among them Drosophila CK2α. This 
core constitutes a “functional domain” and thus a “family” in the sequence-homology 
based PFAM database (Punta et al., 2012) (Table 1.1). It is divided into 12 particu-
larly conserved subdomains (Hanks et al., 1988; Hanks and Hunter, 1995). With 
currently more than 76,000 sequences, the “Pkinase” family is among the 15 largest 
PFAM entries and by far the biggest among a superordinate “clan” (Table 1.1) that 
comprises further and more distantly related kinases like atypical protein kinases 
(APK) and EPK-like kinases (ELK). The last ones are certain ATP-dependent phos-
photransferases with smaller substrates like choline or aminoglycosides.

In contrast, CK2β is eponymous for its own PFAM family with currently less 
than 600 sequences and without any relatives on the clan level (Table 1.1). This 
unique character of CK2β in sequence space was already noted when the first CK2β 
sequence was published (Saxena et al., 1987); remarkably, it did not change in the 
age of high-throughput sequencing.

CATH
The 3D-pendants to PFAM are CATH (Cuff et al., 2011) and SCOP (Andreeva  
et al., 2008), hierarchical databases that classify proteins of known 3D-structure 
deposited in the Worldwide Protein Data Base (wwPDB; www.wwpdb.org) (Berman 
et al., 2007). More precisely, in CATH the principle classification unit is the “struc-
tural domain” defined as a semi-autonomous folding unit within which the majority 
of non-covalent interactions are satisfied and which owns a hydrophobic core.

The first step in the CATH classification is the partitioning of a protein 
3D-structure into such structural domains, irrespective of—and this is the main 
difference from SCOP (Andreeva et al., 2008)—evolutionary and functional similar-
ity. Each of these CATH domains is then assigned according to structural criteria: 

http://www.wwpdb.org

