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Preface

Systems biology could be defined as the quantitative analysis of the dynamic
interactions among several components of a biological system and aims to under-
stand the behavior of the system as a whole. R&D in systems biology involves the
development and application of systems theory concepts for the study of complex
biological systems through iteration over mathematical modeling and computational
simulation and biological experimentation. Systems biology could be viewed as a
tool to increase understanding of biological systems and to develop more directed
experiments and finally allow predictions.

The field of systems biology arose out of a biological problem which is essen-
tially entailed by the complexity of biological life. It was created because of the
limitations of conventional (reductionistic) biology in the investigation and under-
standing of complex biological phenomena arising from the dynamic interaction
of many biological compounds. At present, a large number of individual genes or
proteins which play key roles in essential physiological processes are known. For
many of these, structural data and detailed mechanistic descriptions at a molecular
level are available. In most cases, however, the individual characterization of these
molecules is not sufficient to fully understand their immediate or their superordi-
nate physiological function. Similarly, large networks of genes, proteins and other
organic molecules have been discovered, mapped and characterized. While underly-
ing mechanisms have been regarded as a promising base for explaining the multitude
of cellular functions and phenomena observed in vivo, there is still a fundamental
gap between the knowledge of a molecular mechanism and the understanding of the
corresponding cellular or higher-level function.

The growing field of systems biology promises to bridge our current gap in un-
derstanding. Systems biology views biological function and macroscopic behavior
as an emergent or supervenient property – i.e., a property that a collection of com-
ponents or complex system possesses but which the individual constituents do not
have. The properties of individual elements, such as proteins, are investigated in the
context of the whole, complex system of interactions. The different spatial and tem-
poral scales involved in biological processes – ranging from the level of molecules
through to organisms and, ultimately, to the level of entire populations or ecosystems
– permit upward and downward causation in complex arrangements of feedback
loops. Systems-level properties arise from interconnected processes on multiple
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vi Preface

scales of temporal and spatial organization. Understanding such complexity is a
major challenge to the unaided human brain. Thus, using mathematical and compu-
tational models, systems biologists integrate elementary processes of systems into a
coherent description that allows them to predict and characterize the systems-level
properties and behavior of complex biological phenomena.

As the field of systems biology matures, we are beginning to see practical an-
swers to real biological problems. We believe it is now time to step back and review
some of the approaches of systems biology to concrete problems. This volume in-
troduces some of the main methods and techniques of systems biology and assesses
their pros and cons based on concrete case studies. The investigated biological phe-
nomena include tissue organization, hormonal control, bacterial stress response,
tumor growth and cellular metabolism. Each chapter and the book as a whole is
intended to simultaneously serve as design blueprint, user guide, research agenda,
and communication platform.

As design blueprint, the book is intended for biologists, mathematicians and sys-
tems scientists, computer scientists and technology developers, managers, and other
professionals who consider adopting a systems biology approach.

As user guide, this volume addresses the requirements of scientists and re-
searchers to gain an overview and a basic understanding of key systems biology
methodologies and tools. For these users, we seek to explain the key concepts and
assumptions of the various techniques, their conceptual and computational merits
and limitations, and, where possible, give guidelines for choosing the methods and
tools most appropriate to the task at hand. Our emphasis is not on a complete and
intricate formal and technical treatment of the presented methodologies. Instead, we
aim at providing the users with a clear understanding and practical know-how of the
relevant methods in the context of concrete life science problems.

As research agenda, the book is intended for computer and life science students,
teachers, researchers, and managers who seek to understand the state of the art of the
methodologies used in systems biology research and development. To achieve this,
we have attempted to cover a representative range of life science areas and systems
biology methodologies, and we have asked the authors to identify areas in which
gaps in our knowledge demand further research and development.

The book is also intended as a communication platform to bridge the cultural,
conceptual, and technological gap among the key systems biology disciplines of
biology, mathematics, and information technology. To support this goal, we have
asked the contributors to adopt an approach that appeals to audiences from different
backgrounds.

Providing a representative overview of current research, this book aims to illus-
trate the insights gained by adopting a systems biology approach. While systems
biologists typically apply mathematical, statistical, and computational methods,
these insights are presented in the context of current life science research. As a
result, this book is targeted at an interdisciplinary audience comprising life scien-
tists, mathematicians, system and computer researchers, and developers. In pursuing
these goals, the book seeks to bridge the cultural, conceptual, and technological gap
among the key disciplines that contribute to systems biology.
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Table 1 Classification of modeling formalisms: examples

Deterministic Stochastic

Continuous ODE, PDE SDE
Discrete Boolean network, cellular automaton Agent-based simulation

In recent years, the increased interest of computer scientists in systems biology
has led to an explosion of novel systems methodologies for modeling, analysis, and
validation, but also for model representation and exchange. In this book, we do not
intend to cover a wide variety of these methods, but we aim to present illustrative
applications of systems biological methods in a representative overview.

In any modeling discipline, modeling formalisms may be classified according to
the type of representation chosen to model time, space, and entities (such as the
cell, proteins, or genes) of the system. These entities or dimensions can be mod-
eled as continuous variables, so that the model can cope with any value within a
meaningful range. Table 1 illustrates this. Continuous means that the model may
output a simulation result at any given time point, t (continuous time) and loca-
tion, x (continuous space), and that the output of the model may assume any value
within a predefined range. In contrast, discrete refers to a modeling strategy that
uses distinct values from a predefined set to represent time, space, and the entities
of the modeled system. The output of a time-discrete model is limited to certain
time intervals; a space-discrete model can explore only certain points in a given
space; and discrete variables express levels or predefined states (on/off, low/high,
cell cycle phase) of the modeled entities. Clearly, any of the combination of discrete
and continuous methods is possible. An agent-based simulation can be backed by a
time-continuous, space-discrete model with agents that are represented using both
continuous and discrete variables. Discrete methodologies sometimes deviate from
the classification shown in Table 1. The most common cases are shown in the table.

Systems biology modeling methodologies may also be divided into deterministic
and stochastic formalisms. Consider a set of interacting cells which behave accord-
ing to certain rules. In reality, the observation of randomly picked single cells may
lead to grossly varying observations; although when looking at a large number of
cells, they all share the same characteristic behavior. Deterministic simulations deal
with this problem by modeling only those characteristics; the stochastic approach,
in contrast, considers a large number of individual simulations and uses statistical
analysis to draw conclusions.

Below we provide a brief overview of the contributed chapters in terms of the
modeling methodology used and the biological problems addressed.

The modeling framework that was probably the first to be adapted for systems
biological modeling – before the term systems biology was even coined – is the
mathematical framework with the longest tradition: differential equations modeling,
or more concrete, ordinary differential equations (ODEs). The ODE methodology
offers a variety of basic, mathematical, and computational tools for modeling, sim-
ulation, and qualitative and quantitative analysis.
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Chapter 1 presents two elementary case studies that illustrate ODE-based model
definition as well as timescale analysis and sensitivity analysis. These analysis meth-
ods can be used to extract biologically meaningful information from the model. In
the study, the authors measure the efficiency of the simulated cell’s protein-folding
machinery under various conditions using timescale analysis.

While ODEs offer a general and flexible approach to modeling, this methodology
relies on a qualitatively and quantitatively exact definition of the molecular network
or system to be represented. Chapter 2 illustrates some of the most common mathe-
matical tools in an ODE-based case study relating to folate metabolism.

Chapter 3 presents a delay differential equations (DDE) model of hormonal
control of the menstrual cycle. This study demonstrates that it is sometimes more
interesting to characterize the behavior of a system in relation to its inputs and pa-
rameters, than to just reproduce its outputs using concrete parameter values.

Pharmacokinetic models, most of which are ODE-based, have become an estab-
lished tool in pharmacology. Such models have become an important tool in drug
development to predict the fate of drugs or toxins taken in by the human body.
Chapter 4 introduces this field and highlights the problem of investigating active
transport phenomena.

The studies presented in Chaps. 3 and 4 rely on a reasonably well-established
body of quantitative data. However, in the majority of cases, sufficient amounts of
data are currently not available to systems biologists. The need to abstract from con-
crete sets of parameters has therefore led to the development of different modeling
methods. Piece-wise linear (PL) equations, introduced in Chap. 6, are one example.
Based on ODEs, they divide the entire parameter space into parts that share the same
qualitative behavior. This behavior is approximated using only simple, linear equa-
tions, as opposed to the nonlinear equations that typically arise in complex ODE
systems. This property makes PL models mathematically more tractable.

Flux balance analysis (FBA) is another useful tool in pharmacological applica-
tions of systems biology. An FBA model can predict metabolic activities (fluxes)
under homeostatic conditions. Knowing the relevant metabolites and the stoichiom-
etry of all reactions in the system is sufficient for performing such an analysis. FBA
permits comprehensive studies of qualitative structural changes in the network, such
as deletion of arbitrary genes throughout the genome. Chapter 5 presents an FBA
case study concerned with the metabolism and pathogenicity of Mycobacterium
tuberculosis. The overall goal of the effort is to systematically and efficiently de-
sign anti-tuberculosis drugs. Toward this goal, this chapter also illustrates how other
techniques, besides FBA, can be used. The use of graph-theoretical techniques are
illustrated for analyzing the protein–protein interaction networks, to gain insights
about strategic hub proteins and possible of routes of information flow in triggering
drug resistance. Boolean network modeling, another technique gaining popularity
for studying biological systems, has been used for studying host–pathogen interac-
tions, in this case leading to qualitative understanding of the complex interplay of
the bacterial components with the human immune system.

Another modeling technique which is growing in popularity is the agent-based
model (or individual-based model). Chapter 7 illustrates this methodology with an
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application to the problem of bacterial antibiotic resistance. In this model, each cell
is represented as an agent, which moves and interacts with other agents according
to a defined set of rules. The agent paradigm is well suited to investigating the
mechanisms of emergent spatial patterns. This is also discussed in Chap. 8, where an
agent-based model is used to mimic the assembly of microtubules into the mitotic
spindle at cell division.

Since different modeling methodologies are typically suited for different scales
of time and space, it is an appealing proposition to build multi-scale models, where
multiple modeling techniques applied to different aspects of the same biological
problem integrate into a single, integrated model. The agent-based modeling ap-
proach permits the use of arbitrary modeling methods for defining the rule sets by
which the agents are governed. This is illustrated in Chap. 9, where agents are used
to model the behavior of epithelial tissue.

Finally, Chap. 10 uses an entirely different approach to investigate a problem in
synthetic biology. In this discipline, biological molecules are used to engineer func-
tional entities such as logic circuits. In this study, a domain-specific programming
language helps to model and define the behavior of this engineered component.

Coleraine Werner Dubitzky
August, 2010 Jenny Southgate

Hendrik Fuß
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Valentina.Baldazzi@inria.fr

Nagasuma Chandra Bioinformatics Centre, Indian Institute of Science,
Bangalore 560 012, India, nchandra@serc.iisc.ernet.in

Hidde de Jong INRIA Grenoble – Rhône-Alpes, France,
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olivier.michel@univ-paris12.fr

Pedro T. Monteiro INRIA Grenoble – Rhône-Alpes, France
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antoine.spicher@univ-paris12.fr

Ray Walshe Centre for Scientific Computing and Complex Systems Modeling,
School of Computing, Dublin City University, Dublin 9, Ireland,
ray@computing.dcu.ie

palsson@ucsd.edu
rpasteur@wooster.edu
n.plant@surrey.ac.uk
k.raman@bioc.unizh.ch
Delphine.Ropers@inria.fr
sandefur@umich.edu
schnells@umich.edu
selgrade@math.ncsu.edu
r.smallwood@shef.ac.uk
antoine.spicher@univ-paris12.fr
ray@computing.dcu.ie


Chapter 1
Effects of Protein Quality Control Machinery
on Protein Homeostasis

Conner I. Sandefur and Santiago Schnell

1.1 Protein Folding is Catalyzed by a Complex Network
of Reactions

A driving force of systems biology is the desire to understand the many interactions
that compose the pathways within a cell. Systems biology is interested in the inter-
actions and emergent properties that result from communication between different
system components. Reducing a system (e.g., a cell) to its parts (e.g., individual
genes and proteins) neglects component interaction and emergent properties. Build-
ing and investigating a complete interaction map provides insight into normal and
diseased individuals that might not be found by traditional methods.

Much of traditional biology has the central dogma of molecular biology at its
basis. This dogma states that DNA is transcribed into RNA which is translated into
protein (Crick 1970), and has guided the study of individual genes and the proteins
they encode. The protein folding network provides an example of how the central
dogma of molecular biology does not explain many of the interactions within cells.
DNA transcription is initiated by proteins and is the first step in protein produc-
tion. For a number of eukaryotic proteins, the process continues with co-translation
through ribosomes into the endoplasmic reticulum (ER). Molecular chaperones and
folding machinery aid in folding protein into its native structure. This native state is
not a random one but is instead the result of both the amino acid sequence and the
complex folding network. These properly folded proteins are transported out of the
ER for further processing.

The path from gene to protein is composed of many different and unknown
interactions between DNA, RNA, proteins, and small molecules. Protein folding
is one network, or subsystem, within the larger system of protein production. A sys-
tems biology approach offers us an opportunity to understand the complicated
network of protein folding and the emergent properties that arise from interacting

C.I. Sandefur (�)
Center for Computational Medicine and Bioinformatics, University of Michigan,
2017 Palmer Commons, 100 Washtenaw Ave, Ann Arbor, MI 48105, USA
e-mail: sandefur@umich.edu

W. Dubitzky et al. (eds.), Understanding the Dynamics of Biological Systems: Lessons
Learned from Integrative Systems Biology, DOI 10.1007/978-1-4419-7964-3 1,
c� Springer Science+Business Media, LLC 2011
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2 C.I. Sandefur and S. Schnell

network components. In this chapter, we explore two models of protein folding and
misfolding to investigate how the protein folding network affects protein home-
ostasis. Using these models, we can identify the protein quality control pathways
regulating folding and offer potential therapeutic targets for protein folding diseases.

1.1.1 Disruptions to the Protein Folding Network are Associated
with Disease

Protein folding is often described by way of a folding energy landscape (Fig. 1.1)
(Chiti and Dobson 2006). The landscape is composed of different conformations
of a given protein each corresponding to a different energy level. The minimum
energy, three-dimensional folded protein structure is termed the “native state” and
for most proteins, is essential for proper function (Alberts et al. 2008). Failure to fold
properly results in misfolded protein conformations. These protein conformations
correspond to energy minima pockets within the folding energy landscape.

Proteins may fail to properly fold through mutations, cellular stress, or stochas-
tic events (Nakatsukasa and Brodsky 2008). A breakdown in the quality of protein
production can lead to the accumulation of toxic levels of misfolded and unfolded
proteins. Improperly folded proteins can form aggregates (Morimoto 2008). When
the level of aggregates reaches a certain concentration threshold, these protein com-
plexes may lead to proteotoxicity.

Fig. 1.1 Different protein conformations have different energies. While the goal is to reach the
lowest energy as a properly folded protein (F), some misfolded proteins (M) are located in energy
minima. Unfolded protein is denoted by U
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A variety of diseases are the linked to protein misfolding. For example, disruption
of proinsulin folding in “-cells is sufficient to induce diabetes in both humans and
mice (Scheuner and Kaufman 2008). Aggregation due to increased protein mis-
folding is implicated in the neurological diseases Alzheimer’s, Parkinson’s, and
Huntington’s (Soto 2003). The mechanisms behind aggregation of misfolded pro-
teins and how the cell copes with misfolded protein accumulation are unknown.

1.1.2 The ER Functions as a Protein Folding Factory

Despite many technological advances, a complete understanding of the process of
protein folding remains elusive. Proteins fold by transitioning through intermediates
that comprise the folding landscape. However, detecting intermediate structures is
difficult. This is because fast folding intermediates are not easily measured using
current technology (Dobson 2004).

The ER is responsible for the synthesis, folding, assembly, and modification of
one third of the eukaryotic proteome (Kaufman 2004). Most proteins cannot refold
into their native states in the absence of cellular machinery. Protein folding in the ER
is analogous to a factory assembly line with machinery processing proteins into a
final, unique, native conformation. Enzymes and molecular chaperones are a part of
this machinery working along the protein assembly line. Once a protein is properly
folded, it is exported from the ER. If unfolded or misfolded proteins accumulate in
the ER factory above a certain threshold, protein homeostasis is disrupted which can
result in proteotoxicity (Ron and Walter 2007).

Cells have evolved a set of quality control processes that restore protein home-
ostasis. The processes are collectively termed the unfolded protein response (UPR).
The UPR aids in quality control of protein production through three general pro-
cesses. One process of the UPR prevents the influx of new peptides into the ER
(Harding et al. 1999). Halting incoming materials into the factory reduces the bur-
den on the cellular machinery.

The second process of the UPR increases the capacity of the ER-assisted-folding
(ERAF) pathway through upregulation of chaperones and folding catalysts. This
additional machinery aids in efficient processing of proteins within the burdened
factory. Along with assisting in protein folding, chaperones and enzymes also se-
quester polypeptides within the ER. This is done to ensure that the mature folded
proteins meet the factory quality control standards before export (Brodsky 2007).

Third, the UPR invokes the ER-assisted-degradation (ERAD) pathway. Due to
the strict quality control measures of the protein factory, most proteins are near
degradation as they move along the assembly line (Liberek et al. 2008). Chaperones
escort proteins targeted for degradation. The chaperones prevent aggregation by al-
lowing proteins to remain soluble and accessible to retrotranslocation machinery
(Nakatsukasa and Brodsky 2008). After a protein is retrotranslocated to the cytosol
by a retrotranslocon channel, it is degraded by the ubiquitin/proteasome pathway
(Meusser et al. 2005). Enhancement of degradation reduces the assembly line load.
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1.1.3 Mathematical Models of Protein Quality Control Provide
Novel Insights into the Regulation of Protein Assembly

Although great strides have been made in understanding the network of protein
folding, we lack a complete picture of the processes necessary for proteins to prop-
erly fold. We can apply modeling to investigate the mechanisms of protein quality
control and make new experimental predictions. In biochemical processes, mathe-
matical models are generally systems of ordinary equations. Using these models, we
can investigate how varying reaction rates impact relative levels of system compo-
nents through time. Also, we can obtain a dynamical view of the impact of protein
quality control on the synthesis of native protein.

We know that protein folding in the ER involves a quality control mechanism,
but how does this impact the dynamics of the native protein concentration? Ex-
perimental observations of protein quality control show it to be dependent on the
amount of protein within the ER lumen (Ron and Walter 2007). We hypothesize
that this dependence increases the timescale of protein accumulation and depletion
under quality control. We test this hypothesis by comparing two models of protein
folding, one without quality control and the other with.

1.2 Case Studies

In the following case studies, we analyze two models of protein folding. The first
case study is an analysis of a simple model describing protein folding in absence
of the UPR. We follow with a second model describing protein folding regulated
by the UPR. A comparison of the two models serves to illustrate how mathematical
models provide a greater understanding of the dynamics of protein quality control.

1.2.1 Case Study I: Protein Folding Without Quality Control

The experimental measurements obtained from protein folding in vitro led to the
development of the two state model of protein folding. In this model, unfolded pro-
tein spontaneously folds into its native state without intermediates (Anfinsen et al.
1954). This model provides a simple description of protein folding in absence of
quality control machinery.

1.2.1.1 Assumptions

This first model contains three protein conformations: unfolded protein (U), folded
protein (F), and misfolded protein (M) (Fig. 1.2). We are not considering influx or
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Fig. 1.2 Schematic of protein folding without quality control. The three protein conformations
are represented as follows: unfolded (U), folded (F), and misfolded (M). Folding and misfolding
reaction velocities are first-order with rate constants k1 and k0, respectively. We assume that folding
and misfolding are irreversible reactions. There is no influx or outflux of protein so the total protein
concentration is conserved

outflux of protein; the system is closed and the total protein concentration is constant
(u C m C f D constant). Note that we denote protein concentrations using lower
case variables.

We model spontaneous folding of unfolded protein at a rate of k1 and misfolding
at a rate of k0 (Anfinsen et al. 1954). In general, chaperones are required for unfold-
ing from a misfolded or folded state (Martin and Hartl 1997). Here, we assume that
both folding and misfolding reactions are irreversible.

Equations (1.1)–(1.3) describe protein folding and misfolding in the absence of
quality control by a linear system of ordinary differential equations.

du

dt
D �.k1 C k0/ u (1.1)

dm

dt
D k0 u (1.2)

df

dt
D k1 u: (1.3)

Note that the rate equations describing folded and misfolded protein are both de-
pendent on unfolded protein.

1.2.1.2 Analytical Solution

We can solve this linear model analytically. Setting u0 as the total basal protein
concentration (u.0/ D u0, m(0) D 0, and f(0) D 0), we find the analytical solution of
our system to be:

u.t/ D u0 e�.k0Ck1/ t (1.4)
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Fig. 1.3 Time course of the
three protein conformation
concentrations in absence of
quality control. We begin
with a basal unfolded protein
(u) concentration, u0, of
1 �M. Misfolded protein
concentration, m, reaches a
maximum of k0

k0Ck1
u0 and

folded protein concentration,
f , reaches a maximum of

k1

k0Ck1
u0. In this figure, k0 =

0.25 s�1 and k1 = 1 s�1. The
timescale for the system is
denoted by �

m.t/ D u0

k0

k0 C k1

�
1 � e�.k0Ck1/ t

�
(1.5)

f .t/ D u0

k1

k0 C k1

�
1 � e�.k0Ck1/ t

�
: (1.6)

We can plot the concentrations of the different protein conformations as functions
of time (Fig. 1.3). We begin with some basal unfolded protein concentration (u0)
which decreases monotonically to zero. Misfolded protein levels increase towards
a maximum misfolded concentration, mmax, while folded protein levels increase to-
wards a maximum folded protein concentration, fmax, where,

mmax D k0

k0 C k1

u0 and (1.7)

fmax D k1

k0 C k1

u0: (1.8)

1.2.1.3 Timescale Analysis

The timescale is the amount of time required for a significant change in the level of
a protein conformation to occur and can be defined as (Segel 1984):

timescale of x(t) � xmax � xminˇ̌
dx
dt

ˇ̌
max

: (1.9)
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Since the rates of formation of folded and misfolded protein depend on unfolded
protein, the two terminal protein conformations are formed under the same timescale
as unfolded protein depletion. The timescale of unfolded protein depletion and mis-
folded and folded protein accumulation is

� D 1

k0 C k1

: (1.10)

In the initial transient of the folding process, the levels of misfolded and folded
protein increase, as the misfolding and folding reactions compete for the unfolded
protein (Fig. 1.3). Eventually, all of the unfolded protein in the system is either con-
verted to folded or misfolded protein at rates k1 or k0, respectively. If either rate
is increased, unfolded protein is depleted from the system more quickly. If we in-
crease the rate of folding, k1, the maximum concentration of folded protein in the
system increases. This also results in a decrease in the timescale of folded protein
accumulation. We observe similar behavior in the misfolded protein levels when the
rate of misfolding is increased.

1.2.1.4 Conclusions for Case Study I

We introduced a simple model of protein folding and misfolding in absence of qual-
ity control. There is one timescale in the system that is dependent on the rates of
folding and misfolding alone. Unfolded protein is depleted from the system on the
same timescale as misfolded and folded protein form. In this linear system, the ex-
act amounts of folded and misfolded protein can be determined at any time point by
knowing the rates of misfolding and folding and the basal unfolded protein concen-
tration. This model is a simplification and does not capture the interactions between
the components of the cellular folding network in the ER. These interactions impact
the overall behavior of the system as we will show in the next subsection.

1.2.2 Case Study II: Protein Folding with Quality Control

In Case Study I, we analyzed a model describing protein folding in the absence of
the UPR. In reality, protein homeostasis within the folding factory of the ER is much
more complicated. In this second case study, we analyze a model of protein folding
regulated by the UPR. We compare the two models to investigate the impact of pro-
tein quality control machinery on protein homeostasis. We also perform a sensitivity
analysis to identify parameters driving folding and misfolded protein accumulation.
We discuss potential therapies for recovering folded protein levels under conditions
promoting the accumulation of misfolded protein, such as those observed in protein
misfolding diseases.
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1.2.2.1 Assumptions

We analyzed a recently formulated model of the UPR in pancreatic “-cells (Fig. 1.4)
(Schnell 2009). This model assesses factory function after activation of the three
responses of the UPR.

As in Case Study I, we assume there is no input of unfolded protein into the
system. Halted protein influx results in a reduction of protein entry into the ER
lumen and is one of the three responses of the UPR (Harding et al. 1999). We begin
with a basal unfolded protein concentration denoted u0. We also assume that the
rate of protein misfolding (k0) follows first-order kinetics and is proportional to the
level of unfolded protein (Nolting 2006). Again, we model protein misfolding as
irreversible (Martin and Hartl 1997).

It has been experimentally demonstrated that complex biochemical processes can
be modeled as single enzyme reactions (Aldridge et al. 2006; Kholodenko 2006;
Wiseman et al. 2007). Using this precedent of describing biochemical processes, two
additional UPR processes were introduced into the quality control model of protein
folding. As discussed above, ERAF and ERAD responses of the UPR are com-
plex pathways comprised of many different components including chaperones and
folding or degradation catalysts. Here, the ERAF response is modeled as a single en-
zyme with unfolded protein as a substrate (see Segel (1984) for details on modeling
enzyme kinetics). The maximum velocity of folding is Vf with a Michelis–Menten
(MM) constant of Kf. This MM constant is representative of the disassociation con-
stant of folding machinery from unfolded protein.

Since a buildup of unfolded and misfolded protein in the ER lumen (which
leads to an activation of the UPR) is assumed, the ERAD degradation machinery is
modeled as responsible for removing both protein conformations (Nakatsukasa and
Brodsky 2008). Therefore, a competition occurs between unfolded and misfolded

Fig. 1.4 Schematic of protein folding with quality control. U is unfolded protein, F is folded pro-
tein, and M is misfolded protein. X is the enzyme representative of the folding machinery. Y is the
enzyme representative of the degradation machinery. The enzyme–substrate complex intermediate
for each pathway is represented by IUX, IUY, and IMY. Misfolding occurs through a first-order
reaction with rate constant k0
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protein as both are degraded with the same machinery. The maximum velocities
of unfolded and misfolded protein degradation are denoted by Vu and Vm, respec-
tively. Ku corresponds to the disassociation constant of degradation machinery from
unfolded protein. Km corresponds to the disassociation constant of degradation ma-
chinery from misfolded protein. Using the model schematic in Fig. 1.4 and the MM
terms for the ERAF and ERAD process, we write the following system of differen-
tial equations describing protein folding under quality control:

du

dt
D �k0 u � Vf u

Kf C u
� Vu u

Ku

�
1 C m

Km

�
C u

(1.11)

dm

dt
D k0 u � Vm m

Km

�
1 C u

Ku

�
C m

(1.12)

df

dt
D Vf u

Kf C u
: (1.13)

1.2.2.2 Qualitative Dynamical Behavior and Equilibrium Points

Most nonlinear dynamical systems, such as the one described by (1.11)–(1.13),
will not have an analytical solution. There are a variety of techniques useful for
ascertaining the behavior of dynamical systems in this situation. In our analysis, we
find the equilibrium points of the system (Sect. 1.2.2.2), we estimate the timescales
(Sect. 1.2.2.3), and follow with a parametric sensitivity analysis to determine how
the kinetic parameters impact the system (Sect. 1.2.2.4).

In order to find the equilibrium points of a system, we look for situations where
all of the rate equations are equal to zero. In this system, the only equilibrium point
is the trivial one: .u?; m?/ D .0; 0/. Over time, all of the basal unfolded protein
will either fold, misfold, or degrade (Fig. 1.5). Misfolded protein undergoes degra-
dation as well, and therefore, both unfolded and misfolded protein concentrations
are reduced to zero.

The minimum and maximum amounts of unfolded protein are the same across
the two models. We expect the level of unfolded protein in both models to mono-
tonically decrease from u0 to zero. The maximum misfolded protein concentration
is different between the two models. In absence of quality control, the maximum
amount of misfolded protein is only related to the rates of folding and misfolding.
Under quality control, the misfolded protein reaches a maximum level due to mis-
folding but is also undergoing some level of degradation. The misfolded protein is
eventually depleted to a zero concentration by degradation machinery.
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Fig. 1.5 The time course of the unfolded protein (U), misfolded protein (M) and folded protein (F)
concentrations under quality control. The timescales for unfolded protein depletion (�u), misfolded
protein depletion (�m), and folded protein production (�f) are denoted by the vertical lines. The time
course of degraded protein is not represented. The parameter values used were k0 D 0:25 s�1,
Vf D Vm D 1:0 �M s�1, Vu D 0:1 �M s�1, Kf D 2:1 �M, and Ku D Km D 1:1 �M

1.2.2.3 Timescale Analysis

As in Case Study I, we determine the timescale for a process by estimating (1) the
maximum and minimum concentrations of a given protein conformation and (2) the
magnitude of the maximum reaction rate describing the evolution of the protein
conformation over time. However, timescale determinations of non-linear systems is
also a bit of an art. It requires making simplifying assumptions using our biological
intuition about the system (Segel 1972; Segel and Slemrod 1989).

We begin by looking at the timescale for unfolded protein depletion. We know
that the minimum amount of unfolded protein is 0 and the maximum is u0. At the
beginning of the reaction, the level of misfolded protein is small (m(t � 0) � 0)
while the level of unfolded protein is near the basal unfolded protein concentration
(u(t � 0) � u0). We use this information to estimate

ˇ̌
du
dt

ˇ̌
max

from (1.11) as:

ˇ̌
ˇ̌du

dt

ˇ̌
ˇ̌
max

� u0

�
k0 C Vf

Kf C u0

C Vu

Ku C u0

�
: (1.14)

Applying (1.9) gives the timescale for the unfolded protein depletion:

�u D
�

k0 C Vf

Kf C u0

C Vu

Ku C u0

��1

: (1.15)

Misfolded protein initially accumulates, reaches a maximum level and then
undergoes depletion. We can also determine the timescale for misfolded protein


