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Preface to Second Edition
Since the appearance of the First Edition a decade ago our

understanding of the relation between Topology and Chaos

has grown quite a bit. This growth is reflected in the

increased size of the Second Edition. For the most part the

additional material is present in Chapters 11 and 12, and

Appendix B of the current version. The two new chapters

have been inserted between the first ten and the last two

chapters of the First Edition.

We have made small changes in the first ten chapters. The

principal change can be seen in Chapter One. This Chapter

has been largely rewritten to make the entire work more

accessible to someone first coming to the field. Chapter 2

contains two new short sections about homoclinic tangles

and annulus maps. A brief discussion of embeddings has

been largely expanded and relocated from Chapter 6 to

Appendix B of the present work. Some recent beautiful

experimental work done in Zaragoza, Spain, has explored

the perestroikas that branched manifolds can undergo. This

work has been included in Chapter 7. In Chapter 9, a new

section summarizes the essential mathematical aspects of

orbit forcing and topological entropy, including train track

algorithms, and points to the relevant litterature. How knots

can be used to compute entropy in real systems is also

illustrated in a fluid experiment and in an optical system.

Unfortunately there has been little progress in our

understanding of flows in higher dimensions (Chapter 11,

First Edition) and too little development in the program for

dynamical systems (Chapter 12, First Edition). These appear

essentially unchanged as Chapters 13 and 14 in the present

edition. Still, a new section in Chapter 13 presents an

interesting proposal to generalize braids to dynamical

triangulations of periodic points. This approach appears to

be equivalent to the conventional one in three dimensions,

and adapts naturally to phase spaces of any dimension.



Bounding Tori are introduced in Chapter 11. These two-

dimensional surfaces enclose three-dimensional strange

attractors. They have an elegant classification that goes

back more than two centuries to the earlier great

topologists (Euler). These structures serve to place yet

another identifying tag on low-dimensional strange

attractors.

There is a ‘Representation Theory’ for strange attractors

that is similar in spirit, if not in detail, to the ‘representation

theory’ for groups and algebras developed over a century

ago. The representation theory for three-dimensional

dynamical systems is now complete and presented in

Chapter 12. For higher-dimensional dynamical systems the

path has been blazed but not yet traversed. The

representation theory provides a satisfying answer to the

troubling question: “When you analyze an embedding of

data generated by a chaotic dynamical system, what do you

learn about the dynamical system and what do you learn

about the embedding?”

The new Appendix B is devoted to the black magic of

Embeddings. There are procedures for attempting to create

embeddings and there are several different types of tests to

assay whether an embedding has in fact been achieved.

Some procedures are more reliable, others less so. These

and other questions are explored in this Appendix.

We have taken this opportunity to correct mistakes that

have crept into the First Edition. Hopefully, there are none in

this version, but corrections and suggestions are welcomed

and will be available online at the book’s website:

http://www.thetopologyofchaos.net/. We would like to thank

friends and colleagues for pointing out mistakes (with a

special mention to Michel Nizette and Mihir Khadilkar),

pointing to places where our writing could have/should have

been clearer, and most important, for their support and

http://www.thetopologyofchaos.net/


encouragement during the preparation of the Second

Edition.
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Preface to the First Edition
Before the 1970s opportunities sometimes arose for

physicists to study nonlinear systems. This was especially

true in fields like fluid dynamics and plasma physics, where

the fundamental equations are nonlinear and these

nonlinearities masked (and still mask) the full spectrum of

spectacularly rich behavior. When possible, we avoided

being dragged into the study of abstract nonlinear systems.

For we believed, to paraphrase a beautiful generalization of

Tolstoy, that

All linear systems are the same.

Each nonlinear system is nonlinear in its own way.

At that time we believed that one could spend a whole

lifetime studying the non-linearities of the van der Pol

oscillator [1, 2] and wind up knowing next to nothing about

the behavior of the Duffing oscillator.

Nevertheless, other intrepid researchers had been making

an assault on the complexities of nonlinear systems. Smale

[3] described a mechanism responsible for generating a

great deal of the chaotic behavior that has been studied up

to the present time. Lorenz, studying a drastic truncation of

the Navier–Stokes equation, discovered and described

“sensitive dependence on initial conditions” (1963). The

rigid order in which periodic orbits are created in the

bifurcation set of the logistic map, and in fact any unimodal

map of an interval to itself, was described by May [4] and by

Metropolis, Stein, and Stein [5].

Still, there was a reluctance on the part of most scientists

to indulge in the study of nonlinear systems. This all

changed with Feigenbaum’s discoveries (1978). He showed

that scaling invariance in period-doubling cascades leads to

quantitative (later, qualitative) predictions. These are the

scaling ratios:



that are eigenvalues of a renormalization transformation.

The transformation in the attitude of scientists is

summarized by Gleick’s [6] statement:

“It was a very happy and shocking discovery that there

were structures in nonlinear systems that are always the

same if you looked at them the right way.”

This discovery launched an avalanche of work on nonlinear

dynamical systems. Old experiments, buried and forgotten

because of instabilities or unrepeatability due to

incompetent graduate students (in their advisors’ opinions)

were resurrected and pushed as groundbreaking

experiments exhibiting “first observations” of chaotic

behavior (by these same advisors). And many new

experiments were carried out, at first to test Feigenbaum’s

scaling predictions, then to test other quantitative

predictions, then just to see what would happen.

Some of the earliest experiments were done on fluids,

since the fundamental equations were known and are

nonlinear. However, these experiments often suffered from

the long time scales (days, weeks, or months) required to

record a decent data set. Oscillating chemical reactions

(e.g., the Belousov–Zhabotinskii reaction) yielded a wide

spectrum of periodic and chaotic behavior that was

relatively easy to control and to tune. These data sets could

be generated in hours or days. Nonlinear electric circuits

were also extensively studied, although there was (and still

is) a prejudice to regard them with a jaundiced eye as little

more than analog computers. Such data sets could be

generated very quickly (seconds to minutes) – almost as

fast as numerical simulations. Finally, laser laboratories

contributed in a substantial way to very quickly

(milliseconds to minutes) building up extensive and widely

varying banks of chaotic data.



It was at this time (1988), about 10 years into the

“nonlinear science” revolution, that one of the authors (R.G.)

was approached by his colleague (J.R. Tredicce, then at

Drexel, now at the Institut Non Linéaire de Nice) with the

proposition: “Bob, can you help me explain my data?”

(Chapter 1). So we swept the accumulated clutter off my

desk and deposited his data. We looked, pushed, probed,

discussed, studied, etc. for quite a while. Finally, I replied:

“No.” Tredicce left with his data. But he is very smart (he is

an experimentalist!) and returned the following day with the

same pile of stuff. The conversation was short and effective:

“Bob,” (still my name), “I’ll bet that you can’t explain my

data.” (Bob sees red!) We sat down and discussed further.

At the time two tools were available for studying chaotic

data. These involved estimating Lyapunov exponents

(dynamical stability) and estimating fractal dimensions

(geometry). Both required lots of very clean data and long

calculations. They provided real number(s) with no

convincing error bars, no underlying statistical theory, and

no independent way to verify these guesses. And at the end

of the day neither provided any information on “how to

model the dynamics.”

Even worse: Before doing an analysis I would like to know

what I am looking for, or at least know what the spectrum of

possible results looks like. For example, when we analyze

chemical elements or radionuclides, there is a periodic table

of the chemical elements and another for the atomic nuclei

that accommodate any such analyses. At that time, no

classification theory existed for strange attractors.

In response to Tredicce’s dare, I promised to (try to)

analyze his data. But I pointed out that a serious analysis

couldn’t be done until we first had some handle on the

classification of strange attractors. This could take a long

time. Tredicce promised to be patient. And he was.



Our first step was to consider the wisdom of Poincaré, who

had suggested about a century earlier that one could learn

a great deal about the behavior of nonlinear systems by

studying their unstable periodic orbits, which

“… yield us the solutions so precious, that is to say, they

are the only breach through which we can penetrate into

a place which up to now has been reputed to be

inaccessible.”

This observation was compatible with what we learned from

experimental data: the most important features that

governed the behavior of a system, and especially that

governed the perestroikas of such systems (i.e., changes as

control parameters are changed) are the features that you

can’t see – the unstable periodic orbits.

Accordingly, my colleagues and I studied the invariants of

periodic orbits, their (Gauss) linking numbers. We also

introduced a refined topological invariant based on periodic

orbits – the relative rotation rates (Chapter 4). Finally, we

used these invariants to identify topological structures

(branched manifolds or templates, Chapter 5), which we

used to classify strange attractors “in the large.” The result

was that “low-dimensional” strange attractors (i.e., those

that could be embedded in three-dimensional spaces) could

be classified. This classification depends on the periodic

orbits “in” the strange attractor, in particular, on their

organization as elicited by their invariants. The classification

is topological. That is, it is given by a set of integers (also by

very informative pictures). Not only that, these integers can

be extracted from experimental data. The data sets do not

have to be particularly long or particularly clean – especially

by fractal dimension calculation standards. Further, there

are built-in internal self-consistency checks. That is, the

topological analysis algorithm (Chapter 6) comes with

reject/fail to reject test criteria. This is the first – and



remains the only – chaotic data analysis procedure with

rejection criteria.

Ultimately we discovered, through analysis of

experimental data, that there is a secondary, more refined

classification for strange attractors. This depends on a

“basis set of orbits” that describes the spectrum of all the

unstable periodic orbits “in” a strange attractor (Chapter 9).

The ultimate result is a doubly discrete classification of

strange attractors. Both parts of this doubly discrete

classification depend on unstable periodic orbits. The

classification depends on identifying:

A branched manifold – which describes the stretching

and squeezing mechanisms that operate repetitively on

a flow in phase space to build up a (hyperbolic) strange

attractor and to organize all the unstable periodic orbits

in the strange attractor in a unique way. The branched

manifold is identified by the spectrum of the invariants

of the periodic orbits that it supports.

A basis set of orbits – which describes the spectrum of

unstable periodic orbits in a (nonhyperbolic) strange

attractor.

The perestroikas of branched manifolds and of basis sets of

orbits in this doubly discrete classification obey well-defined

topological constraints. These constraints provide both a

rigidity and a flexibility for the evolution of strange

attractors as control parameters are varied.

Along the way we discovered that dynamical systems with

symmetry could be related to dynamical systems without

symmetry in very specific ways (Chapter 10). As usual,

these relations involve both a rigidity and a flexibility that

are as surprising as they are delightful.

Many of these insights are described in the paper [7],

which forms the basis for part of this book. We thank the

editors of this journal for their policy of encouraging the



transformation of research articles into a longer book

format.

The encounter (falling in love?) of the other author (M.L.)

with topological analysis dates back to 1991, when he was a

Ph.D. student at the University of Lille, struggling to extract

information from the very same type of chaotic laser that

Tredicce was using. At that time, Marc was computing

estimates of fractal dimensions for his laser. But the

estimates depended very much on the coordinate system

used and gave no insight into the mechanisms responsible

for chaotic behavior, even less into the succession of the

different behaviors observed. This was very frustrating.

There had been this very intringuing paper in Physical

Review Letters about a “characterization of strange

attractors by integers,” with appealing ideas and nice

pictures. But as with many short papers, it was difficult to

understand how you should proceed when faced with a real

experimental system. Topological analysis struck back when

Pierre Glorieux, then Marc’s advisor, came back to Lille from

a stay in Philadephia and handed him a preprint from the

Drexel team, saying, “You should have a look at this stuff.”

The preprint was about topological analysis of the Belousov–

Zhabotinskii reaction, a real-life system. It was the Rosetta

Stone that helped put pieces together. Soon after, pictures

of braids constructed from laser signals were piling up on

his desk. They were absolutely identical to those extracted

from the Belousov–Zhabotinskii data and described in the

preprint. There was universality in chaos if you looked at it

with the right tools. Eventually, the system that had

motivated topological analysis in Philadephia, the CO2 laser

with modulated losses, was characterized in Lille and shown

to be described by a horseshoe template. Indeed, Tredicce’s

laser could not be characterized by topological analysis

because of long periods of zero output intensity that

prevented invariants from being reliably estimated. The high



signal-to-noise ratio of the laser in Lille allowed us to use a

logarithmic amplifier and to resolve the structure of

trajectories in the zero intensity region.

But a classification is only useful if there exist different

classes. Thus, one of the early goals was to find

experimental evidence of a topological organization that

would differ from the standard Smale horseshoe. At that

time, some regimes of the modulated CO2 laser could not

be analyzed for lack of a suitable symbolic encoding. The

corresponding Poincaré sections had peculiar structures

that, depending on the observer’s mood, suggested a

doubly iterated horsehoe or an underlying three-branch

manifold. Since the complete analysis could not be carried

out, much time was spent on trying to find at least one orbit

that could not fit the horseshoe template. The result was

extremely disappointing: For every orbit detected, there was

at least one horseshoe orbit with identical invariants. One of

the most important lessons of Judo is that if you experience

resistance when pushing, you should pull (and vice versa).

Similarly, this failed attempt to find a nonhorseshoe

template turned into techniques to determine underlying

templates when no symbolic coding is available and to

construct such codings using the information extracted from

topological invariants.

But the search for different templates was not over. Two of

Marc’s colleagues, Dominique Derozier and Serge Bielawski,

proposed that he study a fiber-optic laser they had in their

laboratory (that was the perfect system for studying knots).

This system exhibits chaotic tongues when the modulation

frequency is near a subharmonic of its relaxation frequency:

It was tempting to check whether the topological structures

in each tongue differed. That was indeed the case: The

corresponding templates were basically horseshoe

templates but with a global torsion increasing systematically

from one tongue to the other. A Nd:YAG laser was also



investigated. It showed similar behavior, until the day when

Guillaume Boulant, the Ph.D. student working on the laser,

came to Marc’s office and said, “I have a weird data set.”

Chaotic attractors were absolutely normal, return maps

resembled the logistic map very much, but the invariants

were simply not what we were used to. This was the first

evidence of a reverse horseshoe attractor. How topological

organizations are modified as a control parameter is varied

was the subject of many discussions in Lille in the following

months; a rather accurate picture finally emerged, and

papers began to be written. In the last stages, Marc did a

bibliographic search just to clear his mind, and … a recent

22-page Physical Review paper, by McCallum and Gilmore,

turned up. Even though it was devoted to the Duffing

attractor, it described with great detail what was happening

in our lasers as control parameters were modified. Every

occurrence of “we conjecture that” in the papers was hastily

replaced by “our experiments confirm the theoretical

prediction …,” and papers were sent to Physical Review.

They were accepted 15 days later, with a very positive

review. Soon after, the referee contacted us and proposed a

joint effort on extensions of topological analysis. The referee

was Bob, and this was the start of what we hope will be a

long-lasting collaboration.

It would indeed be very nice if these techniques could be

extended to the analysis of strange attractors in higher

(than three) dimensions. Such an extension, if it is possible,

cannot rely on the most powerful tools available in three

dimensions. These are the topological invariants used to

tease out information on how periodic orbits are organized

in a strange attractor. We cannot use these tools (linking

numbers, relative rotation rates) because knots “fall apart”

in higher dimensions. We explore (Chapter 11) an inviting

possibility for studying an important class of strange

attractors in four dimensions. If a classification procedure



based on these methods is successful, the door is opened to

classifying strange attractors in Rn, n > 3. A number of ideas

that may be useful in this effort have already proved useful

in two closely related fields (Chapter 12): lie group theory

and singularity theory.

Some of the highly technical details involved in extracting

templates from data have been archived in the appendix.

Other technical matters are archived at our web sites.1)

Much of the early work in this field was done in response

to the challenge by J.R. Tredicce and carried out with my

colleagues and close friends: H.G. Solari, G.B. Mindlin, N.B.

Tufillaro, F. Papoff, and R. Lopez-Ruiz. Work on symmetries

was done with C. Letellier. Part of the work carried out in this

program has been supported by the National Science

Foundation under grants NSF 8843235 and NSF 9987468.

Similarly, Marc would like to thank colleagues and students

with whom he enjoyed working and exchanging ideas about

topological analysis: Pierre Glorieux, Ennio Arimondo,

Francesco Papoff, Serge Bielawski, Dominique Derozier,

Guillaume Boulant, and Jérôme Plumecoq. Bob’s stays in

Lille were partially funded by the University of Lille, the

Centre National de la Recherche Scientifique, Drexel

University under sabbatical leave, and by the NSF.

Last and most important, we thank our wives Claire and

Catherine for their warm encouragement while physics

danced in our heads, and our children, Marc and Keith, Clara

and Martin, who competed with our research, demanded our

attention, and, in doing so, kept us human.

Lille, France, January 2002

Robert Gilmore and Marc Lefranc
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Chapter 1

Introduction

The subject of this book is chaos as seen through the filter

of topology. The origin of this book lies in the analysis of

data generated by a dynamical system operating in a

chaotic regime. Throughout this book we develop

topological tools for analyzing chaotic data and then show

how they are applied to experimental data sets.

More specifically, we describe how to extract, from chaotic

data, topological signatures that determine the stretching

and squeezing mechanisms that act on flows in phase space

and that are responsible for generating chaotic data.

In the first section of this introductory chapter we very

briefly review some of the basic ideas from the field of

nonlinear dynamics and chaos. This is done to make the

work as self-contained as possible. More in-depth treatment

of these ideas can be found in the references provided.

In the second section we describe, for purposes of

motivation, a laser that has been operated under conditions

in which it behaved chaotically. The topological methods of

analysis that we describe in this book were developed in

response to the challenge of analyzing chaotic data sets

generated by this laser.

In the third section we list a number of questions we would

like to be able to answer when analyzing a chaotic signal.

None of these questions can be addressed by the older tools

for analyzing chaotic data. The older methods involve

estimates of the spectrum of Lyapunov exponents and

estimates of the spectrum of fractal dimensions. The

question that we would particularly like to be able to answer



is this: How does one model the dynamics? To answer this

question we must determine the stretching and squeezing

mechanisms that operate together – repeatedly – to

generate chaotic data. The stretching mechanism is

responsible for sensitivity to initial conditions while the

squeezing mechanism is responsible for recurrent

nonperiodic behavior. These two mechanisms operate

repeatedly to generate a strange attractor with a self-similar

structure.

A new analysis method, topological analysis, has been

developed to respond to the fundamental question just

stated [7, 8]. At the present time this method is suitable

only for strange attractors that can be embedded in three-

dimensional spaces. However, for such strange attractors it

offers a complete and satisfying resolution to this question.

The results are previewed in the fourth section of this

chapter. In the final section we provide a brief overview of

the organization of this book. In particular, we summarize

the organization and content of the following chapters.

It is astonishing that the topological analysis tools that we

describe have provided answers to more questions than we

had originally asked. This analysis procedure has also raised

more questions than we have answered. We hope that the

interaction between experiment and theory and between

old questions answered and new questions raised will

hasten the evolution of the field of nonlinear dynamics.

1.1 Brief Review of Useful

Concepts

There are a number of texts that can serve as excellent

introductions to the study of nonlinear dynamics and chaos.

These include [9–21]. Any one of these can be used to fill in

details that we may pass by a little too quickly in our study.


