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Preface

Roots and Their Solil Interactions:
What We Can Learn from Genomics

Developmental plasticity allows higher organisms to adapt
to their environment. In contrast to animals, plants exhibit a
remarkable flexibility in their architecture and growth
pattern in response to external conditions, due to the
continuously active shoot and root meristems and their
capability to generate new organs after embryogenesis.
External cues influence plant growth by modulating
hormone levels and signaling. The root architecture of the
plant constitutes an important model to study how
developmental plasticity is translated into growth responses
under different soil conditions and plays an important role in
water and nutrient acquisition. Indeed, primary root
development and the formation of de novo meristems to
generate lateral roots are conditioned by the soil
environment. Lateral root growth and development is the
main determinant of the shape of the root system, a trait
controlled by internal cues and external factors. In addition
to Arabidopsis, there are other relevant models where
genomic information is becoming available, notably cereals
and legumes. Both plants are able to develop symbiotic
interactions with soil organisms, namely, mycorrhizal fungi
and, for legumes, soil rhizobia. These interactions lead to
further adaptation of root growth, the so-called mycorrhizal
roots, and even to the formation of new organs, distinct
from lateral roots, the nitrogen-fixing root nodules.

The diversity of root responses to biotic and abiotic
stresses as well as symbiotic interaction can be analyzed at
a genome-wide scale using transcriptomic and proteomic



approaches. The advent of genomic technologies will open
new perspectives for the analysis of how roots adapt to the
soil environment. This work, mainly done in model systems
such as Arabidopsis, uncover diverse regulatory genes (e.qg.,
environmental sensors, protein kinases, transcription
factors, and more recently, small regulatory RNAs) that
participate in genetic programs, regulating root growth and
architecture. Integration of these data with genomic
approaches on different genetic backgrounds has already
revealed, and will continue to reveal, critical regulatory
networks and molecular hubs, whose orthologs could then
be analyzed in crop plants to establish the generality of
these mechanisms and impact agricultural practices.

This book contains 13 chapters from recognized experts in
the field, which provide a comprehensive and integrated
view of how root genomics can open new perspectives for
root physiology and agriculture. The first six chapters deal
with various novel areas where genomics, in combination
with  modeling, physiology, in-depth analysis of the
transcriptome, and epigenetics, have revealed several
regulatory networks controlling diverse aspects of root
growth and development. Then, the remaining chapters
describe genomic approaches being applied for the analysis
of root responses to the soil environment, such as abiotic
stresses, symbiotic interactions, or pathogenic nematode
infections. The final chapter focuses on translational
genomics and how genomics can guide crop improvement. |
hope that this book will serve many, from plant researchers
to plant and crop physiologists, breeders, graduate
students, and their professors who want to have an
overview of the highlights in root genomics and how this
information could be screened and integrated without
having considerable expertise in bio-statistics. While reading
this book, the reader will realize how fascinating the actual
global view of the genome is and how many complex



mechanisms remain to be discovered to understand root
growth and development. There are exciting agricultural
challenges, such as the modulation of root architecture or
drought adaptation, which may derive from the application
of this new fundamental understanding of life principles to
the control of major root traits.

Martin Crespi



1 Genomics of Root Development

Boris Parizot and Tom Beeckman

Introduction

Roots: Rising from the Underground

Because of the different roles the root system plays in
overall plant growth, root architecture is a fundamental
aspect of plant growth and development. The root system
especially acquires water and nutrients from the soil,
anchors the plant in the substrate, synthesizes hormones
and metabolites, interacts with symbiotic microorganisms,
and insures storage functions. In light of these
characteristics, more and more breeders turn their attention
to this underground organ in order to increase yield. This
requires a better understanding of the relation of this part of
the plant with the environment and of its highly adaptive
behavior (Lynch 2007; Gewin 2010; Den Herder et al. 2010).
Within the angiosperms, major differences in root
architecture between dicotyledonous and monocotyledonous
plants exist. Dicots develop a tap root system composed of a
main primary root, already formed during embryogenesis,
which grows vertically into the soil and gives rise to the
emergence of numerous lateral roots extending the surface
area. Monocots have a fibrous root system in which the
embryonic primary root is only important for the early
development of the plant (Feix et al. 2002) and in which an
extensive postembryonic shoot-born root system is formed
later on. Very little is known about the genetic and molecular
mechanisms involved in the development and architecture of
the root system in major crop species, generally



monocotyledonous plants. Lack of insight is certainly a
consequence of the difficulty to access and observe this
organ in its natural habitat, namely the soil. Moreover, and
probably because of this hidden character, the root has been
neglected for a long time in crop improvement and in
agricultural approaches aiming at increasing shoot biomass.
Nevertheless, while most of the work has been done on
Arabidopsis thaliana, the awareness of the importance of the
root system in modulating plant growth, together with
progress in sequencing and new molecular techniques, has
caused renewed interest in understanding molecular
mechanisms in crop species (Hochholdinger and
Zimmermann 2009; Coudert et al. 2010).

In the scope of root development and its interaction with
the soil, in this chapter, we propose to focus on the
mechanisms involved in root branching, which is a major
determinant of root system architecture. The plasticity of the
root system represents indeed an important potential for
plants, being sessile organisms, to adapt to the
heterogeneity of their environment. The soil is a complex
mixture of solid, gaseous, and liquid phases, wherein
nutrients are unequally distributed. Plants have therefore
developed a highly sophisticated regulatory system to
control their root architecture, in response to environmental
cues, by modulating intrinsic pathways to optimize their root
distribution in the soil and consequently guarantee an
optimal uptake of nutrients necessary for growth and
development (reviewed in Croft et al. 2012).

Primary Root Structure and Development:

Lessons from the Arabidopsis Model

Branching of roots occurs through the development of new
meristems inside the primary parent root. We therefore first
discuss briefly the structure and development of the primary
root in Arabidopsis, the model species in which major



insights were obtained, thanks to its simple root architecture
(Dolan et al. 1993; Malamy and Ryan 2001; Scheres et al.
2002; Casimiro et al. 2003; Casson and Lindsey 2003; Ueda
et al. 2005; lyer-Pascuzzi et al. 2009; Peret et al. 2009).

The root can be divided in three main zones. The most
distal, at the tip of the root, is the meristematic zone, where
the so-called initial cells give rise to the tissues constituting
the root. The initial cells are kept in an undifferentiated state
by the neighboring quiescent center (Van den Berg et al.
1997), a mitotically less active region, composed of few
central cells in Arabidopsis. Higher up, in the elongation
zone, cells progressively stop dividing and start to expand
longitudinally. Finally, cells differentiate and acquire their
final cell fate in the maturation zone (Truernit et al. 2006),
which can be recognized by the appearance of the
anatomical structures of the vascular tissues.

Distinct cell types are then composing the mature root
(Figure _1.1). The outer layers, endodermis, cortex, and
epidermis are organized in concentric layers and present a
radial organization toward the Ilongitudinal axis of the
primary root (Dolan et al. 1993). The epidermis, which is the
outermost layer of the root, is in direct contact with the soil
and is often designated as rhizodermis. It is composed of two
populations of cells: one producing root hairs and the other
nonhair cells (Schneider et al. 1997). The root hairs are
responsible for the major part of the nutrient uptake from the
soil (Muller and Schmidt 2004) and also play other important
roles such as the initial contact with certain symbiotic
partners (Gilroy and Jones 2000; Perrine-Walker et al. 2011).
Cortex and endodermis constitute the ground tissue and are
derived from one single initial cell in Arabidopsis (Dolan et al.
1993; Scheres et al. 1994). The stele is situated internal to
these layers and comprises the vascular cylinder, consisting
of two bilateral poles of xylem alternating with two bilateral
poles of phloem separated by procambium cells (Dolan et al.
1993). The stele also contains a heterogeneous layer, the



pericycle, interfacing the vascular cylinder and the outer
layers, playing a predominant role in root architecture and
root branching (Parizot et al. 2008).

FIGURE 1.1 Structure of the primary root and different steps
of lateral root initiation. See the text for detailed description.

Root Branching

In dicotyledonous plants, such as Arabidopsis, elaboration of
the root system occurs postembryonically by the formation
of numerous secondary roots from the primary root that was
formed during embryogenesis. These new roots are
comparable to the primary root in structure and will be able



to reiterate the branching process by in turn initiating
tertiary roots. Roots of second, third, and higher order are
defined as lateral roots. The plant can also produce
adventitious roots, which initiate mostly at the base of the
hypocotyl. Different markers related with cell identity show a
similar pattern in the primary and lateral roots (Malamy and
Benfey 1997b; Laplaze et al. 2005), indicating the possibility
of a common developmental pathway. This hypothesis is
supported by a high number of mutants affected in genes
involved in root patterning, such as SHORTROOT,
SCARECROW, and LONESOME HIGHWAY, showing similar
defects in the primary and lateral roots (Helariutta et al.
2000; Wysocka-Diller et al. 2000; Parizot et al. 2008; Lucas
et al. 2011). However, some differences can be observed in
the behavior of the primary and the lateral roots toward
external cues such as gravity and substrate nutrient
concentrations (Zhang and Forde 1998; Mullen and
Hangarter 2003; Bai and Wolverton 2011). A mutation in the
gene MONOPTEROS impairs the apical-basal pattern
formation of the embryo and leads to plants lacking a
primary root, but that are still able to generate adventitious
roots (Berleth and Jurgens 1993; Przemeck et al. 1996),
indicating that early pathway(s) required for the embryonic
formation of a root meristem are not required
postembryonically. Also, a mutation in the gene WOODEN
LEG has a major effect on the primary root development,
with the suppression of the phloem elements and a drastic
reduction in lateral root initiation (LRI), but does not affect
the formation and branching of adventitious roots (Kuroha
et al. 2000).

The monocots, such as maize, form different types of roots:
primary, seminal, and adventitious roots, which can all form
lateral roots. These root types also present similarities in
their structures. However, mutants missing only a subset of
these root types have been isolated, indicating that at least
a part of the genetic program necessary for their formation is



root-type specific (Woll et al. 2005; Hochholdinger and
Tuberosa 2009).

Lateral Root Initiation

In Arabidopsis and most other dicotyledonous plants, lateral
roots are formed from a restricted number of pericycle cells
located in front of the xylem poles (Figure 1.1). The pericycle
is a heterogeneous tissue composed of quiescent cells
adjacent to the phloem poles and cells competent for LRI in
front of the xylem poles (Beeckman et al. 2001; Parizot et al.
2008). Therefore, this layer presents a radial bilateral
symmetry along the primary root, which reflects the diarch
symmetry of the more internal vascular bundle as compared
to the surrounding concentric radial layers of the outer
tissues. The subpopulation of pericycle cells adjacent to the
xylem poles can be considered as an extended meristem, as
they conserve the ability to divide after leaving the root
apical meristem (in contrast to the cells in front of the
phloem poles), and give rise to the formation of a new organ
(Beeckman et al. 2001; Casimiro et al. 2003). Although up to
three adjacent pericycle cell files associated with each xylem
pole are dividing during lateral root formation, cell lineage
experiments have shown that only the central cell file will
contribute significantly to the formation of the lateral root
primordium (Kurup et al. 2005).

The first pericycle cell divisions that will give rise to a
lateral root (i.e., formative divisions) can only be detected
several millimeters above the primary root meristem,
whereas in the lower part of a region named developmental
window (Dubrovsky et al. 2006), it has been demonstrated
that a subset of pericycle cells is already specified for LRI in
a zone situated immediately above the primary root apical
meristem, the basal meristem (De Smet et al. 2007; De
Rybel et al. 2010b). The phytohormone auxin is most likely
the signal triggering this priming, as auxin response



recorded using the auxin response marker DR5 shows
pulsations in the protoxylem cells of the basal meristem with
a periodicity that can be correlated with the initiation of new
lateral roots (Ulmasov et al. 1997; De Smet et al. 2007; De
Rybel et al. 2010b; Moreno-Risueno et al. 2010). Up to now,
different hypotheses have been proposed to explain the
origin of these oscillating auxin response maxima in the
protoxylem cells, and no consensus has been reached yet.
Also the mechanism by which this auxin signal in the
protoxylem cells is translated into the specification of
founder cell identity in the neighboring pericycle cells is still
unknown. Nevertheless, this intrinsic mechanism can be
overruled, as the application of auxin on mature parts of the
root above the basal meristem is still able to trigger LRI
(Himanen et al. 2002), further reflecting the high plasticity of
the root system.

The first morphological event preceding the division of two
adjacent pericycle founder cells is the simultaneous
migration of their nuclei to their common cell wall (De Smet
et al. 2007). This migration is followed by an asymmetric
anticlinal division of the pericycle cells, resulting in the
formation of a core of small daughter cells flanked by larger
cells (Dubrovsky et al. 2000). Successive anticlinal and
periclinal divisions give rise to a lateral root primordium.
Further divisions and elongation of the primordium cells
result in the formation of a fully autonomous root, with a
meristem similar to that of the primary root (Malamy and
Benfey 1997b; Dubrovsky et al. 2001). Although the place of
LRI differs between plant species, early patterning of the
primordium is quite conserved (Casero et al. 1995; Malamy
and Benfey 1997bb). The frequency of LRI in the Arabidopsis
primary root can fluctuate in response to tropic and/or
mechanical stimuli (De Smet et al. 2007; Ditengou et al.
2008; Laskowski et al. 2008; Lucas et al. 2008a). For
example, a gravitropic stimulus applied to seedlings induces



a lateral root at the place where the root bends to recover its
normal growth angle (Lucas et al. 2008a).

Genomics of LRI

Most of the work on root development focused on the
analysis of single mutants and allowed the discovery of
many processes involved in the patterning of the different
cell types within the primary root and in LRI. These studies
show that root growth and development are complex
processes with intricate pathways dealing with hormone
biosynthesis, transport and signaling, tissue differentiation
and dedifferentiation, nutrient sensing, cell divisions, and
others (lyer-Pascuzzi and Benfey 2009; Orman et al. 2011).
LRI has been increasingly studied over the last decade in
the light of transcriptomics and proteomics. Material
extraction for these analyses evolved from simple global root
harvesting to more elaborated sampling techniques allowing
a specific access to the tissues involved, such as laser
capture microscopy (LCM; Woll et al. 2005) or cell sorting (De
Smet et al. 2008). Also, the possibility to synchronize LRI
circumvented the problems due to the discreteness of this
event in plants grown in natural conditions (Himanen et al.
2002; Himanen et al. 2004). Different Ilarge-scale
transcriptome and proteome studies have therefore been
realized in different species, mainly Arabidopsis and maize,
yielding information on various aspects of this de novo
organogenesis: auxin response, asymmetric cell division, and
pericycle tissue involvement. While these studies focused
initially on the onset of lateral root development, a new era
initiates now with the study of the formation and the
patterning of the primordium after LRI and the emergence of
the primordia from the parent root. Moreover, many other
experiments are dealing with mechanisms related to LRI,
such as meristem function, pericycle identity, and hormone



treatment, and bring useful novel information, shedding light
on this process. A list of omics experiments, directly or
indirectly related to LRI is displayed in Table 1.1. A
challenging task for the community will be to handle this
wealth of data and search for appropriate system biology
strategies to better understand the LRI process at the
molecular level. To address this, a common effort of the
biologists and the bioinformaticians is needed to design
better experiments, rationalize and interpret the data, and
make it accessible and understandable for the community.
The most often characterized process in relation to LRI is the
response to the hormone auxin.

Table 1.1 Omics Experiments dealing directly or indirectly with lateral root
initiation. Publication year and reference, species, technique and experimental
design, platform, tissues and preparation, pathways, treatments, and the
biological process questioned by the experiment.
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syrchronous induction of lateral roct inttiatian

Reference Species Qmics techmigue & Experimertsl design Platform [ Techni
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wer, werewolf; brx, brevis radix; swan, supernumerary nodules; rtcs, rootless concerning crown and seminal roots; crll, crown

Irtl, lateral root 1; sir, solitary root 1; arf, auxin response factor; rum/, rootless with undetectable meristems 1; shr, short root;
rootless 1.



