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Science never solves a problem

without creating ten more.

George Bernard Shaw

The most exciting phrase to hear in science,

the one who heralds new discoveries,

is not Eureka but That's funny...

Isaac Asimov
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Preface

In 2005 or so, I started wondering whether that particular

part of quantum mechanics that theoretical physicists call

second quantization could be used in the analysis of some

particular, somehow discrete, classical system. In particular,

I started considering stock markets, or a reasonably

simplified version of these, since at that time this was a

very fashionable topic: econophysics was in its early years,

and the general feeling was that there was still room, and

need, for many other contributions from physicists and

mathematicians. I got the idea that the analysis of the huge

amount of information going around a real market was only

part of what was interesting to do. I was much more

interested in considering the viewpoint of the single trader,

who is more likely interested in having some control of his

own portfolio. Therefore, I constructed a model of a

simplified market, just to see if this strange approach could

be interesting for such a hypothetical trader, and I suddenly

realized that “yes, it might make sense to carry on in this

line of research, but, wow, it is hard to have such a paper

accepted in a good journal.” However, after a few weeks, I

also realized that this topic seemed to be interesting not

only for me, but also for a large community of scientists,

and that this community was increasing very fast, producing

more and more contributions on the ArXiv. People started

citing my first paper, and I was contacted by people

interested in what I was doing and who wanted to discuss

my point of view. This pushed me in the direction of

considering more sophisticated models for stock markets,

using my knowledge of quantum mechanics for systems

with infinite degrees of freedom in this other, and

apparently completely different, field. I thought that this

was essentially the end of the story: quantum versus



economics. Unexpectedly, a few years ago during a

conference in Acireale where I gave a talk on my quantum

stock markets, I had a discussion with an old friend of mine,

Franco Oliveri, and he suggested using the same general

strategy in a different classical context. I remember that in

our first discussion, we were thinking of foxes and chicken, a

topic that was not very exciting for me. After a while, we

realized that what we were discussing could also have been

used to describe something completely different: a love

story. And that was the beginning of a long story that still

continues. Since then, we have constructed several models

for different classical systems, playing with our

understanding of these systems and looking for some

phenomenological description. It turned out that these

models quite often produce nontrivial and, in my opinion,

quite interesting features that are not fully explored yet.

Moreover, what is also very intriguing to me is that the

same general framework can be used in many different

contexts, giving rise to a sort of unifying setting.

This book might be considered as a first attempt to

summarize what I have done so far in this field. My idea was

to make the book reasonably simple and self-contained. This

is because I expect that some not necessarily mathematical-

minded readers might be intrigued by the title, and I do not

want to lose these readers. However, a complex system can

be made easy only up to a certain extent, and this is exactly

what I have tried to do in these notes. Even the love story I

will consider in Chapter 3, which from the purely dynamic

point of view is surely the simplest situation, is not simple at

all. This is not a big surprise, as almost every lover knows

very well from personal experience. I should also clarify that

it is not my main interest to discuss the psychological

aspects behind a love story, a migration process, or the

choices of traders in a stock market. I am not even

interested in giving any abstract, or too general, description



of these systems. Here I want to be quantitative! I want to

deduce formulas from general ideas, and I want to see what

these formulas imply for the system I have in mind, and if

they have some predictive power. However, this ultimate

goal implies some effort to the reader, who is required to

create his own background on quantum mechanics (if

needed) by reading Chapter 2. Dear reader, if you can

understand Chapter 2, you can understand the rest! On the

other hand, if Chapter 2 is too technical for you, do not

worry: you could still try to read the book, simply jumping

over this chapter. Of course, if you are not a physicist, you

will lose a lot. But you can still get the feeling of what is

going on. It is up to you! I really hope you enjoy reading this

book!

Fabio Bagarello
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Chapter 1: Why a Quantum Tool

in Classical Contexts?

Of course, there is no other way to begin this book. In our

experience, this is the first question that a referee usually

raises when he receives a paper of ours. Hence this is the

question that we try to answer in this chapter, to motivate

our analysis.

Taking a look at the index, we see that the applications

discussed here cover a large variety of problems, from love

affairs to migration, from competition between species to

stock markets. First of all, we have to stress that we are not

claiming that, for instance, a love affair has a quantum

nature! (Even though, as every lover knows very well, each

love story is surely characterized by a strong stochastic

ingredient that could be analyzed, for instance, using tools

from probability theory. It is not surprising, then, that one

could try to use quantum mechanics as well, in view of its

probabilistic interpretation.) Therefore, we are not going to

discuss any quantum love affair. Rather, we just claim that

some quantum tools, and the number operator in particular,

can be used, cum grano salis, in the analysis of several

dynamical systems in which the variables are seen as

operator-valued functions. The interesting fact is that the

results we deduce using these tools describe very well the

dynamics of the system we are considering. This is shown to

be true for love affairs first, but this same conclusion

apparently holds in other, completely different, contexts

(migrations, stock markets, competition between species,

etc.).

However, to answer in more detail the question raised in

the title, we need a long introduction, and this is the main

content of this chapter. We begin with a few useful facts on



(anti-)commutation rules, which are used to motivate our

answer. Then, we describe briefly other appearances of

quantum mechanics in the description of classical systems,

proposed by several authors in recent years. We conclude

the chapter with the plan of the book.

1.1 A First View of

(Anti-)Commutation Rules
In many fields of quantum mechanics of systems with few or

many degrees of freedom, the use of annihilation or creation

operators, and of their related number operators, has been

proved to be very useful. The first explicit application of the

so-called canonical commutation relations (CCR) is usually

found at the first level degree in physics while studying the

one-dimensional quantum harmonic oscillator (Merzbacher,

1970). CCR are used to produce a purely algebraic

procedure that helps in finding the eigenvalues and the

eigenvectors of the energy operator  of the

oscillator, expressed here in convenient units. This

procedure is much simpler than the one that returns the

explicit solution of the Schrödinger equation in configuration

space (i.e., in terms of the position variable x). The quantum

nature of the system is reflected by the fact that p and x do

not commute. Indeed, they satisfy the following rule: [x, p]:

= xp − px = i11, 11 being the identity operator in the

Hilbert space  where the oscillator lives. This means

that x and p are not classical functions of time but, rather,

operators acting on . As life is usually not easy, and

science is even harder, x and p are unbounded operators.

This produces a number of extra difficulties, mainly on the

mathematical side, which we try to avoid as much as

possible in these notes, but which is necessary at least to



mention and to have in mind.1 Introducing , its

adjoint , and N: = a † a, we can rewrite the

Hamiltonian as , and, if φ0 is a vector of , which

is annihilated by a, aφ0 = 0, then, calling , n =

0, 1, 2, … , we have Hφn = (n + 1/2)φn. In the literature, φ0

is called the vacuum or the ground state of the harmonic

oscillator. Then we find, avoiding the hard explicit solution of

the Schrödinger differential equation

the set of eigenvalues (En = n + 1/2) and eigenvectors (φn)

of H. In the derivation of these results, the crucial ingredient

is the following commutation rule: [a, a † ] = 11, easily

deduced from [x, p] = i11 and from the definitions of a and

a†, which have the useful consequence [N, a†n] = na†n, n =

0, 1, 2, … . Using this result, Hφn = Enφn follows

immediately.

Standard quantum mechanical literature states a simple

extension of [a, a † ] = 11 is found soon after the one-

dimensional harmonic oscillator, while moving to higher

dimensional systems. In this case, the CCR look like 

, l, n = 1, 2, 3, … L: we have L independent

modes. It might be interesting to remind that Lth

dimensional oscillators are usually the key ingredients to set

up, both at a classical and at a quantum level, many

perturbation schemes that are quite useful whenever the

dynamics of the system cannot be deduced exactly. Some

quantum perturbation approaches are quickly reviewed in

Chapter 2 and used all along the book.

Studying quantum field theory, one is usually forced to

consider mainly two different kinds of particles, which obey

very different commutation rules and, as a consequence of



the spin-statistic theorem, different statistics: the bosons

and the fermions. Bosons are particles with integer spin,

such as the photons. Fermions are particles with half-integer

spin, such as the electrons. This difference in the value of

the spin has an important consequence: fermions satisfy the

Pauli exclusion principle, whereas bosons do not. This is

reflected, first of all, by the wave function that describes

any set of identical fermions, which has to be antisymmetric

with respect to the change of their variables, or by the wave

function for the bosons, which has to be symmetric. Hence,

if two indistinguishable fermions have exactly the same

quantum numbers (e.g., they occupy the same position in

space and they have the same energy), their wave function

collapses to 0: such a configuration cannot occur! This is the

Pauli exclusion principle, which, of course, does not hold for

the bosons. In second quantization, (Roman, 1965), the

bosons are created by the operators  and annihilated by

their conjugate, al. Together, they satisfy the CCR above.

Analogously, fermions are annihilated and created by similar

operators, bk and , but these satisfy a different rule, the

so-called anticommutation relation (CAR): 

, with , l, k = 1, 2, 3, …

. The main difference between these two commutation rules

is easily understood. While the operator  is different from

0, the square of bl is automatically 0, together with all its

higher powers. This is again an evidence of the Pauli

principle: if we try to construct a system with two fermions

with the same quantum numbers (labeled by l) using the

language of second quantization, we should act twice with 

 on the vacuum φ0, that is, on the vector annihilated by all

the bls. But, as , the resulting vector is 0: such a state

has probability 0 to occur and, as a consequence, the Pauli

principle is preserved!



In Chapter 2, we show, among other things, that the

eigenvalues of  are 0, 1, 2, … , whereas those of 

 are simply 0, 1. This is related to the fact that the

fermionic and the bosonic Hilbert spaces differ as the first

one is finite dimensional, whereas the second is infinite

dimensional. Needless to say, this produces severe

differences from a technical point of view. In particular,

operators acting on a (finite modes) fermionic Hilbert space

are automatically bounded, whereas those acting on a

bosonic Hilbert space are quite often unbounded.

1.2 Our Point of View
In many classical problems, the relevant quantities we are

interested in change discontinuously. For instance, if you

consider a certain population , and its time evolution, the

number of people forming  cannot change arbitrarily: if, at

t0 = 0,  consists of N0 elements, at t1 = t0 + Δt,  may

only consist of N1 elements, with N1 − N0 ∈ . The same

happens if our system consists of two (or more) different

populations, 1 and 2 (e.g., preys and predators or two

migrating species): again, the total number of their

elements can only take integer values.

Analogously, if we consider what in these notes is called a

simplified stock market (SSM), that is, a group of people (the

traders) with some money and a certain number of shares

of different kind, which are exchanged between the traders

who pay some cash for that, it is again clear that natural

numbers play a crucial role: in our SSM, a trader may have

only a natural number of shares (30, 5000, or 106, but not

0.75 shares), and a natural number of units of cash (there is

nothing < 1 cent of euro, for instance). Hence, if two traders

buy or sell a share, the number of shares in their portfolios



increases or decreases by one unit, and the amount of

money they possess also changes by an integer multiple of

the unit of cash.

In the first part of these notes, we also consider some

quantities that change continuously but that can also still be

measured, quite naturally, using discrete values: this is the

case, for instance, of the love affair between Alice and Bob

described in Chapter 3: in some old papers, see Strogatz

(1988) and Rinaldi (1998a,b) for instance, the mutual

affection between the two actors of the love affair is

described by means of two continuous functions. However,

it is not hard to imagine how a similar description could be

given in terms of discrete quantities: this is what we have

done, for instance, in Bagarello and Oliveri (2010, 2011):

Bob's affection for Alice is measured by a discrete index, nB,

which, when it increases during a time interval [ti, tf], from,

say, a value 1 to the value 2, describes the fact that Bob's

love for Alice increases during that particular time interval.

Analogously, Alice's affection for Bob can be naturally

measured by a second discrete index, nA, which, when its

value decreases from, say, 1 to 0, describes the fact that

Alice's love for Bob simply disappears.

These are just a few examples, all described in detail in

these notes, showing how the use of discrete quantities is

natural and can be used in the description of several

systems, in very different situations. Of course, at first sight,

this may look as a simple discretization of a continuous

problem, for which several procedures have been proposed

along the years. However, this is not our point of view. We

adopt here a rather different philosophy, which can be

summarized as follows: the discrete quantities used in the

description of the system  under analysis are closely

related to the eigenvalues of some self-adjoint operator.

Moreover, these operators can be quite often approximated

with effective, finite dimensional, self-adjoint matrices,



whose dimensions are somehow fixed by the initial

conditions; see, for instance, Chapter 3. Then the natural

question is the following: how can we deduce the dynamical

behavior of ? This is, of course, the hard part of the job!

Along all our work, we have chosen to use a Heisenberg-like

dynamics, or its Schrödinger counterpart, which we believe

is a good choice for the following reasons:

1. It is a natural choice when operators are involved. This

is exactly the choice used in quantum mechanics, where

the Heisenberg representation is adopted in the

description of the dynamics of any closed microscopic

system.

2. It is quite easy to write down an energy-like operator,

the Hamiltonian H of the system , which drives the

dynamics of the system. This is due to the fact that,

following the same ideas adopted in particle physics, the

Hamiltonian contains in itself the phenomena it has to

describe. This aspect is clarified first in Sections 3.3 and

3.4 in a concrete situation, while in Chapter 6, we

discuss the role and the construction of H in more detail

and in a very general condition. Among the other

criteria, the explicit definition of H will also be suggested

by the existence of some conserved quantities of : if X

is an operator, which is expected to be preserved during

the time evolution of , for instance, the total amount of

cash in a closed SSM, then, because of the definition of

the Heisenberg dynamics, H must commute with X: [H,

X] = 0. This gives some extra hints on how to define H

explicitly, and then H can be used to find the time

evolution of any observable A of  using the standard

prescription: A(t) = eiHtA(0)e−iHt, A(0) being the value

of A at t = 0. We refer to Chapter 2 for many more

details on the dynamics of .

3. It produces results which, at least for those systems

considered in the first part of these notes, look quite



reasonable; that is, they are exactly those results, which

one could expect to find as they reproduce what we

observe in real life. This is a good indication, or at least

gives us some hope, that the dynamics deduced for the

systems discussed in Part II of the book, that is, for

SSMs, reflect a reasonable time evolution for those

systems.

This list shows that we have two technical and one a

posteriori reason to use an energy-like operator H to

compute the dynamics of . This is not, of course, the end of

the story, but, in our opinion, it is already a very good

starting point.

1.3 Do Not Worry About

Heisenberg!
People with a quantum mechanical background know very

well that, whenever incompatible (i.e., not commuting)

observables appear in the description of a given physical

system , some uncertainty results follow. Hence, one may

wonder how our quantum-like description could be

compatible with the classical nature of , whose observable

quantities are not expected to be affected by any error,

except, at most, by the error due to the experimental

settings. This problem, actually, does not exist at all in the

applications considered in these notes as all the observables

we are interested in form a commuting subset of a larger

nonabelian algebra. Therefore, they can be diagonalized

simultaneously and a common orthonormal (o.n.) basis of

the Hilbert space  used in the description of , made of

eigenstates of these observables, can be indeed obtained,

as we see several times in Chapters 3–9. This means that, in

the complete description of , all the results that are



deduced using our approach are not affected by any

uncertainty because all the relevant self-adjoint operators

whose eigenvalues are relevant to us are compatible, that

is, mutually commuting.

It should also be mentioned that, in some specific

applications, the impossibility of observing simultaneously

two (apparently) classical quantities has been taken as a

strong indication of the relevance of a quantumlike structure

in the description of that process, showing, in particular, the

importance of noncommuting operators. This is what was

proposed, for instance, in Segal and Segal (1998), which is

based on the natural assumption that a trader in a market

cannot know, at the same time, the price of a certain share

and its forward time derivative. The reason is clear: if the

trader has access to both these information with absolute

precision, then he is surely able to earn as much as he

wants! For this reason, Segal and Segal proposed to use two

noncommuting operators to describe the price and its time

derivative. Going back to the title of this section, although in

this book we are happy to not deal with the uncertainty

principle, in other approaches this is actually seen as the

main motivation to use a quantum or noncommutative

approach for a macroscopic system. For this reason, also in

view of possible future applications, we describe in Section

2.4 a possible mathematical derivation of a rather general

inequality for noncommuting operators, which, fixing the

operators in a suitable way, gives back the Heisenberg

uncertainty relation.

1.4 Other Appearances of

Quantum Mechanics in

Classical Problems



Going back to the crucial aspect of this book, which is surely

the mixture of quantum and classical words, we want to

stress again that this is surely not the first place in which

such a mixture is extensively adopted. On the contrary, in

the past few years, a growing interest in classical

applications of quantum ideas appeared in the literature,

showing that more and more people believe that there is not

a really big difference between these two worlds or that, at

least, some mathematical tool originally introduced in

quantum mechanics may also play a significant role in the

analysis of classical systems. These kinds of mixtures can

be found in very different fields such as economics (Aerts et

al., 2012; Segal and Segal, 1998; Schaden, 2002; Baaquie,

2004; Accardi and Boukas, 2006; Al, 2007; Choustova, 2007;

Ishio and Haven, 2009; Khrennikov, 2010; Romero et al.,

2011; Pedram, 2012), biology (Engel et al., 2007; Arndt et

al., 2009; Pusuluk and Deliduman; Martin-Delgado;

Panitchayangkoon et al., 2011; Ritz et al. 2004), sociology,

and psychology (Shi, 2005; Jimenez and Moya, 2005;

Busemeyer et al., 2006; Khrennikov, 2006; Aerts et al.,

2009, 2010; Yukalov and Sornette, 2009a,b; Aerts, 2010;

Mensky, 2010; Makowski and Piotrowski, 2011; Yukalov and

Sornette), and also in more general contexts (Abbott et al.,

2008; Khrennikov, 2010), just to cite a few. The number of

scientific contributions having classical applications of

quantum mechanics as their main subject is fast increasing.

To have an idea of what is going on, it is enough to follow

the arXiv at xxx.lanl.gov, where almost everyday new

papers are submitted. This, of course, provides

encouragement to pursue our analysis and to check how far

we can go with our techniques and how our results can be

used to explain some aspects of the real macroscopic world.

http://xxx.lanl.gov/


1.5 Organization of the

Book
This book is essentially organized in three parts. In the first

part, Chapter 2, we review some important aspects of

quantum mechanics, which are used in the rest of the book.

In particular, we discuss the dynamical problem in ordinary

quantum mechanics using several representations and

describing the relations between them. We also discuss in

great detail CCR, CAR, and some perturbative approaches,

which are used sometimes in the book, as well as other

tools and aspects related to quantum mechanics of certain

interest for us, such as the Green's functions, the states

over the algebra of bounded operators, and the Heisenberg

uncertainty principle.

In the second part, Chapters 3–5, we show how the CCR

and the CAR can be used for classical systems with few

degrees of freedom. In particular, we discuss our point of

view on love relations, describing also the role of the

environment surrounding the people involved in the love

affair. Later, in Chapter 4, we show how the same general

framework can be used in the description of competitions

between species and for other biological systems. For

instance, we describe a migration process involving two

populations, one living in a rich area and the second one in

a poor region of a two-dimensional lattice.

Chapter 5 is dedicated to the description of the dynamical

behavior of a biological-like system (e.g., some kind of

bacteria) coupled to two reservoirs, one describing the food

needed by the system to survive, and the other mimicking

the garbage that is produced by the system itself.

Chapter 6 is a sort of an interlude, useful to fix the ideas

on the role of the Hamiltonian of the system  we are

describing, and on how this Hamiltonian should be



constructed. More explicitly, we identify three main steps in

the analysis of : the first step consists in understanding the

main mechanisms taking place in , with a particular

interest to the interactions between its constituents.

Second, we deduce the Hamiltonian for , H , following a

set of rather general rules, which is listed and explained in

detail. The final step in our analysis of  is the deduction,

from H , of its dynamics. This is usually the hardest part of

the job.

The last part of the book, Chapters 7, 8, and 9, is

concerned with systems with many degrees of freedom and

in particular, with our closed SSM. We propose several

models for an SSM, from very simple to more complicated

ones, and we consider some of the related dynamical

features. In particular, most of the times, we will be

interested in the deduction of the time evolution of the

portfolio of each single trader, but in Chapter 9, we also

compute a transition probability between different states of

the SSM.

We devote Chapter 10 to some final considerations and to

possible generalizations and applications. In particular, we

discuss several possible extensions of our main tools, the

CCR and the CAR. This could be useful to describe a

nonunitary time evolution, describing some decay, as well

as systems with a finite, and larger than 2, number of

energy levels.

Notes

1 Along this book, we add some remarks concerning the

unboundedness of some operators used in the description

of the system under investigation.



Chapter 2: Some Preliminaries

In this chapter, we briefly review some basic facts in

quantum mechanics. In particular, we focus on what

physicists usually call second quantization, which is used in

the rest of the book. This chapter is essentially meant to

keep these notes self-contained and to fix the notation.

Nevertheless, the reader with a background in quantum

mechanics is surely in a better position to fully comprehend

the material discussed in this book. Of course, people with

such a background could safely skip this chapter. It might

also be worth stressing that, sometimes, we discuss

something more that what is really used, just to give a

reasonably closed form to the arguments presented in this

chapter.

2.1 The Bosonic Number

Operator

Let  be a Hilbert space and B( ) the set of all the bounded

operators on . B( ) is a so-called C*-algebra, that is, an

algebra with involution that is complete under a norm, || · ||,

satisfying the C*-property: ||A*A|| = ||A||2, for all A ∈ B( ).

As a matter of fact, B( ) is usually seen as a concrete

realization of an abstract C*-algebra. Let  be our physical

system and  the set of all the operators useful for a

complete description of , which includes the observables of

, that is, those quantities that are measured in a concrete

experiment. For simplicity, it would be convenient to

assume that  is a C*-algebra by itself, possibly coinciding

with the original set B( ), or, at least, with some closed



subset of B( ). However, this is not always possible in our

concrete applications. This is because of the crucial role of

some unbounded operators within our scheme: unbounded

operators do not belong to any C*-algebra. However, if X is

such an operator, and if it is self-adjoint, then eiXt is unitary

and, therefore, bounded. The norm of eiXt is 1, for all ,

and X can be recovered by taking its time derivative in t = 0

and multiplying the result by − i. For this reason, C*-

algebras and their subsets are also relevant for us when

unbounded operators appear.

A concrete situation where these kinds of problems arise is

the description of the time evolution of , which is driven by

a self-adjoint operator H = H † , which is called the

Hamiltonian of  and which, in standard quantum

mechanics, represents the energy of . In most cases, H is

unbounded. In the so-called Heisenberg representation, see

Section 2.3.2, the time evolution of an observable X ∈  is

given by

2.1 

or, equivalently, by the solution of the differential equation

2.2 

where  is the commutator between A and B.

In view of what we have discussed before, e±iHt are unitary

operators, hence they are bounded. Time evolution defined

in this way is usually a one parameter group of

automorphisms of :1 for each X, Y ∈ , and for all 

, (XY)(t) = X(t)Y(t) and X(t1 + t2) = (X(t1))(t2). An

operator Z ∈  is a constant of motion if it commutes with

H. Indeed, in this case, Equation 2.2 implies that , so

that Z(t) = Z(0) for all t. It is worth stressing that, in

Equations 2.1 and 2.2, we are assuming that H does not

depend explicitly on time, which is not always true. We give



a rather more detailed analysis of time evolution of a

quantum system, under more general assumptions, in

Section 2.3.

As already discussed briefly in Chapter 1, a special role in

our analysis is played by the CCR: we say that a set of

operators , acting on the Hilbert space ,

satisfy the CCR if

2.3 

holds for all l, n = 1, 2, … , L,  being the identity operator

on . These operators, which are widely analyzed in any

textbook on quantum mechanics (see Merzbacher, 1970;

Roman, 1965), for instance, are those that are used to

describe L different modes of bosons. From these operators,

we can construct  and , which are both self-

adjoint. In particular,  is the number operator for the lth

mode, while  is the number operator for .

An orthonormal (o.n.) basis of  can be constructed as

follows: we introduce the vacuum of the theory, that is, a

vector φ0 that is annihilated by all the operators al: alφ0 =

0 for all l = 1, 2, … , L. Then we act on φ0 with the operators

 and with their powers

2.4 

nl = 0, 1, 2, … , for all l, and we normalize the vectors

obtained in this way. The set of the 's forms a

complete and o.n. set in , and they are eigenstates of both

 and :

and



where . Hence, nl and N are eigenvalues of 

and , respectively. Moreover, using the CCR we deduce

that

for  whereas if nl = 0, al annihilates the vector, and

for all l and for all nl. For these reasons, the following

interpretation is given in the literature: if the L different

modes of bosons of  are described by the vector ,

this means that n1 bosons are in the first mode, n2 in the

second mode, and so on.2 The operator  acts on 

and returns nl, which is exactly the number of bosons in the

lth mode. The operator  counts the total number of

bosons. Moreover, the operator al destroys a boson in the

lth mode, whereas  creates a boson in the same mode.

This is why in the physical literature al and  are usually

called the annihilation and the creation operators,

respectively.

The vector  in Equation 2.4 defines a vector (or

number) state over the set  as

2.5 

where �, � is the scalar product in the Hilbert space .

These states are used to project from quantum to classical

dynamics and to fix the initial conditions of the system

under consideration, in a way that is clarified later.

Something more concerning states is discussed later in this

chapter.

For the sake of completeness, it is interesting to now

check explicitly that the operators introduced so far, al, , 



, and , are all unbounded. This can be easily understood

as, for instance,

and it is clearly related to the fact that  is infinite

dimensional. It is well known that unbounded operators

have severe domain problems, as they cannot be defined in

all of , (Reed and Simon, 1980), but only on a dense

subset of . However, this is not a major problem for us

here for two reasons: first, each vector  belongs to

the domains of all the operators that are relevant to us,

even when raised to some power or combined among them.

Second, at least in the numerical calculations performed in

Chapter 3,  is replaced by an effective Hilbert space, eff,

which becomes dynamically finite dimensional because of

the existence of some conserved quantity and because of

the initial conditions, which impose some constraints on the

levels accessible to the members of the system. This aspect

is discussed in more detail later.

2.2 The Fermionic Number

Operator

Given a set of operators  acting on a certain

Hilbert space F, we say that they satisfy the CAR if the

conditions

2.6 

hold true for all l, n = 1, 2, … , L. Here, {x, y}: = xy + yx is

the anticommutator of x and y and  is now the identity


