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Preface
For the Second Edition

Until some 20 years back, there was no need to write a book
on yeast molecular and cellular biology: the field was covered
by “standard monographs” such as Broach, J.N., Pringle,
J.R., and Jones, E.W. (eds) (1991) The Molecular and Cellular
Biology of the Yeast Saccharomyces, Cold Spring Harbor Labo-
ratory Press, Cold Spring Harbor, NY., and Guthrie, C. and
Fink, G. (eds) (1991)Guide to Yeast Genetics and Molecular Biol-
ogy, Academic Press, San Diego, CA. Unfortunately, these edi-
tions were not updated, so that any novel information after the
Yeast Genome Sequencing Project had succeeded in 1996 was
scarcely available in a comprehensive form.

When I discussed this drawback with my colleagues during
the first years of the “postgenome” era, it was Andr�e Goffeau
who suggested to me that we should at minimum publish a
paper documenting the outstanding contributions that had
involved Saccharomyces cerevisiae as amodel system for eukary-
otic molecular and cell biology for over half a century. Finally,
however, my engagement in this subject ended in preparing a
small volume describing all those achievements.

I had started working with yeast in 1962, so that I still
retain reminiscences of things happening in the past 50
years. Over the years, I had kept a collection of papers docu-
menting the achievements in various fields of yeast research.
I also gained a lot of information from the weekly seminars
that were arranged in the departments where I worked, and
from lectures and courses that I had a chance to present. For
teaching purposes, I kept a huge collection of tables and fig-
ures that I personally had designed. I gratefully remember
the many fruitful discussions with my colleagues from all
over the world – at congresses or privately – that helped
broaden my background.

Unfortunately, the brochure, entitled “Contribution of
Yeast to Molecular Biology: A Historical Review,” did not
raise the interest of a publisher, by using the argument
“ . . . history does not sell . . . ” Nonetheless, they became
interested in the subject itself after I had converted it into a
“modern” textbook (which still might retain notes on histori-
cal background), because such an item was absolutely miss-
ing on the market. Thus, the first edition of Yeast: Molecular
and Cell Biology appeared in November 2009.

The necessity to update and publicize information on
yeast was recently raised in an article (“Yeast: an

experimental organism for 21st century biology”) by our
American colleagues (Botstein and Fink, 2011). In the
November 2011 issue of Genetics, the Genetics Society of
America launched its YeastBook series – a comprehensive
compendium of reviews that presents the current state of
knowledge of the molecular biology, cellular biology, and
genetics of S. cerevisiae.

This second edition of Yeast: Molecular and Cell Biology
was started more than a year ago, and is aimed at presenting
all aspects of modern yeast molecular and cellular biology,
starting from the “early” discoveries and trying to cover the
most recent developments in all relevant topics. The reader
will find included chapters that reach out to yeast species
other than S. cerevisiae, which have turned out (i) as interest-
ing objects for large-scale genome comparisons, (ii) as ideal
organisms to follow genomic evolution, and (iii) as appropri-
ate “cell factories” in biotechnology. I think this will fulfill all
of the requirements of a textbook for students and research-
ers interested in yeast biology.

I have tried to document the developments by including
more than 3000 references. Whenever possible, these refer-
ences are selected such that the reader can follow achieve-
ments made over the past decades to the present (in
addition, a number of individual chapters include a list of
references for recommended “Further reading”). Undoubt-
edly, this collection will not completely mirror the engage-
ment of the numerous yeast laboratories. Wherever possible,
I have cited original papers, but in many cases I have had to
rely on review articles contributed during these years by
competent researchers. Therefore, I apologize to all col-
leagues who might be disappointed that their original work
has not been quoted adequately.

Foremost, I again wish to thank Andr�e Goffeau and Jean-
Luc Souciet, who supported me in preparing this book. I am
indebted to Danilo Porro and Paola Branduardi (Univerity of
Milan Biococca), Claude Gaillardin (INRA, Thiverval-
Grignon), and Bernard Dujon (Institut Pasteur and Institut
Pasteur and University P. & M. Curie, Paris) for their excel-
lent contributions of Chapters 14, 15 and 16, respectively.
Not to forget the nice contacts with so many colleagues I
found during the Yeast Genome Sequencing Project and the
G�enolevures Project; I am grateful for their suggestions and
encouragement.
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(Senior Commissioning Editor, Life Sciences), who kindly
invited me to consider a second edition with a considerable
extension of the contents, and Dr Andreas Sendtko (Senior
Project Editor) and his colleagues who took over production.
Many thanks for their excellent and accurate handling of my
manuscript and the pictures, so that I had little trouble with
corrections.
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1Introduction
1.1
Historical Aspects

In everyday language, yeast is synonymous for Saccharomyces
cerevisiae – a name given to a yeast strain discovered in malt
in 1837 (Meyen) – in connection with making beer. This
notion immediately calls to mind that yeast probably is the
oldest domesticated organism – it was used for beer brewing
already in Sumeria and Babylonia around 6000 BC. In paral-
lel, S. cerevisiae strains were employed in wine production in
Georgia and for dough leavening in old Egypt. In Egypt, beer
was a common refreshment, and gifts of beer were awarded
to civil servants and workers for extraordinary services.
The scientific name “Saccharomyces” is derived from a word
meaning “sugar fungus” in Greek, while the root for cerevi-
siae stems from Ceres, the Roman God of the crops.

The French word for yeast, levure, goes back to Latin levare,
and so is leaven, simultaneously used for dough and yeast as
an organism able to anaerobically release carbon dioxide dur-
ing the baking process. The English word yeast, like Dutch
guist, or even the German Hefe, is derived from a west-
Germanic expression, haf-jon, meaning the potential to
leaven. The provenance of the words used for beer in west-
ern European languages (French “bi�ere,” German “Bier,”
and Italian “birra”) is not known, but in Roman languages,
the expressions used for beer are directly related to the orga-
nism (cerevisiae), most obvious in the Spanish “cerveza” or in
the Portuguese “cerveja.” The Greek zymi (zymi) is used
simultaneously for yeast and dough, and occurs as a root in
words related to beer or fermentation. Thus, the modern
expression “enzymes” (en zymi¼ in yeast), originally coined
by K€uhne in 1877, designates the compounds derived from
yeast that are able to ferment sugar.

We owe the description of the microscopic appearance of
yeasts in 1680 to Antoni van Leeuwenhoek in Leiden, who
also observed bacteria and other small organisms for the first
time. The observation that yeast budding is associated with
alcoholic fermentation dates back to Cagnaird-Latour in
1835. In his work carried out during his tenure at Strasbourg
University, Louis Pasteur correlated fermentation with yeast
metabolism (1857). Pasteur’s famous “�Etudes sur la bi�ere”
appeared in 1876. Sometime later, two technical applications
were based on this notion. In the late 1880s, E. Buchner and
H. Buchner used cell-free fermentation to produce alcohol

and carbon dioxide, and in 1915, Karl Neuberg used
“steered” yeast fermentations to produce glycerol
(unfortunately as a convenient source to convert it into trini-
troglycerol). The knowledge of yeast physiology, sexuality,
and phylogeny was later reviewed in a book by A.
Guilliermond (Guilliermond, 1920).

In the 1950s, when yeast research entered a novel era of bio-
chemistry, researchers became aware that many useful com-
pounds could be isolated from yeast cells. Among the first
companies to produce biochemicals from yeast (nonengi-
neered at that time and obtained froma local Bavarian brewery)
for the biochemical and clinical laboratory was Boehringer
Mannheim GmbH in Tutzing (Germany). In a “semi”-indus-
trial procedure, a variety of compounds were manufactured
and commercialized, dominated by the coenzyme nicotin-
amide adenine dinucleotide (NAD). In many enzymatic tests
(also called optical tests), NAD was an obligatory ingredient,
because the increase of NADH generated from NAD by an
appropriate enzymatic reaction (or coupled reaction) could be
used to follow the timecourse of that reaction by spectro-
photometry. This was, for the time being, also a helpful tech-
nique to determine enzyme levels or metabolites in the clinical
laboratory. The methodology had been collected by Hans
Ulrich Bergmeyer, a representative of Boehringer Company,
who edited a famous compendium (16 volumes) ofMethods in
Enzymatic Analysis (Wiley & Sons).

1.2
Yeast as a Eukaryotic Model System

The unique properties of the yeast, S. cerevisiae, among some
1500 yeast species (a subgroup from 700 000 different fungi,
which still may expand to over 3000 different yeast species)
and its enormous “hidden potential” that has been exploited
for many thousands of years made it a suitable organism for
research. In fact, yeast was introduced as an experimental
organism in the mid-1930s by Hershel Roman (Roman,
1981) and has since received increasing attention. Many
researchers realized that yeast is an ideal system in which
cell architecture and fundamental cellular mechanisms can
be successfully investigated.

Among all eukaryotic model organisms, S. cerevisiae com-
bines several advantages. It is a unicellular organism that,
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unlike more complex eukaryotes, can be grown on defined
media, giving the investigator complete control over environ-
mental parameters. Yeast is tractable to classical genetic tech-
niques. Both meiotic and mitotic approaches have been
developed to map yeast genes (e.g., Mortimer and Schild,
1991). The first genetic map of S. cerevisiae was published by
Lindegren in 1949 (Lindegren, 1949).

The life cycle of S. cerevisiae (Figure 1.1) normally alter-
nates between diplophase and haplophase. Both ploidies can
exist as stable cultures. In heterothallic strains, haploid cells
are of two mating-types, a and a. Mating of a and a cells
results iin a/a diploids that are unable to mate, but can
undergo meiosis. The four haploid products derived from
meiosis of a diploid cell are contained within the wall of the
mother cell (the ascus). Digestion of the ascus and separa-
tion of the spores by micromanipulation yields the four hap-
loid meiotic products. Analysis of the segregation patterns of
different heterozygous markers among the four spores con-
stitutes the “tetrad analysis” and reveals the linkage between
two genes (or between a gene and its centromere). It was
mainly Mortimer and his colleagues who undertook the
considerable task of collecting and editing all of the genetic
data accumulating in diverse laboratories (Mortimer and
Hawthorne, 1966), up to the point when genetic maps could
be replaced by physical maps. Prior to the start of the Yeast
Genome Sequencing Project in 1989 (cf. Chapter 12), some
1200 genes had been mapped to the 16 yeast chromosomes,
most of them attributable to particular gene functions and
others to particular phenotypes only.

During molecular biology’s infancy, around the late 1950s,
yeast became a convenient organism to be used for the mass
preparation of biological material in sufficient quantity or the
mass production of other biological compounds. Yeast has a
generation time of around 80min and mass production of
cells is easy. Simple procedures for the isolation of high-
molecular-weight DNA, ribosomal DNA, mRNA, and tRNA
were at hand. It was possible to isolate intact nuclei or cell
organelles such as intact mitochondria (maintaining respira-
tory competence). Eventually, yeast also gained a leading
position in basic molecular research. The possibility to apply
genetics and molecular methods to an organism at the same
time made yeast such a successful a model system. It was the
technical breakthrough of yeast transformation (Beggs, 1978;
Hinnen, Hicks, and Fink, 1978) that could be used in reverse
genetics and for the characterization of many yeast genes
that essentially fostered the enormous growth of yeast molec-
ular biology.

The elegance of yeast genetics and the ease of manipu-
lation of yeast substantially contributed to the fact that
functions in yeast were studied in great detail using
biochemical approaches. A large variety of protocols for
genetic manipulation in yeast became available (e.g.,
Campbell and Duffus, 1988; Guthrie and Fink, 1991;
Johnston, 1994). High-efficiency transformation of yeast
cells was achieved, for example, by the lithium acetate
procedure (Ito et al., 1983) or by electroporation. A large
variety of vectors have been designed to introduce and to
maintain or express recombinant DNA in yeast cells (e.g.,
Guthrie and Fink, 1991; Johnston, 1994). The ease of gene
disruptions and single-step gene replacements is unique in
S. cerevisiae, and offered an outstanding advantage for exper-
imentation. Further, a large number of yeast strains carrying
auxotrophic markers, drug resistance markers, or defined
mutations became available. Culture collections are main-
tained, for example, at the Yeast Genetic Stock Center
(YGSC) and the American Type Culture Collection (ATCC).

The wealth of information on metabolic pathways and the
characterization of the enzymes involved in biochemical pro-
cesses, such as carbon, nitrogen, or fatty acid metabolism, as
well as the underlying regulatory circuits and signal trans-
duction mechanisms (e.g., roles of cAMP, inositol phos-
phates, and protein kinases), has been gathered by
numerous yeast researchers. For cytology, studies on yeast
contributed to the knowledge of mechanisms in mitosis and
meiosis, biogenesis of organelles (such as endosomes, Golgi
apparatus, vacuoles, mitochondria, peroxisomes, or nuclear
structures), as well as cytoskeletal structure and function.
Major contributions came from investigations into nucleic
acid and genome structure, protein traffic and secretory
pathways, mating-type switching phenomena, mechanisms
of recombination, control of the cell cycle, control of gene
expression and the involvement of chromatin structure,
functions of oncogenes, or stress phenomena. There is too
little space here to describe all the achievements made
through “classical” approaches and the reader is referred to

Fig. 1.1 Life cycle of S. cerevisiae. Vegetative growth is indicated by the circles.
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detailed collections of articles in standard books (Strathern,
Hicks, and Herskowitz, 1981; Broach, Pringle, and Jones,
1991; Guthrie and Fink, 1991).

The success of yeast as a model organism is also due to
the fact, which was not fully anticipated earlier than some
20 years ago (Figure 1.2), that many basic biological struc-
tures and processes have been conserved from yeast to mam-
mals and that corresponding genes can often complement
each other. In fact, a large variety of examples provide
evidence that substantial cellular functions are also highly
conserved from yeast to mammals.

It is not surprising, therefore, that in those years yeast
had again reached the forefront in experimental molecu-
lar biology. When the sequence of the entire yeast
genome became amenable to thorough analysis, the
wealth of information obtained in this project (Goffeau
et al., 1996; Goffeau et al., 1997) turned out to be useful
as a reference against which sequences of human, ani-
mal, or plant genes and those of a multitude of uni-
cellular organisms under study could be compared.
Moreover, the ease of genetic manipulation in yeast still
opens the possibility to functionally dissect gene products
from other eukaryotes in this system.

As it is extremely difficult to follow the contributions of
yeast to molecular biology in a strictly chronological
sequence in toto, I prefer to select particular fields of interest

in which the yeast system has served to arrive at fundamen-
tal observations valid for molecular and cell biology in
general.

Summary

� There is no doubt that yeast, S. cerevisiae, is one of
the oldest domesticated organisms. It has served mankind
for thousands of years for baking bread, and making beer
and wine. We owe a first glimpse of its nature to van
Leeuwenhoek’s microscopic description at the end of the
seventeenth century. Still, the capability of yeast of ferment-
ing sugar remained a mystery until the middle of the nine-
teenth century when fermentation could be correlated with
yeast metabolism. Indeed, the expression “enzymes”
describing the cellular compounds involved in this process
is derived from this organism (en zymi¼ in yeast).

� Around 1930, it was recognized that yeast represents an
ideal system to investigate cell architecture and fundamen-
tal cellular mechanisms, successfully competing with other
model organisms such as Drosophila or Neurospora. Yeast
combines several advantages: it has a propagation time
comparable to bacterial cells and can be used for mass pro-
duction of material, it is a unicellular eukaryote that can be

grown on defined media, and it is easily tractable to classi-
cal genetic analysis including mutational analysis, thus
allowing genetic mapping. No wonder then that yeast quali-
fied as a model organism to study metabolic pathways by
biochemical and genetic approaches at the same time.
Another benefit offered by the yeast system was the possi-
bility to isolate its subcellular components in sufficient
quantity and to dissect their functional significance.

� As soon as molecular approaches became available in
the mid-1950s, they were successfully applied to yeast.
Finally, with the deciphering of its complete genome
sequence in 1996, yeast became the first eukaryotic orga-
nism that could serve as a model for systematic functional
analysis, and as a suitable reference for human, animal, or
plant genes and those of a multitude of unicellular orga-
nisms. In fact, these comparisons provided evidence that
substantial cellular functions are highly conserved from
yeast to mammals.

Further Reading

Goffeau, A., Barrell, B.G., Bussey, H. et al. (1996) Life with 6000 genes.
Science, 274, 546, 563–567 (review).

Hartwell, L.H. (2002) Yeast and cancer. Nobel Lecture Bioscience Reports,
22, 373–394. http://nobelprize.org/nobel_prizes/medicine/laureates/
2001/hartwell-lecture.html.

Fig. 1.2 Yeast around the start of the Yeast Genome Sequencing Project.
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2Yeast Cell Architecture and Functions
2.1
General Morphology

Cell structure and appearance. Yeast cells exhibit great diver-
sity with respect to cell size, shape, and color. Even individual
cells from a pure strain of a single species can display mor-
phological heterogeneity. Additionally, profound alterations
in individual cell morphology will be induced by changing
the physical or chemical conditions at growth. Yeast cell size
varies widely – some yeasts may be only 2–3mm in length,
while other species may reach lengths of 20–50mm. Cell
width is less variable at about 1–10mm. Under a microscope,
Saccharomyces cerevisiae cells appear as ovoid or ellipsoidal
structures, surrounded by a rather thick cell wall (Figure 2.1).
Mean values for the large diameter range between 5 and
10mm, and for the small diameter between 1 and 7mm.
Cell size in brewing strains is usually bigger than that in
laboratory strains. Mean cell size of S. cerevisiae also
increases with age.

With regard to cell shape, many yeast species are ellipsoi-
dal or ovoid. Some, like the Schizosaccharomyces, are cylindri-
cal with hemispherical ends. Candida albicans and Yarrowia
lipolytica, for example, are mostly filamentous (with pseudo-
hyphae and septate hyphae). There are also spherical yeasts
(like Debaryomyces species) or elongated forms (with many
yeasts depending on growth conditions).

In principle, the status of S. cerevisiae as a eukaryotic cell is
reflected by the fact that similar macromolecular constitu-
ents are assembled into the structural components of the cell
(Table 2.1). There are, however, some compounds that do not
occur in mammalian cells or in cells of other higher eukar-
yotes, such as those building the rigid cell wall or storage
compounds in yeast.

For a better understanding of what I will discuss in the
following sections, Figure 2.2 presents a micrograph of a
dividing yeast cell, indicating some of its major components
and organelles. We will deal with the yeast envelope, the cyto-
plasm, and the cell skeleton, and briefly touch upon the
nucleus. The major genetic material distributed throughout
the 16 chromosomes residing within the nucleus and other
genetic elements, such as the nucleic acids, the retrotranspo-
sons, and some extrachromosomal elements, are considered

later in Chapter 5. Section 2.5 presents an overview of other
yeast cellular structures.

Preparations to view cells. Unstained yeast cells can only
be visualized poorly by light microscopy. At 1000-fold magni-
fication, it may be possible to see the yeast vacuole and cyto-
solic inclusion bodies. By using phase-contrast microscopy,
together with appropriate staining techniques, several cellu-
lar structures become distinguishable. Fluorochromic dyes
(cf. Table 2.2) can be used with fluorescence microscopy to
highlight features within the cells as well as on the cell sur-
face (Pringle et al., 1991).

The range of cellular features visualized is greatly
increased, when monospecific antibodies raised against
structural proteins are coupled to fluorescent dyes, such as
fluorescein isothiocyanate (FITC) or Rhodamine B.

Flow cytometry has several applications in yeast studies
(Davey and Kell, 1996). For example, fluorescence-activated
cell sorting (FACS) can monitor yeast cell cycle progression,
when cell walls are labeled with concanavalin A conjugated
to FITC and cell protein with tetramethylrhodamine isothio-
cyanate (TRITC). These tags enable us to collect quantitative
information on the growth properties of individual yeast
cells as they progress through their cell cycle.

A very convenient tool to localize and even to follow the
movement of particular proteins within yeast cells is the use
of the Green Fluorescent Protein (GFP) from the jellyfish
(Aequorea victoria) as a reporter molecule (Prasher et al.,
1992), as well as several derivatives of GFP with fluorescence
spectra shifted to other wavelengths (Heim et al., 1994;
Heim, Cubitt, and Tsien, 1995). Fusions of genes of interest
with the fluorescent protein gene (N- or C-terminal) also
allow us to follow the expression and destiny of the fusion
proteins followed by fluorescence microscopy (Niedenthal
et al., 1996; Wach et al., 1997; Hoepfner et al., 2000; see also
Chapter 4).

Organelle ultrastructure and macromolecular architecture
can only be obtained with the aid of electron microscopy,
which in scanning procedures is useful for studying cell
topology, while ultrathin sections are essential in transmis-
sion electron microscopy to visualize intracellular fine struc-
ture (Streiblova, 1988). Atomic force microscopy can be
applied to uncoated, unfixed cells for imaging the cell
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surfaces of different yeast strains or of cells under different
growth conditions (De Souza Pereira et al., 1996).

A most convenient method to mark specific cellular struc-
tures or compartments is to check for particular marker
enzymes that occur in those structures (Table 2.3).

2.2
Cell Envelope

In S. cerevisiae, the cell envelope occupies about 15% of the
total cell volume and plays a major role in controlling the
osmotic and permeability properties of the cell. Looking
from the inside out, the yeast cytosol is surrounded by the
plasma membrane, the periplasmic space, and the cell wall.
Structural and functional aspects of the yeast cell envelope
have attracted early interest (Phaff, 1963) because – like the
cell envelope of fungi in general – it differs from bacterial
envelopes and from those of mammalian cells. A peculiarity
of yeast is that once the cell has been depleted of its cell wall,

Table 2.1 Classes of macromolecules in S. cerevisiae.

Class Category Major compounds

Proteins structural actin, tubulin (cytoskeleton)
histones (H2A, H2B, H3, H4, H1)
ribosomal proteins

hormones pheromones a and a
functional enzymes and factors

transporters
signaling receptors
motor proteins (myosins, kinesins,
dynein)

Glycoproteins cell wall
components

mannoproteins

enzymes many functional enzymes (e.g.,
invertase)

Polysaccharides cell wall
components

glucan, mannan, chitin

capsular
components

glucan, mannan, chitin

storage glycogen, trehalose
Polyphosphates storage polyphosphate in vacuole
Lipids structural free sterols in membranes

storage lipid particles (sterol esters and
triglycerides)

functional phosphoglyceride derivatives, free
fatty acids

Nucleic acids DNA genomic DNA (80%),
mitochondrial DNA (10–20%)

RNA rRNA (80%), mRNA (5% cytosolic,
ER, mitochondria), tRNAs,
snRNAs, snoRNAs

Fig. 2.1 Cells of S. cerevisiae under the microscope. The white arrows

point to dividing cells.

Fig. 2.2 Micrograph of a dividing yeast cell.

Table 2.2 Some structure-specific dyes for yeast cells.

Dye Structures
visualized

Comments

Methylene
blue

whole cells nonviable cells stain blue

Aminoacridine cell walls indicator of surface potential
F-C ConA cell walls binds specifically to mannan
Calcofluor
white

bud scars chitin in scar fluoresces

DAPI nuclei DNA fluoresces
DAPI mitochondria mitochondria fluoresce pink-

white
Neutral red vacuoles vacuoles stain red-purple
Iodine glycogen deposits glycogen stained red-brown
Rhodamine mitochondria

DAPI, 4,6-diamidino-2-phenylindole.
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protoplasts are generated that are able to completely regener-
ate the wall (Necas, 1971).

2.2.1
Cell Wall

Yeast cell wall. The outer shell is a rigid structure about 100–
200 nm thick and constituting about 25% of the total dry
mass of the cell (Figure 2.3). The cell wall is composed of
only four classes of macromolecules: highly glycosylated gly-
coproteins (“mannoproteins”), two types of b-glucans, and
chitin. The composition of the cell wall is subject to consider-
able variation according to growth conditions, and the bio-
synthesis of the single compounds is highly controlled both

in space and in time. The literature that has accumulated on
these issues has grown so voluminous that reference is given
here to only a few review articles (Klis, 1994; Lipke and
Ovalle, 1998; Cabib et al., 2001). Details of cell wall synthesis
during yeast growth and budding, as well as septum forma-
tion (Cid et al., 1995; Cabib et al., 1997; Cabib et al., 2001;
Smits, van denEnde, and Klis, 2001), are considered below.

By treatment with lytic enzymes in the presence of
osmotic stabilizers, the yeast cell wall can be removed with-
out harming viability or other cellular functions. These
“naked” cells are called spheroplasts. The cell wall will regen-
erate and this process has been used to study aspects of cell
wall biosynthesis. Spheroplasts are amenable to intergeneric
and intrageneric cell fusions; such hybrids are valuable
instruments in genetic studies and possess a valuable bio-
technological potential. A cell wall protein that contains a
putative glycosylphosphatidylinositol (GPI)-attachment site,
Pst1p, is secreted by regenerating protoplasts. It is upregu-
lated by activation of the cell integrity pathway, as mediated
by Rlm1p, as well as upregulated by cell wall damage via dis-
ruption of the FKS1 gene, representing the catalytic subunit
of glucan synthase (cf. Chapter 3).

Yeast cell aggregation. A phenomenon of particular impor-
tance in brewing is flocculation. It is based on asexual cellu-
lar aggregation when cells adhere, reversibly, to one another,
which leads to the formation of macroscopic flocs sediment-
ing out of suspension. Traditionally, brewing yeast strains are
distinguished as highly flocculent bottom yeasts (used for
lager or Pilsner fermentations) or weakly flocculent top
yeasts (used for ale fermentations or, in Germany, to prepare
“top-fermented” beers). Although flocculation is far from
being completely understood, it appears that the phenome-
non is due to specific cell wall lectins in yeast (so-called
flocculins) – surface glycoproteins capable of directly binding
mannoproteins of adjacent cells. Yeast flocculation is geneti-
cally determined by the presence of different FLO genes.
One such protein is Flo1p, a lectin-like cell-surface protein
that aggregates cells into “flocs” by binding to mannose
sugar chains on the surfaces of other cells. Both the

Table 2.3 Marker enzymes for isolated yeast organelles.

Organelle Compartments Marker enzyme

Cell wall periplasm invertase
secretory pathway acid phosphatase

Plasma
membrane

vanadate-sensitive ATPase

Cytosol glucose-6-phosphate
dehydrogenase

Nucleus nucleoplasm RNA polymerase
nuclear envelope transmission electron

microscopy
ER light microsomal

fraction
NADPH: cytochrome c
oxidoreductase

Vacuole membrane a-mannosidase
sap protease A and B

Golgi
apparatus

b-glucan synthase,
mannosyltransferase

Mitochondrion matrix aconitase, fumarase
intermembrane
space

cytochrome c peroxidase

inner membrane cytochrome c oxidase
outer membrane kynurenine hydroxylase

Peroxisome catalase, isocitrate lyase,
flavin oxidase

--S-S-- --S-S--
--S-S--

Cytosol

Three membrane-bound synthetases:
Csh1 Repair enzyme
Csh2 Involved in septum formation
Csh3 (Cds2) Cell wall maturation and bud-ring formation

ß-(1,3)-glucan
ß-(1,6)-glucan

Entrapped mannoproteins

Glucomannoproteins

Chitin ß-(1,4)-poly-N-
acetylglucosamine

Plasma membrane

Fig. 2.3 Schematic representation of the yeast cell

wall.
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phenotypic characterization of FLO5 strains and the
sequence similarity between Flo1p and Flo5p suggest that
Flo5p is also a mannose-binding lectin-like cell surface
protein.

As the yeast cell wall is involved in sexual agglutination,
some attention has been given to this particular aspect (Lipke
and Kurjan, 1992). a- and a-cells can be distinguished
by their agglutinin proteins. The anchorage subunit of a-
agglutinin, Aga1p, is a highly O-glycosylated protein with an
N-terminal secretion signal and a C-terminal signal for the
addition of a GPI anchor (cf. Section 3.4.3.2). Linked to the
anchoring subunit by two disulfide bonds is the adhesion
subunit Aga2p. The a-agglutinin of a-cells is Sag1p. It binds
to Aga1p during agglutination; its N-terminus is homolo-
gous to members of the immunoglobulin superfamily, con-
taining binding sites for a-agglutinin, while the C-terminus
is highly glycosylated and harbors GPI anchor sites.

The cell wall as a target for the defeat of mycoses. Simi-
larly, several peculiarities of fungal cell wall synthesis such
as the occurrence of ergosterol have led to the development
of strategies for their inhibition as a means to defeat severe
mycoses (Gozalbo et al., 1993). A more recent brief account
is given in an article by Levin (2005) describing cell wall
integrity regulation in S. cerevisiae, which is considered a
good model for the development of safe and effective anti-
fungal agents. At present, effective antifungal therapy is very
limited and dominated by the azole class of ergosterol bio-
synthesis inhibitors. Members of this class of antifungals are
cytostatic rather than cytotoxic and therefore require long
therapeutic regimens. The antifungal drugs can be applied
to the major opportunistic human pathogens (Candida spe-
cies, Aspergillus fumigatus, and Cryptococcus neoformans) caus-
ing systemic infections among immunocompromised
patients. As this population has grown over the past three
decades due to HIV infection, cancer chemotherapy, and
organ transplants, and the number of life-threatening
systemic fungal infections has increased accordingly,
there is a need to develop safe, cytotoxic antifungal drugs
(cf. Chapter 14).

2.2.2
Plasma Membrane

Like other biological membranes, the surface plasma mem-
brane of yeast can be described as a lipid bilayer, which har-
bors proteins serving as cytoskeletal anchors, and enzymes
for cell wall synthesis, signal transduction, and transport.
The S. cerevisiae plasma membrane is about 7.5 nm thick,
with occasional invaginations protruding into the cytoplasm.
The lipid components comprise mainly phospholipids (phos-
phatidylcholine, phosphatidylethanolamine, and minor pro-
portions of phosphatidylinositol, phosphatidylserine, and
phosphatidylglycerol) as well as sterols (principally ergosterol
and zymosterol). Like the cell wall, the plasma membrane
changes both structurally and functionally depending on the
conditions of growth.

The primary functions of the yeast plasma membrane are:

i) Physical protection of the cell.
ii) Control of osmotic stability.
iii) Control of cell wall biosynthesis.
iv) Anchor for cytoskeletal compounds.
v) Selective permeability barrier controlling compounds

that enter or that leave the cell. Of prime importance
in active transport of solutes is the activity of
the plasma membrane proton-pumping ATPase (see
Section 5.6.1).

vi) Transport-related functions in endocytosis and
exocytosis.

vii) Location of the components of signal transduction
pathways.

viii) Sites of cell–cell recognition and cell–cell adhesion
(Van der Rest et al., 1995).

A comprehensive coverage of the lipids and the yeast
plasma membrane, as well as on the biogenesis of the cell
wall, can be found in a book by Dickinson and Schweitzer
(2004).

The periplasmic space (Arnold, 1991) is a thin (35–45A
�
),

cell wall-associated region external to the plasma membrane.
It comprises mainly secreted proteins that are unable to per-
meate the cell wall, such as invertase and phosphatase,
which catabolize substrates that do not cross the plasma
membrane. The unique properties of invertase have inspired
its commercial preparation for the confectionary industry.
The signal sequences of invertase (SUC2) and phosphatase
(PHO5) have been used in recombinant DNA technology
to generate heterologous proteins that can be secreted
(Hadfield et al., 1993). Most frequently used for secretion of
heterologous proteins is the prepro-a-factor (MFa1) (Brake,
1989) (cf. Section 4.2.2.3).

2.3
Cytoplasm and Cytoskeleton

2.3.1
Yeast Cytoplasm

Like in all other cellular organisms, the yeast cytoplasm is
the site for many cellular activities and the space for intra-
cellular traffic. In yeast, it is an aqueous, slightly acidic (pH
5.2) colloidal fluid that contains low- and intermediate-
molecular-weight weight compounds, such as proteins, gly-
cogen, and other soluble macromolecules. Larger macro-
molecular entities like ribosomes, proteasomes, or lipid
particles are suspended in the cytoplasm. The cytosolic (non-
organellar) enzymes include the glycolytic enzymes, the fatty
acid synthase complex, and the components and enzymes
for protein biosynthesis. Many functions essential for cellu-
lar integrity are localized to the cytoplasm (e.g., the compo-
nents that form and control the cytoskeletal scaffold).
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