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Preface

In the summer of 1989, one of us (SLG), along with his mentor, Dorothy Warbur-
ton, attended the Tenth International Workshop on Human Gene Mapping. The meet-
ing was held at Yale University in celebration of the first such event, which also took
place there.

This meeting was not open to the general public; one had to have contributed to
mapping a gene to be permitted to attend. The posters, of course, were therefore all
related to gene mapping, and many were covered with pretty, colorful pictures of a
novel, fluorescent application of an old technology, in situ hybridization. Walking
through the room, Dorothy remarked that, because of this new FISH technique, chro-
mosomes, which had become yesterday’s news, were once again “back in style.”

Approximately three years later, a commercial genetics company launched a FISH
assay for prenatal ploidy detection. A substantial number of cytogeneticists across the
country reacted with a combination of outrage and panic. Many were concerned that
physicians would be quick to adopt this newfangled upstart test and put us all on the
unemployment line. They did not at the time realize what Dorothy instinctively already
knew—that FISH would not spell the doom of the cytogenetics laboratory, but it would,
rather, take it to new heights. In the early 1990s we didn’t know where FISH would end
up being performed, but because of the number of FISH applications that require metaphase
chromosomes, it has landed, either literally or functionally, squarely in the cytogenetics
laboratory, securing its place in an increasingly “molecularized” laboratory environment.
Add to this the explosion of cytogenetic and FISH data to become available in oncology in
recent years, and it becomes apparent that chromosomes are here to stay.

This brings us to the revision of The Principles of Cytogenetics. After the first
edition was printed, it seemed possible that we had achieved our goal of assembling the
basic concepts of clinical cytogenetics for the “end user” physician or student who
needed to understand what we do, and that perhaps no update would be necessary.
However, FISH and cancer cytogenetics continued to march on, and new data have
become available even for such basic concepts as chromosome rearrangements, sex
chromosome abnormalities, and autosomal aneuploidy. Combine these with all that
has been learned about uniparental disomy and imprinting in the last five years, plus
the regulatory changes we are all subject to, and it becomes obvious that what was
needed was not a second printing, but a second edition.

Our one concern is that, as The Principles of Cytogenetics goes to press, the nomen-
clature committee has met but has not set any date for a revision of the ISCN, the nomen-
clature that forms the core of reporting in clinical cytogenetics. The best guess is that this
will be available sometime in 2005, ten years after the last revision and a year after this
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vi Preface

book will have been published. Though we are not comfortable with the notion that
part of this book could be out of date shortly after its printing, most if not all updates
will involve details of FISH nomenclature that could not have been envisioned when
ISCN 1995 was released, and we therefore decided not to delay the publication of this
update merely to wait for that one.

This edition of The Principles of Clinical Cytogenetics is organized much like the
first, though there are several important changes. First, because of its increasing impor-
tance, the FISH chapter is now its own section in the book. Next, the increasing impor-
tance of cancer cytogenetics has prompted us to separate this subject into two distinct
chapters, covering hematological disorders and solid tumors, also as a separate section.
Because the ever-increasing popularity of computerized imaging and karyotyping sys-
tems has resulted in a waning popularity and likely eventual elimination of standard pho-
tography in the cytogenetics lab, this topic has been eliminated. Finally, two new chapters
have been added, covering chromosome instability and the cytogenetics of infertility.

We would like to take this opportunity to thank the authors who contributed to this
book, and to the readers who made the first edition a success. We hope this edition will
prove to be equally valuable.

Steven L. Gersen, phD
Martha Keagle, MEd



Preface to First Edition

The study of human chromosomes plays a role in the diagnosis, prognosis, and moni-
toring of treatment involving conditions seen not only by medical geneticists and genetic
counselors, but also by pediatricians, obstetrician/gynecologists, perinatologists, hema-
tologists, oncologists, endocrinologists, pathologists, urologists, internists, and family
practice physicians. In addition, cytogenetic testing is often an issue for hospital labora-
tory personnel and managed care organizations.

Few esoteric clinical laboratory disciplines have the potential to affect such a broad
range of medical specialists, yet cytogenetics is often less well understood than most
“specialized” testing.

One can attribute this to several causes:

» The cytogenetics laboratory is essentially the only setting in which living cells are
required for traditional testing (fluorescence in situ hybridization [FISH] provides
an exception to this rule). This unusual sample requirement is a potential source
of confusion.

* Cytogenetics is still perceived, and rightly so, to be as much “art” as it is science
in an era when most clinical testing is becoming more and more automated or
“high tech.”

* Genetics in general still does not receive sufficient emphasis in the training of
medical personnel.

This issue has been complicated in recent years because, in an era of molecular
medicine, chromosome analysis has become somewhat less of a stand alone discipline;
as genes are mapped to chromosomes, traditional cytogenetics is often augmented with
DNA analysis and/or FISH. The latter, often referred to as “molecular cytogenetics,”
represents the single most significant advance in this field in decades, and has become
such an integral part of the typical cytogenetics laboratory, with such a wide variety of
applications, that it warrants its own chapter in The Principles of Clinical Cytogenetics.

It is impossible to completely separate the relationships that exist today between the
cytogenetics and the molecular genetics laboratories, from cases involving fragile-X-
syndrome to those dealing with cancer patients, and for this reason, relevant molecular
concepts are discussed in several chapters.

Entire volumes have been devoted to some of the topics covered in The Principles of
Clinical Cytogenetics; these often serve as references or how-to manuals for those involved
in providing genetics services, and in most cases provide a greater level of detail than is
needed here. The purpose of the present book is to provide a comprehensive description of
the basic concepts involved in chromosome analysis in a single volume, while at the same
time producing a summary of sufficient depth to be of value to the practicing genetics
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viii Preface to the First Edition

professional. We hope that it will serve as a valuable reference to any health care
provider, from the individual who utilizes cytogenetics routinely to someone who has
need of it on rare occasions.

The Principles of Clinical Cytogenetics is divided into four sections. The first section
provides an historical perspective and explanation of the concepts involved, including a
detailed description of cytogenetic nomenclature and examples of its use. The second
section is an overview of the processes involved. The purpose of this section is to pro-
vide a fundamental understanding of the labor-intensive nature of chromosome analysis.
It is not, however, a “laboratory manual”’; detailed protocols for laboratory use are avail-
able elsewhere and are not appropriate in this setting. The third section comprises the
main focus of this book, namely, the various applications of chromosome analysis in
clinical settings and the significance of abnormal results. The final section connects
cytogenetics to the broader field of clinical genetics, with discussions of synergistic
technologies and genetic counseling.

We gratefully acknowledge the hard work and attention to detail provided by the
individuals who authored each chapter of The Principles of Clinical Cytogenetics, and
thank our publisher for supporting this effort.

Steven L. Gersen, PhD
Martha B. Keagle, MEd
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1
History of Clinical Cytogenetics

Steven L. Gersen, PhD

The beginning of human cytogenetics is generally attributed to Walther Flemming, an Austrian
cytologist and professor of anatomy, who published the first illustrations of human chromosomes in
1882. Flemming also referred to the stainable portion of the nucleus as chromatin and first used the
term mitosis (1). In 1888, Waldeyer introduced the word chromosome, from the Greek words for
“colored body” (2), and several prominent scientists of the day began to formulate the idea that
determinants of heredity were carried on chromosomes. After the “rediscovery” of Mendelian inher-
itance in 1900, Sutton (and, independently at around the same time, Boveri) formally developed a
“chromosome theory of inheritance” (3,4). Sutton combined the disciplines of cytology and genetics
when he referred to the study of chromosomes as cyfogenetics.

Owing in part to improvements in optical lenses, stains, and tissue manipulation techniques during
the late 19th and early 20th centuries, the study of cytogenetics continued, with an emphasis placed
by some on determining the correct number of chromosomes, as well as the sex chromosome con-
figuration, in humans. Several reports appeared, with differing estimates of these. For example, in
1912, von Winiwarter concluded that men have 47 chromosomes and women have 48 (5). Then, in
1923, Painter studied (meiotic) chromosomes derived from the testicles of several men who had been
incarcerated, castrated, and ultimately hanged in the Texas State Insane Asylum. Based on this work,
Painter definitively reported the human diploid chromosome number to be 48 (double the 24 bivalents
he saw), even though, 2 years earlier, he had preliminarily reported that some of his better samples
produced a diploid number of 46 (6). At this time, Painter also proposed the X and Y sex chromo-
some mechanism in man. One year later, Levitsky formulated the term karyotype to refer to the
ordered arrangement of chromosomes (7).

Despite continued technical improvements, there was clearly some difficulty in properly visualiz-
ing or discriminating between individual chromosomes. Even though Painter’s number of 48 human
chromosomes was reported somewhat conservatively, it was increasingly treated as fact with the
passage of time and was “confirmed” several times over the next few decades. For example, in 1952,
Hsu reported that, rather than depending on histologic sections, examination of chromosomes could
be facilitated if one studied cells grown with tissue culture techniques published by Fisher (8). Hsu
then demonstrated the value of this method by using it to examine human embryonic cell cultures,
from which he produced both mitotic metaphase drawings and an ideogram (9) of all 48 human
chromosomes!

As with other significant discoveries, correcting this inaccuracy required an unplanned event—a
laboratory error. Its origin can be found in the addendum that appears at the end of Hsu’s paper:

It was found after this article had been sent to press that the well-spread metaphases were the result
of an accident. Instead of being washed in isotonic saline, the cultures had been washed in hypotonic
solution before fixation.

From: The Principles of Clinical Cytogenetics, Second Edition
Edited by: S. L. Gersen and M. B. Keagle © Humana Press Inc., Totowa, NJ
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4 Steven Gersen

The hypotonic solution caused water to enter the cells via osmosis, which swelled the cell mem-
branes and separated the chromosomes, making them easier to visualize. This accident was the key
that unlocked the future of human cytogenetics. Within 1 year, Hsu and Pomerat, realizing the poten-
tial of this fortuitous event, reported a “hypotonic shock™ procedure (/0). By 1955, Ford and
Hamerton had modified this technique and had also worked out a method for pretreating cells grown
in culture with colchicine so as to destroy the mitotic spindle apparatus and thus accumulate dividing
cells in the metaphase (/7). Joe Hin Tjio, an American-born Indonesian, learned about these proce-
dures and worked with Hamerton and Ford to further improve upon them.

In November 1955, Tjio was invited to Lund, Sweden to work on human embryonic lung fibro-
blast cultures in the laboratory of his colleague, Levan, a Spaniard who had learned the colchicine
and hypotonic method in Hsu’s laboratory at the Sloan-Kettering Institute in New York. Tjio and
Levan optimized the colchicine/hypotonic method for these cells, and in January 1956 (after care-
fully reviewing images from decades of previously reported work), they diplomatically reported that
the human diploid chromosome number appeared to be 46, not 48 (12). They referenced anecdotal
data from a colleague who had been studying liver mitoses from aborted human embryos in the
spring 1955, but temporarily abandoned the research “because the workers were unable to find all the
48 human chromosomes in their material; as a matter of fact, the number 46 was repeatedly counted
in their slides.” Tjio and Levan concluded their paper

... we do not wish to generalize our present findings into a statement that the chromosome number
of man is 2n=46, but it is hard to avoid the conclusion that this would be the most natural explana-
tion of our observations.

What was dogma for over 30 years had been overturned in one now classic paper. Ford and
Hamerton soon confirmed Tjio and Levan’s finding (/3). The era of clinical cytogenetics was at
hand. It would take 3 more years to arrive, however, and it would begin with the identification of four
chromosomal syndromes.

The concept that an abnormality involving the chromosomes could have a phenotypic effect was
not original. In 1932, Waardenburg made the suggestion that Down syndrome could perhaps be the
result of a chromosomal aberration (/4), but the science of the time could neither prove nor disprove
his idea; this would take almost three decades. In 1958, Lejeune studied the chromosomes of fibro-
blast cultures from patients with Down syndrome, and in 1959, Lejeune and colleagues described an
extra chromosome in each of these cells (15). The trisomy was reported to involve one of the smallest
pairs of chromosomes and would eventually be referred to as trisomy 21. Lejeune had proved
Waardenburg’s hypothesis by reporting the first example of a chromosomal syndrome in man, and in
December 1962, he received one of the first Joseph Kennedy Jr. Foundation International Awards for
his work (see Fig. 1).

Three more chromosomal syndromes, all believed to involve the sex chromosomes, were also
described in 1959. Ford et al. reported that females with Turner syndrome have 45 chromosomes,
apparently with a single X chromosome and no Y (/6), and Jacobs and Strong demonstrated that
men with Klinefelter syndrome have 47 chromosomes, with the additional chromosome belonging
to the group that contained the X chromosome (/7). A female with sexual dysfunction was also
shown by Jacobs to have 47 chromosomes and was believed to have an XXX sex chromosome
complement (/8).

The sex chromosome designation of these syndromes was supported by (and helped explain) a
phenomenon that had been observed 10 years earlier. In 1949, Murray Barr was studying fatigue in
repeatedly stimulated neural cells of the cat (/9). Barr observed a small stained body on the periphery
of some interphase nuclei, and his records were detailed enough for him to realize that this was
present only in the nuclei of female cats. This object, referred to as sex chromatin (now known as X
chromatin or the Barr body), is actually the inactivated X chromosome present in nucleated cells of
all normal female mammals but absent in normal males. The observation that Turner syndrome,



History of Clinical Cytogenetics 5

Fig. 1. Jérome Lejeune receives a Joseph P. Kennedy, Jr. Foundation International Award for demonstrating that
Down syndrome results from an extra chromosome. (Photo provided by the John F. Kennedy Library, Boston, MA.)

Klinefelter syndrome, and putative XXX patients had 0, 1, and 2 Barr bodies, respectively, elucidated
the mechanism of sex determination in humans, confirming for the first time that it is the presence or
absence of the Y chromosome that determines maleness, not merely the number of X chromosomes
present, as in Drosophila. In 1961, the single active X chromosome mechanism of X-dosage compensa-
tion in mammals was developed by Lyon (20) and has been known since then as the Lyon hypothesis.

It was not long after Lejeune et al.’s report of the chromosomal basis of Down syndrome that other
autosomal abnormalities were discovered. In the April 9, 1960 edition of The Lancet, Patau et al.
described two similar infants with an extra “D group” chromosome who had multiple anomalies quite
different from those seen in Down syndrome (2/). In the same journal, Edwards et al. described “A
New Trisomic Syndrome” in an infant girl with yet another constellation of phenotypic abnormalities
and a different autosomal trisomy (22). The former became known as Patau’s syndrome or “D tri-
somy” and the latter as Edward’s syndrome or “E trisomy.” Patau et al.’s article incredibly contains
a typographical error and announces that the extra chromosome “belongs to the E group” and Edwards
reported that “the patient was ... trisomic for the no. 17 chromosome,” but we now know these
syndromes to be trisomies 13 and 18, respectively.

Also in 1960, Nowell and Hungerford reported the presence of the “Philadelphia chromosome” in
chronic myelogenous leukemia, demonstrating, for the first time, an association between chromo-
somes and cancer (23).

In 1963 and 1964, Lejeune et al. reported that three infants with the cri du chat (“cat cry””) syndrome
of phenotypic anomalies, which includes severe mental retardation and a characteristic kitten-like
mewing cry, had a deletion of the short arm of a B-group chromosome, designated as chromosome 5
(24,25). Within two years, Jacobs et al. described “aggressive behavior, mental subnormality and the
XYY male” (26), and the chromosomal instabilities associated with Bloom syndrome and Fanconi
anemia were reported (27,28).

Additional technical advancements had facilitated the routine study of patient karyotypes. In 1960,
Nowell observed that the kidney bean extract phytohemagglutinin, used to separate red and white
blood cells, stimulated lymphocytes to divide. He introduced its use as a mitogen (23,29), permitting
a peripheral blood sample to be used for chromosome analysis. This eliminated the need for bone



6 Steven Gersen

marrow aspiration, which had previously been the best way to obtain a sufficient number of sponta-
neously dividing cells. It was now feasible to produce mitotic cells suitable for chromosome analysis
from virtually any patient.

Yet, within nine years of the discovery of the number of chromosomes in humans, only three
autosomal trisomies, four sex chromosome aneuploidies, a structural abnormality (a deletion), an
acquired chromosomal abnormality associated with cancer, and two chromosome breakage disorders
had been described as recognizable “chromosomal syndromes.” A new clinical laboratory discipline
had been created; was it destined to be restricted to the diagnosis of a few abnormalities?

This seemed likely. Even though certain pairs were distinguishable by size and centromere posi-
tion, individual chromosomes could not be identified, and, as a result, patient-specific chromosome
abnormalities could be observed but not defined. Furthermore, the existence of certain abnormalities,
such as inversions involving a single chromosome arm (so-called paracentric inversions) could be
hypothesized but not proven, because they could not be visualized. Indeed, it seemed that without a
way to definitively identify each chromosome (and more importantly, regions of each chromosome),
this new field of medicine would be limited in scope to the study of a few disorders.

For three years, clinical cytogenetics was so relegated. Then, in 1968, Torbjorn Caspersson ob-
served that when plant chromosomes were stained with fluorescent quinacrine compounds, they did not
fluoresce uniformly, but rather produced a series of bright and dull areas across the length of each
chromosome. Furthermore, each pair fluoresced with a different pattern, so that previously indistin-
guishable chromosomes could now be recognized (30).

Caspersson and colleagues then turned their attention from plants to the study of human chromo-
somes. They hypothesized that the quinacrine derivative quinacrine mustard (QM) would preferen-
tially bind to guanine residues, and that C-G-rich regions of chromosomes should therefore produce
brighter “striations,” as they initially referred to them, whereas A-T-rich regions would be dull.
Although it ultimately turned out that it is the A-T-rich regions that fluoresce brightly and that ordi-
nary quinacrine dihydrochloride works as well as QM, by 1971 Caspersson and co-workers had suc-
cessfully produced and reported a unique “banding” pattern for each human chromosome pair (3/,32)
(see Fig. 2).

For the first time, each human chromosome could be positively identified. The method, however,
was cumbersome. It required a relatively expensive fluorescence microscope and a room that could
be darkened, and the fluorescence tended to fade or “quench” after a few minutes, making real-time
microscopic analysis difficult.

These difficulties were overcome a year later, when Drets and Shaw described a method of pro-
ducing similar chromosomal banding patterns using an alkali and saline pretreatment followed by
staining with Giemsa, a compound developed for identification, in blood smears, of the protozoan
that causes malaria (33). Even though some of the chromosome designations proposed by Drets and
Shaw have been changed (essentially in favor of those advocated by Caspersson), this method, and
successive variations of it, facilitated widespread application of clinical cytogenetic techniques.
Although the availability of individuals with the appropriate training and expertise limited the num-
ber and capacity of laboratories that could perform these procedures (in some ways still true today),
the technology itself was now within the grasp of any facility.

What followed was a cascade of defined chromosomal abnormalities and syndromes: aneuploidies,
deletions, microdeletions, translocations, inversions (including the paracentric variety), insertions
and mosaicisms, plus an ever-increasing collection of rearrangements and other cytogenetic anoma-
lies associated with neoplasia, and a seemingly infinite number of patient- and family-specific rear-
rangements.

Thanks to the host of research applications made possible by the precise identification of smaller
and smaller regions of the karyotype, genes began to be mapped to chromosomes at a furious pace.
The probes that resulted from such research have given rise to the discipline of molecular cytogenet-
ics, which utilizes the techniques of fluorescence in situ hybridization (FISH). In recent years, this
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Fig. 2. The first photograph of a Q-banded cell published by Caspersson and co-workers in 1970. The figure
was originally labeled “Quinacrine mustard treated human metaphase chromosomes (male) from leukocyte
culture. Fluorescence microscope. X2000.” (Reprinted from ref. 3/ with permission from Elsevier.)

exciting development and the many innovative procedures derived from it have created even more
interest in the human karyotype.

This brings us to the present. More than 1 million cytogenetic and molecular cytogenetic analyses
are now performed annually in over 400 laboratories worldwide (34,35), and this testing is now often
the standard of care. Pregnant women over the age of 35 or those with certain serum-screening results
are routinely offered prenatal cytogenetic analysis, and many also have prenatal ploidy analysis via
FISH. For children with phenotypic and/or mental difficulties and for couples experiencing repro-
ductive problems, cytogenetics has become a routine part of their clinical work-up, and FISH has
permitted us to visualize changes that are too subtle to be detected with standard chromosome analy-
sis. Cytogenetics and FISH also provide information vital to the diagnosis, prognosis, therapy, and
monitoring of treatment for a variety of cancers.

It was really not so long ago that we had 48 chromosomes. One has to wonder whether Flemming,
Waldeyer, Tjio, Levan, Hsu, or Lejeune could have predicted the modern widespread clinical use of
chromosome analysis. However, perhaps it is even more exciting to wonder what lies ahead for
medical cytogenetics and molecular cytogenetics now that we have entered the 21st century.
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DNA, Chromosomes, and Cell Division

Martha B. Keagle, MEd

INTRODUCTION

The molecule deoxyribonucleic acid (DNA) is the raw material of inheritance and ultimately
influences all aspects of the structure and functioning of the human body. A single molecule of DNA,
along with associated proteins, comprises a chromosome. Chromosomes are located in the nuclei of
all human cells (with the exception of mature red blood cells), and each human cell contains 23
different pairs of chromosomes.

Genes are functional units of genetic information that reside on each of the 23 pairs of chromo-
somes. These units are linear sequences of nitrogenous bases that code for protein molecules neces-
sary for the proper functioning of the body. The genetic information contained within the
chromosomes is copied and distributed to newly created cells during cell division. The structure of
DNA provides the answer to how it is precisely copied with each cell division and to how proteins are
synthesized.

DNA STRUCTURE

James Watson and Francis Crick elucidated the molecular structure of DNA in 1953 using X-ray
diffraction data collected by Rosalind Franklin and Maurice Wilkins and model building techniques
advocated by Linus Pauling (/,2). Watson and Crick proposed the double helix: a twisted, spiral
ladder structure consisting of two long chains wound around each other and held together by hydro-
gen bonds. DNA is composed of repeating units—the nucleotides. Each nucleotide consists of a
deoxyribose sugar, a phosphate group, and one of four nitrogen-containing bases: adenine (A), gua-
nine (G), cytosine (C), or thymine (T). Adenine and guanine are purines with a double-ring structure,
whereas cytosine and thymine are smaller pyrimidine molecules with a single ring structure. Two
nitrogenous bases positioned side by side on the inside of the double helix form one rung of the
molecular ladder. The sugar and phosphate groups form the backbone, or outer structure of the helix.
The fifth (5') carbon of one deoxyribose molecule and the third (3') carbon of the next deoxyribose
are joined by a covalent phosphate linkage. This gives each strand of the helix a chemical orientation
with the two strands running opposite or antiparallel to one another.

Biochemical analyses performed by Erwin Chargaff showed that the nitrogenous bases of DNA
were not present in equal proportions and that the proportion of these bases varied from one species to
another (3). Chargaff noted, however, that concentrations of guanine and cytosine were always equal,
as were the concentrations of adenine and thymine. This finding became known as Chargaff’s rule.
Watson and Crick postulated that in order to fulfill Chargaff’s rule and to maintain a uniform shape to
the DNA molecule, there must be a specific complementary pairing of the bases: adenine must always
pair with thymine and guanine must always pair with cytosine. Each strand of DNA, therefore, con-
tains a nucleotide sequence that is complementary to its partner. The linkage of these complementary

From: The Principles of Clinical Cytogenetics, Second Edition
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Fig. 1. DNA structure. Schematic representation of a DNA double helix, unwound to show the complementarity
of bases and the antiparallel structure of the phosphate (P) and sugar (S) backbone strands.

nitrogenous basepairs holds the antiparallel strands of DNA together. Two hydrogen bonds link the
adenine and thymine pairs, whereas three hydrogen bonds link the guanine and cytosine pairs (see
Fig. 1). The complementarity of DNA strands is what allows the molecule to replicate faithfully. The
sequence of bases is critical for DNA function because genetic information is determined by the
order of the bases along the DNA molecule.

DNA SYNTHESIS

The synthesis of a new molecule of DNA is called replication. This process requires many enzymes
and cofactors. The first step of the process involves breakage of the hydrogen bonds that hold the
DNA strands together. DNA helicases and single-strand binding proteins work to separate the strands
and keep the DNA exposed at many points along the length of the helix during replication. The area
of DNA at the active region of separation is a Y-shaped structure referred to as a replication fork.
These replication forks originate at structures called replication bubbles, which, in turn, are at DNA
sequences called replication origins. The molecular sequence of the replication origins has not been
completely characterized. Replication takes place on both strands, but nucleotides can only be added
to the 3' end of an existing strand. The separated strands of DNA serve as templates for production of
complementary strands of DNA following Chargaff’s rules of basepairing.
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Fig. 2. Semiconservative replication. Complementary nucleotides are added directly to the 3' end of the
leading strand, whereas the lagging strand is copied by the formation of Okazaki fragments.

The process of DNA synthesis differs for the two strands of DNA because of its antiparallel struc-
ture. Replication is straightforward on the leading strand. The enzyme DNA polymerase I facilitates
the addition of complementary nucleotides to the 3' end of a newly forming strand of DNA. In order to
add further nucleotides, DNA polymerase I requires the 3' hydroxyl end of a base-paired strand.

DNA synthesis on the lagging strand is accomplished by the formation of small segments of nucle-
otides called Okazaki fragments (4). After separation of the strands, the enzyme DNA primase uses
ribonucleotides to form a ribonucleic acid primer.

The structure of ribonucleic acid (RNA) is similar to that of DNA, except that each nucleotide in
RNA has a ribose sugar instead of deoxyribose and the pyrimidine thymine is replaced by another
pyrimidine, uracil (U). RNA also differs from DNA in that it is a single-stranded molecule. This RNA
primer is at the beginning of each Okazaki segment to be copied, provides a 3' hydroxyl group, and is
important for the efficiency of the replication process. The ribonucleic acid primer then attracts DNA
polymerase I. DNA polymerase I brings in the nucleotides and also removes the RNA primer and any
mismatches that occur during the process. Okazaki fragments are later joined by the enzyme DNA
ligase. The process of replication is semiconservative because the net result is creation of two identical
DNA molecules, each consisting of a parent DNA strand and a newly synthesized DNA strand. The
new DNA molecule grows as hydrogen bonds form between the complementary bases (see Fig. 2).
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Fig. 3. Transcription. A DNA molecule is copied into mRNA with the help of RNA polymerase.

PROTEIN SYNTHESIS

The genetic information of DNA is stored as a code, a linear sequence of nitrogenous bases in
triplets. These triplets code for specific amino acids that are subsequently linked together to form
protein molecules. The process of protein synthesis involves several types of ribonucleic acid.

The first step in protein synthesis is transcription. During this process, DNA is copied into a
complementary piece of messenger RNA (mRNA). Transcription is controlled by the enzyme RNA
polymerase, which functions to link ribonucleotides together in a sequence complementary to the
DNA template strand. The attachment of RNA polymerase to a promoter region, a specific sequence
of bases that varies from gene to gene, starts transcription. RNA polymerase moves off the template
strand at a termination sequence to complete the synthesis of a mRNA molecule (see Fig. 3).

Messenger RNA is modified at this point by the removal of introns—segments of DNA that do not
code for an mRNA product. In addition, some nucleotides are removed from the 3' end of the mol-
ecule, and a string of adenine nucleotides are added. This poly(A) tail helps in the transport of mRNA
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molecules to the cytoplasm. Another modification is the addition of a cap to the 5' end of the mRNA,
which serves to aid in attachment of the mRNA to the ribosome during translation. These alterations
to mRNA are referred to as mRNA processing (see Fig. 4). At this point, mRNA, carrying the infor-
mation necessary to synthesize a specific protein, is transferred from the nucleus into the cytoplasm
of the cell, where it then associates with ribosomes. Ribosomes, composed of ribosomal RNA (rRNA)
and protein, are the site of protein synthesis. Ribosomes consist of two subunits that come together
with mRNA to read the coded instructions on the mRNA molecule.

The next step in protein synthesis is translation. A chain of amino acids is synthesized during
translation by using the newly transcribed mRNA molecule as a template, with the help of a third
ribonucleic acid, transfer RNA (tRNA). Leder and Nirenberg (5) and Khorana (6) determined that
three nitrogen bases on an mRNA molecule constitute a codon. With 4 nitrogenous bases, there are
64 possible three-base codons. Sixty-one of these code for specific amino acids, and the other three
are “stop” codons that signal the termination of protein synthesis. There are only 20 amino acids, but
61 codons. Therefore, most amino acids are coded for by more than one mRNA codon. This redun-
dancy is referred to as degeneracy of the DNA code.

Transfer RNA molecules contain anticodons—nucleotide triplets that are complementary to the
codons on mRNA. Each tRNA molecule has attached to it the specific amino acid for which it codes.
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Ribosomes read mRNA one codon at a time. Transfer RNA molecules transfer the specific amino
acids to the synthesizing protein chain (see Fig. 5). The amino acids are joined to this chain by
peptide bonds. This process is continued until a stop codon is reached. The new protein molecule is
then released into the cell milieu and the ribosomes split apart (see Fig. 6).

DNA ORGANIZATION

Human chromatin consists of a single continuous molecule of DNA complexed with histone and
nonhistone proteins. The DNA in a single human diploid cell, if stretched out, would be approxi-
mately 2 m in length (7) and therefore must be condensed considerably to fit within the cell nucleus.
There are several levels of DNA organization that allow for this.

The DNA helix itself is the first level of condensation. Next, two molecules of each of the histones
H2A, H2B, H3, and H4 form a protein core, the octamer. The DNA double helix winds twice around
the octamer to form a 10-nm nucleosome, the basic structural unit of chromatin. Adjacent nucleo-
somes are pulled together by a linker segment of the histone H1. Repeated, this gives the chromatin
the appearance of “beads on a string.” Nucleosomes are further coiled into a 30-nm solenoid, with
each turn of the solenoid containing about six nucleosomes. The solenoids are packed into DNA
looped domains attached to a nonhistone protein matrix. Attachment points of each loop are fixed



DNA, Chromosomes, and Cell Division 15

Antisense (non-transcribed) Strand

C—] |+ [] l’l—r

Intron Exon

n

Sense (transcribed)

¥ : ] I
Promoter l Transceription
Region
mRNA
5 —] I il S — 3

mRNA Processing

mature mRNA

SCap @— [ | 3 AAAAAA

Transport to Cytoplasm

Starl Translati .
Codon ansiation Ribosomes blop
Codon
> AL 3’ A-A-A-A-AA vure

growing protein

chain
L/'l/alo ribosomal
O subunits
Protein separate
Fig. 6. Overview of protein synthesis. DNA is transcribed to mRNA, which is modified to a mature tran-
script and then transferred to the cytoplasm of the cell. The codons are read at the ribosomes and translated with

the help of tRNA. The chain of amino acids produced during translation is joined by peptide bonds to form a
protein molecule.

along the DNA. The looped domains coil further to give rise to highly compacted units, the chromo-
somes, which are visible with the light microscope only during cell division. Chromosomes reach
their greatest extent of condensation during the mitotic metaphase (see Fig. 7).

CHROMOSOME STRUCTURE

A chromosome consists of two sister chromatids, each of which is comprised of a contracted and
compacted double helix of DNA. The centromere, telomere, and nucleolar organizing regions are
functionally differentiated areas of the chromosomes (see Fig. 8).
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The Centromere

The centromere is a constriction visible on metaphase chromosomes where the two sister chro-
matids are joined together. The centromere is essential to the survival of a chromosome during cell
division. Interaction with the mitotic spindle during cell division occurs at the centromeric region.
Mitotic spindle fibers are the functional elements that separate the sister chromatids during cell
division.

Human chromosomes are grouped based on the position of the centromere on the chromosome.
The centromere is located near the middle in metacentric chromosomes, near one end in acrocentric
chromosomes, and it is between the middle and end in submetacentric chromosomes. The kineto-
chore apparatus is a complex structure consisting of proteins that function at the molecular level to
attach the chromosomes to the spindle fibers during cell division. Although the kinetochore is located
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in the region of the centromere, it should not be confused with the centromere. The latter is the DNA
at the site of the spindle-fiber attachment.

The Nucleolar Organizer Regions

The satellite stalks of human acrocentric chromosomes contain the nucleolar organizer regions
(NORs), so-called because this is where nucleoli form in interphase cells. NORs are also the site of
ribosomal RNA genes and production of rRNA. In humans, there are theoretically 10 nucleolar orga-
nizer regions, although all may not be active during any given cell cycle.

The Telomeres

The telomeres are the physical end of chromosomes. Telomeres act as protective caps to chromo-
some ends, preventing end-to-end fusion of chromosomes and DNA degradation resulting after chro-
mosome breakage. Nonhistone proteins complex with telomeric DNA to protect the ends of
chromosomes from nucleases located within the cell (9). The telomeric region also plays a role in
synapsis during meiosis. Chromosome pairing appears to be initiated in the subtelomeric regions (/0).

Telomeres contain tandem repeats of the nitrogenous base sequence TTAGGG over 3—20 kb at the
chromosome ends (/7). At the very tip of the chromosome, the two strands do not end at the same
point, resulting in a short G-rich tail that is single-stranded. Because of this, DNA synthesis breaks
down at the telomeres and telomeres replicate differently than other types of linear DNA. The enzyme
telomerase synthesizes new copies of the telomere TTAGGG repeat using an RNA template that is a
component of the telomerase enzyme. The telomerase also counteracts the progressive shortening of
chromosomes that results from many cycles of normal DNA replication. Telomere length gradually
decreases with the aging process and with increased numbers of cell divisions in culture. The pro-
gressive shortening of human telomeres appears to be a tumor-suppressor mechanism (/2). The main-
tenance of telomeric DNA permits the binding of telomeric proteins that form the protective cap at
chromosome ends and regulate telomere length (/2). Cells that have defective or unstable telomerase
will exhibit shortening of chromosomes, leading to chromosome instability and cell death.

TYPES OF DNA

DNA is classified into three general categories: unique sequence, highly repetitive sequence
DNA (>10° copies), and middle repetitive sequence DNA (10>~10* copies). Unique sequence or
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single-copy DNA is the most common class of DNA, comprising about 75% of the human genome
(13). This DNA consists of nucleotide sequences that are represented only once in a haploid set.
Genes that code for proteins are single-copy DNA. Repetitive or repeated sequence DNA makes up
the remaining 25% of the genome (/3) and is classified according to the number of repeats and
whether the repeats are tandem or interspersed among unique sequence DNA.

Repetitive, tandemly arranged DNA was first discovered with a cesium chloride density gradient.
Repetitive, tandem sequences were visualized as separate bands in the gradient. This DNA was termed
satellite DNA (74). Satellite DNA is categorized, based on the length of sequences that make up the
tandem array and the total length of the array, as a-satellite, minisatellite, and microsatellite DNA.

Alpha-satellite DNA is a repeat of a 171-basepair sequence organized in a tandem array of up to a
million basepairs or more in total length. Alpha-satellite DNA is generally not transcribed and is
located in the heterochromatin associated with the centromeres of chromosomes (see below). The
size and number of repeats of satellite DNA is chromosome-specific (15). Although a-satellite DNA
is associated with centromeres, its role in centromere function has not been determined. A centro-
meric protein, CENP-B, has been shown to bind to a 17-basepair portion of some o.-satellite DNA,
but the functional significance of this has not been determined (76).

Minisatellites have repeats that are 20—70 basepairs in length, with a total length of a few thousand
basepairs. Microsatellites have repeat units of 2, 3, or 4 basepairs and the total length is usually less
than a few hundred basepairs. Minisatellites and microsatellites vary in length among individuals
and, as such, are useful markers for gene mapping and identity testing.

The genes for 18S and 28S ribosomal RNAs are middle repetitive sequences. Several hundred
copies of these genes are tandemly arranged on the short arms of the acrocentric chromosomes.

Dispersed repetitive DNA is classified as either short or long. The terms SINES (short interspersed
elements) and LINES (long interspersed elements) were introduced by Singer (/7). SINES range in
size from 90 to 500 basepairs. One class of SINES is the Alu sequence. Many Alu sequences are
transcribed and are present in nuclear pre-mRNA and in some noncoding regions of mRNA. Alu
sequences have high G-C content and are found predominantly in the Giemsa-light bands of chromo-
somes (/8). LINES can be as large as 7000 bases. The predominant member of the LINEs family is a
sequence called L1. L1 sequences have high A-T content and are predominantly found in the Gi-
emsa-dark bands of chromosomes (/7). See Chapters 3 and 4.

CHROMATIN

There are two fundamental types of chromatin in eukaryotic cells: euchromatin and heterochro-
matin. Euchromatin is loosely organized, extended, and uncoiled. This chromatin contains active,
early replicating genes and stains lightly with GTG banding techniques.

There are two special types of heterochromatin that warrant special mention: facultative hetero-
chromatin and constitutive heterochromatin. Both are genetically inactive, late replicating during the
synthesis (S) phase of mitosis, and are highly contracted.

Constitutive Heterochromatin

Constitutive heterochromatin consists of simple repeats of nitrogenous bases that are generally located
around the centromeres of all chromosomes and at the distal end of the Y chromosome. There are no
transcribed genes located in constitutive heterochromatin, which explains that fact that variations in
constitutive heterochromatic chromosome regions apparently have no effect on the phenotype. Chro-
mosomes 1,9, 16, and Y have variably sized constitutive heterochromatic regions. The heterochromatic
regions of these chromosomes stain differentially with various special staining techniques, revealing
that the DNA structure of these regions is not the same as the structure of the euchromatic regions on the
same chromosomes. The only established function of constitutive heterochromatin is the regulation of
crossing over—the exchange of genes from one sister chromatid to the other during cell division (/9).
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Fig. 9. The cell cycle: gap 1, Synthesis, gap 2, and mitosis.

Facultative Heterochromatin

One X chromosome of every female cell is randomly inactivated. The inactivated X is condensed
during the interphase and replicates late during the synthesis stage of the cell cycle. It is termed
facultative heterochromatin. Because these regions are inactivated, it has been proposed that faculta-
tive heterochromatin regulates gene function (20).

CELL DIVISION

An understanding of cell division is basic to an understanding of cytogenetics. Dividing cells are
needed in order to study chromosomes using traditional cytogenetic techniques, and many cytoge-
netic abnormalities result from errors in cell division.

There are two types of cell division: mitosis and meiosis. Mitosis is the division of somatic cells,
whereas meiosis is a special type of division that occurs only in gametic cells.

The Cell Cycle

The average mammalian cell cycle lasts about 17—18 hours and is the transition of a cell from one
interphase through cell division and back to the interphase (2/). The cell cycle is divided into four
major stages. The first three stages, gap 1 (G1), synthesis (S), and gap 2 (G2), comprise the inter-
phase. The fourth and final stage of the cell cycle is mitosis (M) (see Fig. 9).

The first stage, G1, is the longest and typically lasts about 9 hours (27). Chromosomes exist as
single chromatids during this stage. Cells are metabolically active during G1, and this is when protein
synthesis takes place. A cell might be permanently arrested at this stage if its does not undergo further
division. This arrested phase is referred to as gap zero (GO).

Gap 1 is followed by the synthesis phase, which lasts about 5 hours in mammalian cells (27). This
is when DNA synthesis occurs. The DNA replicates itself and the chromosomes then consist of two
identical sister chromatids.

Some DNA replicates early in the S phase and some replicates later. Early replicating DNA con-
tains a higher portion of active genes than late replicating DNA. By standard G-banding techniques,
the light staining bands usually replicate early, whereas the dark staining bands and the inactive X
chromosome in females replicate late in the S phase.

Gap 2 lasts about 3 hours (2/). During this phase, the cell prepares to undergo cell division. The
completion of G2 represents the end of the interphase.

The final step in the cell cycle is mitosis. This stage lasts only 1-2 hours in most mammalian cells.
Mitosis is the process by which cells reproduce themselves, creating two daughter cells that are
genetically identical to one another and to the original parent cell. Mitosis is itself divided into stages
(see Fig. 10).
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Fig. 10. Mitosis. Schematic representation of two pairs of chromosomes undergoing cell division: (a) inter-
phase, (b) prophase, (¢) metaphase, (d) anaphase, (e) telophase, (f) cytokinesis, and (g) interphase of the next
cell cycle.

MITOSIS
Prophase

Chromosomes are at their greatest elongation and are not visible as discrete structures under the
light microscope during the interphase. During the prophase, chromosomes begin to coil, become
more condensed, and begin to become visible as discrete structures. Nucleoli are visible early in the
prophase, but disappear as the stage progresses.

Prometaphase

Prometaphase is a short period between the prophase and the metaphase during which the nuclear
membrane disappears and the spindle fibers begin to appear. Chromosomes attach to the spindle
fibers at their kinetochores.



