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Preface

In the last decade of the 20th century, the ‘‘Decade of the Brain’’, the scientific
community put forth a concerted effort towards understanding the nervous system.
Although experimental neurophysiological approaches provided many advances, it
became increasingly evident that mathematical and computational techniques
would be required to achieve a comprehensive and quantitative understanding of
neural system function. ‘‘Computational Neuroscience’’ emerged to complement
experimental neurophysiology. Simultaneously, fueled by engineering break-
throughs, the last two decades have seen a phenomenal rise in our ability to probe
the nervous system and to influence neural system activity across scales of complex-
ity and states of disease. Devices that use focused electrical stimulation to activate
neural circuits are now routinely used to restore hearing to the deaf and to alleviate
the symptoms of Parkinson�s disease, while emerging technologies will provide
amputees with the ability to feel with their artificial limb. In the first decade of the
21st century, this new engineering paradigm that links living with non-living
systems to investigate, intervene and harness neural plasticity to counter disease
and disablement emerged in the form of ‘‘Neural Engineering’’.

This book presents a window into the convergence of Computational
Neuroscience and Neural Engineering. Over the past two decades it has been my
privilege to be enriched by the flourishing of both Computational Neuroscience and
Neural Engineering and to have the opportunity to dialogue with neuroscientists,
mathematicians, physicists, and engineers from around the world. Two summers
have played an important role inmy personal engagement with these fields. One was
a summer at Woods Hole, attending the �Methods in Computational Neuroscience
Course�. Here, I listened to John Rinzel present phase space analyses methods,
talked to Ron Calabrese about leech heart interneurons that I modeled, heard about
the newly devised �Dynamic Clamp� from Eve Marder, talked about �Consciousness�
with Christof Koch and others on the beach at night, and met a neuroscientist who
became my postdoctoral mentor - Avis Cohen. It was Avis who suggested a summer
at Telluride at the �Neuromorphic Engineering� workshop. There, I listened to
Rodney Douglas and Misha Mahowald, once again Christof Koch, and got intro-
duced to the world of engineers trying to capture the biological neuron in hardware.
It is not surprising then, that as a biomedical engineer fascinated by the two fields, I
have sought to find a practical interface that is driven by the merger of the software

XI



and hardware models of neurons with the nervous system itself. It is at the summer
courses that I met many of my fellow scientists and engineers who have over the
years sought similar goals, some of who have contributed to this book.
Growth of such a transdisciplinary effort required a concerted investment by

many institutions that were guided by people with foresight and boldness. Dennis
Glanzman and Yuan Liu from the National Institutes of Health, USA and Kenneth
Whang from the National Science Foundation, USA have played an unrelenting role
in supporting programmatic growth of Computational Neuroscience and the
research effort of several investigators. The Collaborative Research in Computa-
tional Neuroscience Program has supported a wide range of research efforts that
underlie the development of biohybrid systems and has allowed me to seek new
knowledge in spinal organization formotor control after spinal cord injury. The book
and I have also benefitted from transdisciplinary dialogue on biohybrid systems and
neuromorphic design at a series of workshops that we conducted with support
through the Science of Learning Centers program at the National Science Founda-
tion, USA under Soo-Siang Lim. Grace Peng from the National Institutes of Health
has been a steady champion of programmatic growth in neural engineering and has
been a supporter of the efforts of many, including me, in bringing technology to the
people that stand to benefit from this technology.Most interestingly, Elmar Schmeis-
ser from the Army Research Office saw promise in our work on neuromorphic
control of spinal interfaces in the lamprey as the basis for a novel approach to control
powered or thoses for people with lower limb dysfunction. It was a presentation of
thesemultiple related areas of research that caught the attention ofWiley and I thank
them for invitingme to develop a book to present our ideas about this emerging field
of biohybrid systems. The growing interest in this topic motivated my colleagues
andmeto develop a book for a cross-section of scientists and engineers.We hope that
this book will enhance the communication between computational neuroscientists
and neural engineers and bring to attention the exciting new applications that
biohybrid systems could offer clinicians who are eager to deliver new solutions to
their clients. It has beenmy pleasure to have worked with the authors of the different
chapters and their teams in the writing of the book. I thank them for their effort and
for their enthusiasm, not only in penning their own chapters, but also in providing
helpful critiques of others.
I must thank my brother Vikram who has over the many years shared with me

many of his management skills that have allowed me to juggle multiple projects and
work across academic-clinical-industrial partnerships.My parents, Sarla and Padam,
are a steady source of support and guidance. My husband Jimmy and son Nikhar,
who are both contributors to this book, have been my sounding boards, have
withstood my immersion in various projects, but most importantly have been a
never-ending source of joy and companionship. Finally, I am forever indebted to
my doctoral thesis advisor, Peter Katona who fostered inquiry across boundaries,
supported my inquisitiveness and nurtured my foray into new realms.

June 30, 2011
Miami, Florida
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1
Merging Technology with Biology
Ranu Jung

1.1
Introduction

The most important trend in recent technological developments may be that
technology is increasingly integrated with biological systems. Many of the critical
advances that are emerging can be attributed to the interactions between the
biological systems and the technology. The integration of technology with biology
makes us more productive in the workplace, makes medical devices more effective,
and makes our entertainment systems more engaging. Our lives change as biology
and technology merge to form biohybrid systems.

This book describes some of the recent advances and some of the key challenges
faced by engineers and scientists developing biohybrid systems that interface
nerves, muscles, and machines. Modern computers have high computational
capacity and high rates of internal information transfer between components;
similarly, neurobiological systems have high computational capacity and high
interconnectivity of neural structures. Some of the key developments in biohybrid
systems have been in opening lines of communication between the engineered
and the biological systems. Real-time communication between a nervous system
and a device is now possible, but full and reliable integration is still far from reality.
In order to achieve more complete integration, some of the key challenges in
biohybrid system development are to improve the quality, quantity, and reliability
of the information that can be transferred between the engineered and the
biological systems.

As we move forward in developing biohybrid systems, we can leverage a
second key trend in recent technological developments: technology is increasingly
being designed to be adaptive in its capabilities. The breakthrough about to be
achieved is to close the loop in a manner that utilizes the adaptive capabilities
of electronic and mechatronic systems in order to promote adaptation in the
nervous system.

Biohybrid Systems: Nerves, Interfaces, and Machines, First Edition. Edited by Ranu Jung.
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1.2
NeuroDesign

The nervous system functions by generating patterns of neural activity. These patterns
underlie sensation and perception as well as control of movement, cardiovascular,
endocrine, immune, and other systems. Nonlinearities and dynamical states that
span scales of physical form and time are key features of the patterns that emerge
from the living nervous system. Biohybrid interfaces can be developed to (1) access
these neural activity patterns, (2) influence the neural activity patterns, or (3)
fundamentally alter the pattern formation mechanisms (i.e., promote plasticity)
(Figure 1.1). This development can be accomplished through the process of
�NeuroDesign.� One aspect of NeuroDesign is that the man-made abiotic systems
to access or influence the neural patterns can be devised to embody the design
principles of the nervous system. Here, the fundamental structure and/or operation
of the technological system are based on an understanding of nervous system
function. A second aspect of NeuroDesign is the process of engineering the nervous
system itself. The concept here is a deliberate approach to mold and modify the
structure and function of the nervous system to obtain a specific objective. In the
short timescale, this can be thought of as �influence� or control of neural system
function, in the medium timescale as �adaptation,� and in the long timescale as
�plasticity or learning� of the nervous system. In closing the loop between the
nonliving and the living, NeuroDesign also allows us to merge technology and
science. Thismerger opens new opportunities for use of technological innovation for
scientific investigation and a continuous modulation of biological activity to achieve
desired function.

Figure 1.1 Biohybrid systems can access thepatterns of neural activity, influence this pattern in real
time, and induce plasticity by altering the pattern formationmechanisms. Brain image from http://
www.getfreeimage.com/image/77/human-brain-and-neuron-impulses.
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The primary challenge is to design biohybrid interfaces that can access and capture
the biosignatures of the living system through limited spatiotemporal sampling and
influence the inherently adaptive biological system through punctate intervention.
For promoting plasticity, the challenge is to promote learning by influencing the core
biochemical machinery in a desired manner.

1.3
The NeuroDesign Approach

Figures 1.2 and 1.3 illustrate the approach to NeuroDesign. The three features of this
approach are (1) integration between the exogenous human designed system and the
endogenous living system (2) biomimicry in the design of the exogenous system, and
(3) the fact that an intervention that exerts its direct influence at one scale has an
overall effect that spans multiple scales. The exogenous system performs both
neurosensing and neuroactivation. By designing engineered systems that are
biomimetic, we are able to produce systems with some of the robustness and
versatility of biological systems and that potentially facilitate functional integration
with the endogenous biological system. The nature and degree of biomimicry that

Figure 1.2 �NeuroDesign� integrates man-
made systems with biological systems to access
information, influence the activation of the
biological system in real time, and/or promote
long-term plasticity in the biological system.

Bidirectional communication at multiple points
of interface offers opportunities for closed-loop
control of coadaptive systems. Biomimetic
approaches are often used in the design of the
exogenous system.

1.3 The NeuroDesign Approach j3



could be used in the design of the exogenous system depend on the objective for
which the biohybrid is developed. That is, when using a closed-loop system to
discover ion channels at the cellular level, neuromimicry at the cellular level leads to
utilization of computational models of neurons with details of ion channels. On the
other hand, the development of systems for closed-loop rhythmic control of the
neuromusculoskeletal system utilizes the concept of pattern generators in the
nervous system to design the exogenous system.

Biohybrid systems can effect outcomes at multiple scales, at the behavioral scale
(function), electrophysiological scale (synaptic learning),morphological scale (form),
or molecular scale (genes/proteins/sugars). An interface that acts at one scale
influences the entire chain (Figure 1.3). Thus, changes brought about at the
molecular microlevel affect the pattern of activation across scales and ultimately
influence behavior on amacroscale. On the other end, intervention at themacroscale
for, for example, electrical stimulation of peripheral nerves after incomplete spinal
cord injury to provide repetitive movement therapy, can promote motor recovery
perhaps by promoting neuroplasticity at the molecular level [1–4].

Biohybrid systems can thus facilitate investigation of the intact and diseased living
systems to efficiently replace damaged biological systems and to effectively interact
with the residual biological components with the promise of repair.

1.4
Neuromorphic Control of a Powered Orthosis for Crutch-Free Walking

The use ofNeuroDesign in the deployment of biohybrid systems can be illustrated by
the following example of a powered orthotic and prosthetic system that is driven by a

Figure 1.3 Biohybrid interfaces between exogenous man-made systems and endogenous
biological systems can occur at one ormore junctions alongmultiple scales of form and complexity.
The effects of the interface at any one scale are propagated along the chain of scales.
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neuromorphic controller that was designed using biomimetic NeuroDesign princi-
ples [5]. This biohybrid system (patent pending) is designed to allow �crutch-free�
walking by a person with a tibial fracture of the lower limb. For this system, two
objectives must be met: (1) the injured lower limb must be stabilized; and (2) the
person must be able to walk under voluntary control. To achieve the former, the
orthotic system illustrated in Figure 1.4 was designed. This device consists of a fixed-
ankle orthosis that is used to stabilize or immobilize the injured lower limb. The
fixed-ankle orthosis is encased by an actuated (powered) false-foot orthosis and the
combined device forms an actuated articulated false-foot orthosis (AAFO). This
AAFO is designed to permit the person to walk with a stabilized lower limb with
minimal load bearing on the injured limb.

In order to achieve the second objective and provide voluntary control of the false
foot, it was necessary to access information about the intent of the person to walk and
then appropriately control the cyclic movement of the AAFO during walking. The
inspiration for the design of this control system scheme was drawn from the control
of movement in biological systems. Networks of neurons in the spinal cord of
vertebrates are capable of producing rhythmic neural output that in turn controls a
well-orchestrated sequence of muscle activation for cyclic control of locomotion [6].
The activity of these spinal pattern generators is usually initiated and terminated by
descending voluntary control signals from the brain. The pattern generators also
receive feedback from sensors in actuatedmuscles and tendons during the entire gait
cycle. The neural organization of this biological system was mimicked in the design
of the control system used for the AAFO.

An electronic circuit was designed to implement a neural network pattern
generator that could be used as the controller (Figure 1.5). The biomimetic archi-
tecture of the pattern generator circuit was based on knowledge of connectivity of
neurons within the spinal cord of the lamprey, a primitive vertebrate [7, 8].
Computational models of individual neurons were implemented in a circuit made
from analog very large scale integrated (aVLSI) components and discrete electronic
components [9, 10]. This pattern generator is capable of autonomously generating

Figure 1.4 Prototype of a fixed universal ankle–foot orthosis (UAFO) attached to an AAFO. The
prototypedevice is designed for use by combat troops.Quick release pins on the top andbottomcan
be used to easily separate the actuator from the AAFO.
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