Soheil Mohammadi

XFEM Fracture Analysis of Composites

XFEM FRACTURE ANALYSIS OF COMPOSITES

XFEM FRACTURE ANALYSIS OF COMPOSITES

Soheil Mohammadi

University of Tehran, Iran

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

 $MATLAB^{(\mathbb{R})}$ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB^(\mathbb{R}) software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB^(\mathbb{R}) software.

Library of Congress Cataloging-in-Publication Data

Mohammadi, S. (Soheil)
XFEM fracture analysis of composites / Soheil Mohammadi. pages cm
Includes bibliographical references and index.
ISBN 978-1-119-97406-2
1. Composite materials–Fracture. 2. Composite materials–Fatigue. 3. Fracture mechanics. 4. Finite element method. I. Title.
TA418.9.C6M64 2012 620.1'186–dc23

2012016776

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-97406-2

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

To: Mansoureh, Sogol & Soroush

Contents

Preface			xiii
Nom	enclatur	e	xvii
1	Introd	luction	1
1.1	Compo	osite Structures	1
1.2	Failure	es of Composites	2
	1.2.1	Matrix Cracking	2
	1.2.2	Delamination	2
	1.2.3	Fibre/Matrix Debonding	2
	1.2.4	Fibre Breakage	3
	1.2.5	Macro Models of Cracking in Composites	3
1.3	Crack Analysis		3
	1.3.1	Local and Non-Local Formulations	3
	1.3.2	Theoretical Methods for Failure Analysis	5
1.4	Analytical Solutions for Composites		6
	1.4.1	Continuum Models	6
	1.4.2	Fracture Mechanics of Composites	6
1.5	Numerical Techniques		8
	1.5.1	Boundary Element Method	8
	1.5.2	Finite Element Method	8
	1.5.3	Adaptive Finite/Discrete Element Method	10
	1.5.4	Meshless Methods	10
	1.5.5	Extended Finite Element Method	11
	1.5.6	Extended Isogeometric Analysis	12
	1.5.7	Multiscale Analysis	13
1.6	Scope	of the Book	13
2	Fractu	ıre Mechanics, A Review	17
2.1	Introdu	uction	17
2.2	Basics of Elasticity		20
	2.2.1	Stress–Strain Relations	20
	2.2.2	Airy Stress Function	22
	2.2.3	Complex Stress Functions	22

2.3	Basics	of LEFM	23
	2.3.1	Fracture Mechanics	23
	2.3.2	Infinite Tensile Plate with a Circular Hole	24
	2.3.3	Infinite Tensile Plate with an Elliptical Hole	26
	2.3.4	Westergaard Analysis of a Line Crack	28
	2.3.5	Williams Solution of a Wedge Corner	29
2.4	Stress	Intensity Factor, K	30
	2.4.1	Definition of the Stress Intensity Factor	30
	2.4.2	Examples of Stress Intensity Factors for LEFM	33
	2.4.3	Griffith Energy Theories	35
	2.4.4	Mixed Mode Crack Propagation	38
2.5	Classic	cal Solution Procedures for \vec{K} and \vec{G}	41
	2.5.1	Displacement Extrapolation/Correlation Method	41
	2.5.2	Mode I Energy Release Rate	41
	2.5.3	Mode I Stiffness Derivative/Virtual Crack Model	42
	2.5.4	Two Virtual Crack Extensions for Mixed	
		Mode Cases	42
	2.5.5	Single Virtual Crack Extension Based	
		on Displacement Decomposition	43
2.6	Ouarte	er Point Singular Elements	44
2.7	J Integ	ral	47
	2.7.1	Generalization of J	48
	2.7.2	Effect of Crack Surface Traction	48
	2.7.3	Effect of Body Force	49
	2.7.4	Equivalent Domain Integral (EDI) Method	49
	2.7.5	Interaction Integral Method	49
2.8	Elastor	plastic Fracture Mechanics (EPFM)	51
	2.8.1	Plastic Zone	51
	2.8.2	Crack-Tip Opening Displacements (CTOD)	53
	2.8.3	J Integral for EPFM	55
3	Exten	ded Finite Element Method	57
3.1	Introdu	uction	57
3.2	Historic Development of XFEM		58
	3.2.1	A Review of XFEM Development	58
	3.2.2	A Review of XFEM Composite Analysis	62
3.3	Enriched Approximations		62
	3.3.1	Partition of Unity	62
	3.3.2	Intrinsic and Extrinsic Enrichments	63
	3.3.3	Partition of Unity Finite Element Method	66
	3.3.4	MLS Enrichment	66
	3.3.5	Generalized Finite Element Method	67
	3.3.6	Extended Finite Element Method	67
	3.3.7	Generalized PU Enrichment	67
3.4	XFEM	I Formulation	67
	3.4.1	Basic XFEM Approximation	68
	3.4.2	Signed Distance Function	69

	3.4.3	Modelling the Crack	70
	3.4.4	Governing Equation	71
	3.4.5	XFEM Discretization	72
	3.4.6	Evaluation of Derivatives of Enrichment Functions	73
	3.4.7	Selection of Nodes for Discontinuity Enrichment	75
	3.4.8	Numerical Integration	77
3.5	XFEM S	Strong Discontinuity Enrichments	79
	3.5.1	A Modified FE Shape Function	79
	3.5.2	The Heaviside Function	81
	3.5.3	The Sign Function	84
	3.5.4	Strong Tangential Discontinuity	85
	3.5.5	Crack Intersection	85
3.6	XFEM V	Weak Discontinuity Enrichments	86
3.7	XFEM C	Crack-Tip Enrichments	87
	3.7.1	Isotropic Enrichment	87
	3.7.2	Orthotropic Enrichment Functions	88
	3.7.3	Bimaterial Enrichments	88
	3.7.4	Orthotropic Bimaterial Enrichments	89
	3.7.5	Dynamic Enrichment	89
	3.7.6	Orthotropic Dynamic Enrichments for Moving Cracks	90
	3.7.7	Bending Plates	91
	3.7.8	Crack-Tip Enrichments in Shells	91
	3.7.9	Electro-Mechanical Enrichment	92
	3.7.10	Dislocation Enrichment	93
	3.7.11	Hydraulic Fracture Enrichment	94
	3.7.12	Plastic Enrichment	94
	3.7.13	Viscoelastic Enrichment	95
	3.7.14	Contact Corner Enrichment	96
	3.7.15	Modification for Large Deformation Problems	97
	3.7.16	Automatic Enrichment	99
3.8	Transitio	on from Standard to Enriched Approximation	99
	3.8.1	Linear Blending	100
	3.8.2	Hierarchical Transition Domain	100
3.9	Tracking	g Moving Boundaries	103
	3.9.1	Level Set Method	103
	3.9.2	Alternative Methods	106
3.10	Numeric	al Simulations	107
	3.10.1	A Central Crack in an Infinite Tensile Plate	107
	3.10.2	An Edge Crack in a Finite Plate	109
	3.10.3	Tensile Plate with a Central Inclined Crack	110
	3.10.4	A Bending Plate in Fracture Mode III	111
	3.10.5	Crack Propagation in a Shell	112
	3.10.6	Shear Band Simulation	115
	3.10.7	Fault Simulation	116
	3.10.8	Sliding Contact Stress Singularity by PUFEM	119
	3.10.9	Hydraulic Fracture	122
	3.10.10	Dislocation Dynamics	126
		-	

4	Static	Fracture Analysis of Composites	131
4.1	Introdu	iction	131
4.2	Anisot	ropic Elasticity	134
	4.2.1	Elasticity Solution	134
	4.2.2	Anisotropic Stress Functions	136
4.3	Analyt	ical Solutions for Near Crack Tip	137
	4.3.1	The General Solution	137
	4.3.2	Special Solutions for Different Types of Composites	140
4.4	Orthot	ropic Mixed Mode Fracture	142
	4.4.1	Energy Release Rate for Anisotropic Materials	142
	4.4.2	Anisotropic Singular Elements	142
	4.4.3	SIF Calculation by Interaction Integral	143
	4.4.4	Orthotropic Crack Propagation Criteria	147
4.5	Anisot	ropic XFEM	149
	4.5.1	Governing Equation	149
	4.5.2	XFEM Discretization	150
	4.5.3	Orthotropic Enrichment Functions	151
4.6	Numer	ical Simulations	152
	4.6.1	Plate with a Crack Parallel to the Material Axis of Orthotropy	152
	4.6.2	Edge Crack with Several Orientations of the Axes of Orthotropy	155
	4.6.3	Inclined Edge Notched Tensile Specimen	156
	4.6.4	Central Slanted Crack	160
	4.6.5	An Inclined Centre Crack in a Disk Subjected to Point Loads	164
	4.6.6	Crack Propagation in an Orthotropic Beam	166
5	Dynan	nic Fracture Analysis of Composites	169
5.1	Introdu	lection	169
	5.1.1	Dynamic Fracture Mechanics	169
	5.1.2	Dynamic Fracture Mechanics of Composites	170
	5.1.3	Dynamic Fracture by XFEM	172
5.2	Analyt	ical Solutions for Near Crack Tips in Dynamic States	173
	5.2.1	Analytical Solution for a Propagating Crack in Isotropic Material	174
	5.2.2	Asymptotic Solution for a Stationary Crack	
		in Orthotropic Media	175
	5.2.3	Analytical Solution for Near Crack Tip of a Propagating Crack in	
		Orthotropic Material	176
5.3	Dynam	ic Stress Intensity Factors	178
	5.3.1	Stationary and Moving Crack Dynamic Stress Intensity Factors	178
	5.3.2	Dynamic Fracture Criteria	179
	5.3.3	J Integral for Dynamic Problems	180
	5.3.4	Domain Integral for Orthotropic Media	181
	5.3.5	Interaction Integral	182
	5.3.6	Crack-Axis Component of the Dynamic J Integral	183
	537	Field Decomposition Technique	185
~ 4	5.5.7		
5.4	Dynam	nic XFEM	185

	5.4.2	XFEM Discretization	185
	5.4.3	XFEM Enrichment Functions	187
	5.4.4	Time Integration Schemes	191
5.5	Numer	rical Simulations	195
	5.5.1	Plate with a Stationary Central Crack	195
	5.5.2	Mode I Plate with an Edge Crack	196
	5.5.3	Mixed Mode Edge Crack in Composite Plates	199
	5.5.4	A Composite Plate with Double Edge Cracks under	
		Impulsive Loading	210
	5.5.5	Pre-Cracked Three Point Bending Beam under Impact Loading	213
	5.5.6	Propagating Central Inclined Crack in a Circular	
		Orthotropic Plate	217
6	Fractu	re Analysis of Functionally Graded Materials (FGMs)	225
6.1	Introdu	action	225
6.2	Analyt	ical Solution for Near a Crack Tip	227
	6.2.1	Average Material Properties	227
	6.2.2	Mode I Near Tip Fields in FGM Composites	228
	6.2.3	Stress and Displacement Field (Similar to Homogeneous	
		Orthotropic Composites)	233
6.3	Stress	Intensity Factor	235
	6.3.1	J Integral	235
	6.3.2	Interaction Integral	236
	6.3.3	FGM Auxillary Fields	236
	6.3.4	Isoparametric FGM	240
6.4	Crack	Propagation in FGM Composites	240
6.5	Inhom	ogeneous XFEM	241
	6.5.1	Governing Equation	241
	6.5.2	XFEM Approximation	241
	6.5.3	XFEM Discretization	243
6.6	Numer	rical Examples	244
	6.6.1	Plate with a Centre Crack Parallel to the Material Gradient	244
	6.6.2	Proportional FGM Plate with an Inclined Central Crack	247
	6.6.3	Non-Proportional FGM Plate with a Fixed Inclined	
		Central Crack	250
	6.6.4	Rectangular Plate with an Inclined Crack (Non-Proportional	
		Distribution)	251
	6.6.5	Crack Propagation in a Four-Point FGM Beam	253
7	Delam	ination/Interlaminar Crack Analysis	261
7.1	Introdu	action	261
7.2	Fractur	re Mechanics for Bimaterial Interface Cracks	264
	7.2.1	Isotropic Bimaterial Interfaces	265
	7.2.2	Orthotropic Bimaterial Interface Cracks	266
	7.2.3	Stress Contours for a Crack between Two Dissimilar	
		Orthotropic Materials	270

7.3	Stress	Intensity Factors for Interlaminar Cracks	271
7.4	Delam	ination Propagation	273
	7.4.1	Fracture Energy-Based Criteria	273
	7.4.2	Stress-Based Criteria	273
	7.4.3	Contact-Based Criteria	274
7.5	Bimate	rial XFEM	275
	7.5.1	Governing Equation	275
	7.5.2	XFEM Discretization	276
	7.5.3	XFEM Enrichment Functions for Bimaterial Problems	278
	7.5.4	Discretization and Integration	280
7.6	Numer	ical Examples	280
	7.6.1	Central Crack in an Infinite Bimaterial Plate	280
	7.6.2	Isotropic-Orthotropic Bimaterial Crack	289
	7.6.3	Orthotropic Double Cantilever Beam	291
	7.6.4	Concrete Beams Strengthened with Fully Bonded GFRP	294
	7.6.5	FRP Reinforced Concrete Cantilever Beam Subjected	
		to Edge Loadings	295
	7.6.6	Delamination of Metallic I Beams Strengthened by FRP Strips	298
	7.6.7	Variable Section Beam Reinforced by FRP	300
8	New C	orthotropic Frontiers	303
8.1	Introdu	iction	303
8.2	Orthot	ropic XIGA	303
	8.2.1	NURBS Basis Function	304
	8.2.2	Extended Isogeometric Analysis	305
	8.2.2 8.2.3	Extended Isogeometric Analysis XIGA Simulations	305 313
8.3	8.2.2 8.2.3 Orthot	Extended Isogeometric Analysis XIGA Simulations copic Dislocation Dynamics	305 313 321
8.3	8.2.2 8.2.3 Orthot: 8.3.1	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials	305 313 321 321
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials	305 313 321 321 322
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2 8.3.3	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials	305 313 321 321 322 324
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2 8.3.3 8.3.4	Extended Isogeometric Analysis XIGA Simulations copic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM	305 313 321 321 322 324 324
8.3	8.2.2 8.2.3 Orthott 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5	Extended Isogeometric Analysis XIGA Simulations copic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution	305 313 321 322 324 324 324 324
8.3	8.2.2 8.2.3 Orthot 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution Individual Sliding Systems s ₁ and s ₂ in an Infinite Domain	305 313 321 322 324 324 329 330
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.6 8.3.7	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution Individual Sliding Systems s ₁ and s ₂ in an Infinite Domain Simultaneous Sliding Systems in an Infinite Domain	305 313 321 322 324 324 329 330 330
8.3	8.2.2 8.2.3 Orthot 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.6 8.3.7 Other	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution Individual Sliding Systems s ₁ and s ₂ in an Infinite Domain Simultaneous Sliding Systems in an Infinite Domain Anisotropic Applications	305 313 321 322 324 324 329 330 330 333
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 Other 1 8.4.1	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution Individual Sliding Systems s ₁ and s ₂ in an Infinite Domain Simultaneous Sliding Systems in an Infinite Domain Anisotropic Applications Biomechanics	305 313 321 322 324 324 329 330 330 330 333 333
8.3	8.2.2 8.2.3 Orthot: 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 Other 1 8.4.1 8.4.2	Extended Isogeometric Analysis XIGA Simulations ropic Dislocation Dynamics Straight Dislocations in Anisotropic Materials Edge Dislocations in Anisotropic Materials Curve Dislocations in Anisotropic Materials Anisotropic Dislocation XFEM Plane Strain Anisotropic Solution Individual Sliding Systems s ₁ and s ₂ in an Infinite Domain Simultaneous Sliding Systems in an Infinite Domain Anisotropic Applications Biomechanics Piezoelectric	305 313 321 322 324 324 329 330 330 333 333 333

Index

363

Preface

A decade after its introduction, the extended finite element method (XFEM) has now become the primary numerical approach for analysis of a wide range of discontinuity applications, including crack propagation problems. The simplicity of the idea of enrichment for reproducing a singular/discontinuous nature of the field variable, the flexibility in handling several cracks and crack propagation patterns on a fixed mesh, and the level of accuracy with minimum additional degrees of freedom (DOFs) have transformed XFEM into the most efficient computational approach for handling various complex discontinuous problems. Concepts of XFEM are now even taught in a number of postgraduate courses, for instance advanced fracture mechanics and meshless methods, in major engineering departments, such as Civil, Mechanical, Material, Aerospace and so on, all over the world.

On the other hand, the highly flexible design of composites allows attractive prescribed tailoring of material properties, fitted to the engineering requirements for a wide range of engineering and industrial applications; from advanced aerospace and defence systems to traditional structural strengthening techniques, and from large scale turbines and power plants to nanoscale carbon nanotubes (CNTs) applications. Despite excellent characteristics, composites suffer from a number of shortcomings, mainly in the form of unstable cracking which can be initiated and propagated under different production imperfections and service circumstances. Therefore, the study of the crack stability and load bearing capacity of these types of structures, which directly affect the safety and economics of many important industries, has become one of the important topics of research for the computational mechanics community.

This text is dedicated to discussing various aspects of the application of the extended finite element method for fracture analysis of composites on the macroscopic scale. Nevertheless, most of the discussed subjects can be similarly used for fracture analysis of other materials, even on microscopic scales. The book is designed as a textbook, which provides all the necessary theoretical bases before discussing the numerical issues.

The book can be classified into four parts. The first part is dedicated to the basics. The introduction chapter provides a general overview of the problem in hand and summarily reviews available analytical and numerical techniques for fracture analysis of composites. The second chapter deals with the basics of the theory of elasticity, and is followed by discussions on asymptotic solutions for displacement and stress fields in different fracture modes, basic concepts of stress intensity factors, energy release rate, various forms of the *J* contour integral and mixed mode fracture criteria.

The second part, Chapter 3, is a redesigned and completed edition of the same chapter in my previous book, and presents a detailed discussion on the extended finite element method.

After presenting the basic formulation, the chapter continues with three sections on available options for strong discontinuity enrichment functions, weak discontinuity enrichments for material interfaces, and a collection of several crack-tip enrichments for various engineering applications. It concludes with sample simulations of a wide range of problems, including classical in-plane mixed mode fracture mechanics, cracking in plates and shells, simulation of shear band creation and propagation, self-similar fault rupture, sliding contact, hydraulic fracture, and dislocation dynamics, to assess the accuracy, performance, robustness and efficiency of XFEM.

The main part of the book includes four comprehensive chapters dealing with various aspects of fracture in composite structures. Static crack analysis in orthotropic materials, dynamic fracture mechanics for stationary and moving cracks, inhomogneous functionally graded materials and bimaterial delamination analysis are discussed in detail. After a review of anisotropic and orthotropic elasticity, all chapters begin with a complete discussion of available analytical solutions for near crack-tip fields in the corresponding orthotropic problem, followed by orthotropic mixed mode fracture mechanics and associated forms of the interaction integral. XFEM enrichment functions for each class of orthotropic materials are obtained and numerical issues related to XFEM discretization are addressed. A number of illustrative numerical simulations are presented and discussed at the end of each chapter to assess the performance of XFEM compared to alternative analytical and numerical techniques.

The final part reviews a number of ongoing research topics for orthotropic materials. First, the orthotropic version of the extended isogeometric analysis (XIGA) is presented by briefly explaining the basic concepts of NURBS and IGA methodology and discussing a number of simple isotropic and orthotropic simulations. Then, the newly developed idea of plane strain anisotropic dislocation dynamics is briefly presented and related XFEM formulation and necessary enrichment functions for the self-stress state of edge dislocations are explained. The book concludes with two brief introductory sections on orthotropic biomaterial applications of XFEM and the piezoelectric problems.

I would like to express my sincere gratitude to Prof. T. Belytschko, for his valuable friendly comments and encouraging message after the publication of the first book on XFEM, and to Prof. A.R. Khoei, as a friend, a colleague and a referee with excellent comments and discussions on various subjects of computational mechanics, especially XFEM. In preparing the present book, particularly the first two parts, I have used the available contributions from brilliant research works by many others, and I have done my best to properly and explicitly acknowledge their achievements within the text, relevant figures, tables and formulae. I am much indebted to their outstanding works, and I apologize sincerely for any unintentional failure in appropriately acknowledging them.

My special thanks to many of my former and present M.Sc. and Ph.D. students who have endeavored many aspects of XFEM over the past decade. First, Dr A. Asadpoure, with whom we started to explore XFEM and new orthotropic enrichment functions in 2002. The results for the dynamic fracture of stationary and moving cracks were obtained by Dr D. Motamedi, and Ms S. Esna Ashari developed the orthotropic bimaterial enrichment functions and simulated all the delamination and interlaminar crack problems. Most of the results for FGM problems were prepared by Mr H. Bayesteh, who actively contributed in many other parts of the book. Mr S.S. Ghorashi and Mr N. Valizadeh skillfully developed the XIGA methodology and Mr S. Malekafzali implemented XFEM for anisotropic dislocation dynamics. Other results were obtained by my students: S.H. Ebrahimi, A. Daneshyar, M. Parchei, M. Goodarzi, S.N. Rezaei, S.N. Mahmoudi and M.M.R. Kabiri.

My acknowledgement is extended to John Wiley & Sons, Ltd., Publication for the excellent professional work that facilitated the whole process of publication of the book; in particular to Dr E.F. Kirkwood and E. Willner, D. Cox, R. Davies, L. Wingett, A. Hunt, C. Lim, S. Sharma and Dr R. Whitelock.

The inspiration and power for completing this work have been the love and understanding of my family, as they had to comply with all my commitments. After a life-time engagement in mathematics, physics and engineering, satisfaction is not obtained just in academic or professional progress, novelty and innovation; it should perhaps be sought in ethics, responsibility, love and freedom. This book has been completed at the twilight of a long hard winter, with a hope for a bright flourishing spring of prosperity and freedom to come. I would like to proudly dedicate this work to all spirited noble Iranian students who accomplish academic achievements while challenging for more DOFs!

Soheil Mohammadi Spring 2012 Tehran, IRAN

Nomenclature

Parameters not shown in this nomenclature are temporary variables or known constants, defined immediately when cited in the text.

Curvilinear coordinate
First Dundurs parameter
Newmark parameters
FGM constants
Curvilinear coordinate α of an ellipse
Components of coordinate transformation tensor
Curvilinear coordinate
Second Dundurs parameter
Curvilinear coordinate β of an ellipse
Dilatational and shear wave functions
Wedge angle
Surface energy density
Dilatational and shear wave functions
Engineering shear strain
Plastic crack tip zone
Variation of a function
Dirac delta function
Kronecker delta function
Local displacements of crack edges
Strain tensor
Oscillation index
Strain components
Dimensionless angular geometric function
Auxiliary strain components
Applied displacement loading
Yield strain
Local curvilinear (mapping) coordinate system

Knot i
Crack-tip position
Distance function
Gauss point position along the contour J
Local curvilinear (mapping) coordinate system
Equivalent inelastic strain
Crack propagation angle with respect to initial crack
Angular polar coordinate
Crack angle
Orthotropic angular functions
Dynamic distance functions
Material parameters
Effective material parameter
Lame modulus
Power of radial enrichment
Ratio of orthotropic Young modules E_2/E_1
Roots of the characteristic equation
Isotropic and orthotropic shear modulus
Isotropic and orthotropic Poisson's ratios
Average orthotropic Poisson's ratios
Radius of curvature
Density
Stress tensor
Applied normal traction
Critical stress for cracking
von Mises effective stress
Stress components
Dimensionless angular geometric function
Auxiliary stress components
Yield stress
Hoop stress
Applied tangential traction
Decohesive shear stress
Level set function
Complex stress function
Angle of orthotropic axes
Crack angle
Ramp function for transition domain
Electric potential

$\chi_m(\mathbf{x})$	Enrichment function for weak discontinuities
$\chi(z)$	Complex stress function
ψ	Friction coefficient
ψ	Phase angle
$\psi(\mathbf{x})$	Enrichment function
$\psi(\mathbf{x},t)$	Level set function
$\psi(z)$	Complex stress function
Г	Boundary
Γ_1	Infinitesimally small internal contour
$\Gamma_{\rm c}$	Crack boundary
$\Gamma_{\rm t}$	Traction (natural) boundary
$\Gamma_{\rm u}$	Displacement (essential) boundary
Δ	Finite variation of a function
Δt	Time-step
Δa	Crack length increment
$\Lambda_i(t)$	Time interval shape functions
Ξ	Knot vector
П	Potential energy
Φ	Airy stress function
$\Phi_j(\mathbf{x})$	MLS shape functions
$\Phi_i(z_i)$	Complex functions
Ω	Domain
Ω_1, Ω_2	Non-overlapping subdomains
$\Omega_{ m pu}$	Domain associated with the partition of unity
Ψ^{lpha}_H	Dislocation glide enrichment
(1, 2)	Material axes
а	Crack length/half length
а	Semi-major axis of ellipse
ā	Effective crack length
a(x)	Vector of unknown coefficients
a , a _h	Heaviside enrichment degrees of freedom
$\mathbf{a}_i, \mathbf{a}_k$	Enrichment degrees of freedom
a ^{enr}	Enrichment degrees of freedom
Α	Area associated with the domain J integral
A_1	Area inside the infinitesimally small internal contour \varGamma_1
A^+, A^-	Area of the influence domain above and below the crack
A_i, A_{ij}	Coefficients
b	Width of a plate
b	Semi-minor axis of ellipse

$\mathbf{b}_k, \mathbf{b}_k^l$	Crack tip enrichment degrees of freedom
\mathbf{b}^{lpha}	Burgers vector for dislocation α
b_{lpha}	Magnitude of the Burgers vector for dislocation α
b_n	Series coefficients
В	Matrix of derivatives of shape functions
B_{12}, B_{66}	Coefficients of characteristic equation
$B_{i,p}(\xi)$	B-spline basis function of order <i>p</i>
\mathbf{B}^h	Matrix of derivatives of final shape functions
\mathbf{B}_{i}^{r}	Strain-displacement matrix (derivatives of shape functions)
$\mathbf{B}_i^{\mathbf{u}}$	Matrix of derivatives of classical FE shape functions
$\mathbf{B}_{i}^{\mathbf{a}}$	Matrix of derivatives of Heaviside enrichment shape functions
$\mathbf{B}_{i}^{\mathbf{b}}$	Matrix of derivatives of crack tip enrichment shape functions
$\mathbf{B}_{i}^{\mathbf{c}}$	Matrix of derivatives of weak discontinuity enrichment shape functions
$\mathbf{B}_{i}^{\mathbf{c}}$	Matrix of derivatives of transition shape functions
С	Dugdale effective crack length
C_J	Size of crack tip contour for J integral
C_{ij}	Material compliance constants
c _m	Degrees of freedom for weak discontinuity enrichment
c _m	Degrees of freedom for transitional enrichment
Cd	Dilatational wave speed
$c_{\rm L}$	Wave speed along the loading axis
$c_{\rm R}$	Rayleigh speed
Cs	Shear wave speed
С	Material constitutive matrix
С	4 th order material compliance tensor
C_{ijkl}	Cartesian components of C
C_n	Coefficient
$C(\xi)$	NURBS curve
d_{ij}	Material modulus constants
d^d_{ij}	Dynamic material modulus constants
d _m	Degrees of freedom for transitional enrichment
D	Dynamic function
D	Two dimensional Material modulus matrix
D	4 th order material elasticity modulus tensor
D_{ijkl}	Cartesian components of D
$\mathbf{D}_{lphaeta}$	Components of D
D_i, D_x, D_y	Elastic displacement vector
E, E_i	Isotropic and orthotropic Young's modules
E_i, E_x, E_y	Electric field

E'	Effective material parameter
E^0	Reference Young modulus
E^{12}	Equivalent bimaterial elastic modulus
\bar{E}	Average orthotropic Young modules
$f_k(\mathbf{x})$	Set of PU functions
f	Nodal force vector
\mathbf{f}_i^r	Nodal force components (classic and enriched)
\mathbf{f}^{b}	Body force vector
\mathbf{f}^{t}	External traction vector
f ^c	Cohesive crack traction vector
f ^{ext}	External force vector
$f_{\mathrm{I}}, f_{\mathrm{II}}$	Functions of the crack-tip speed
$f_{\mathrm{I}}^{\mathrm{d}}, f_{\mathrm{II}}^{\mathrm{d}}$	Universal functions of the crack-tip speed
$f_{ij}^{\mathrm{I}}, f_{ij}^{\mathrm{II}}, f_{ij}^{\mathrm{III}}$	Mode I, II and II angular functions
$f_k^{\rm pu}$	Set of PU functions
$F_l(\mathbf{x}), F_{\alpha}(r, \theta)$	Crack tip enrichment functions
$F(\sigma, \alpha)$	Delamination function
F _{ij}	Deformation gradient
$g(\theta)$	Angular function for a crack-tip kink problem
$g_j(\theta), \bar{g}_k(\theta)$	Orthotropic crack-tip enrichment functions
G	Shear modulus
$G, G(\theta)$	Fracture energy release rate
G_c	Critical fracture energy release rate
G_1, G_2	Mode I and II fracture energy release rates
h	Intrinsic shear band thickness
h_t	Characteristic thickness of the bonding layer
Н	Slope of linear softening curve
<i>Η</i>	Intrinsic hardening coefficient
$H(\xi), H(\mathbf{x})$	Heaviside function
i	Complex number $i^2 = -1$
Ι	2 nd order identity tensor
I	4 th order symmetric identity tensor
I(t)	Corresponding creep compliance
J	Jacobian matrix
J, J^s	J integral
$J^{\rm act}$	Actual J integral
J^{aux}	Auxiliary J integral
J_{1}, J_{2}	Components of the J vector
$J_k^{ m d}$	Dynamic J integral

k_0	Dimensionless constant for the power hardening law
Κ	Bulk modulus
K	Stiffness matrix
$\mathbf{K}_{ij}^{\mathrm{rs}}$	Components of stiffness matrix
K	Stress intensity factor
K, \bar{K}	Complex stress intensity factor
K _c	Critical stress intensity factor
K_0	Reference stress intensity factor
$K_{\rm I}, K_{\rm II}, K_{\rm III}$	Mode I, II and III stress intensity factors
$ar{K}_{ m I},ar{K}_{ m II}$	Normalized mode I and mode II stress intensity factors
$K_{\rm I}^{\rm aux}, K_{\rm II}^{\rm aux}$	Auxiliary mode I and mode II stress intensity factors
$K_{\rm Ic}, K_{\rm IIc}$	Critical mode I and mode II stress intensity factors
$K_{\rm Ic}^1, K_{\rm Ic}^2$	Fracture toughnesses along the principal planes of elastic symmetry
$K_{ m Ic}^{ heta}$	Fracture toughness at propagation
$K_{ m Ic}^{ m d}$	Dynamic crack initiation toughness
$K_{ m Ic}^{ m D}$	Dynamic crack growth (propagation) toughness
$K_{ heta heta}, K_{tt}$	Hoop stress intensity factor
l_{ij}	Coefficient
L	Length of the singular element
$L(v_c)$	Dynamic matrix for orthotropic materials
m	Number of enrichment functions
mt	Number of nodes to be enriched by crack-tip enrichment functions
mh	Number of nodes to be enriched by Heaviside enrichment functions
mf	Number of crack-tip enrichment functions
<i>m</i> m	Number of weak discontinuity enrichment functions
mst	Number of transition enrichment functions 1
<i>m</i> sh	Number of transition enrichment functions 2
m_k	Roots of characteristic equation $m_k = m_{kx} + im_{ky}$
M	Concentrated bending moment
M	Interaction integral
$M^{(1)}, M^{(2)}$	Interaction integral associated with two modes I and II
$M^{ m d}$	Dynamic interaction integral
Μ	Mass matrix
\mathbf{M}_{ij}	Components of mass matrix
n	Power number for the HKK plastic model
n	Number of nodes for each finite element
ng ^A	Number of gauss points inside contour area A
ng^{Γ}	Number of gauss points on contour Γ
np	Number of independent domains of partition of unity

$n_{\rm n}, n_{\rm nodes}$	Number of nodes in a finite element
$n_{\rm e}, n_{\rm elem.}$	Number of finite elements
n _{cp}	Number of control points
n _{cells}	Number of background cells of EFG
<i>n</i> _{DOFs}	Number of degrees of freedom
n	Normal vector
\mathbf{N}_{j}	Matrix of shape functions
N_j	Shape function
Nelements	Number of finite elements
N _{nodes}	Number of nodes
N _{enrich.}	Number of enrichment functions
$N_{\rm DOFs}$	Number of degrees of freedom
\bar{N}_i	Hierarchical shape functions for the transition domain
\bar{N}_{j}	New set of GFEM shape functions
$p(\mathbf{x})$	Basis function
р	A point on curvilinear coordinate system $p = \alpha + i\beta$
p, p_k, \bar{p}_k	Orthotropic parameters
р	Basis function
p ^{enr}	Enrichment basis function
p^{lin}	Linear basis function
p_k	<i>k</i> -th basis function
$p^l(\mathbf{x})$	<i>l</i> -order polynomial function
Р	Concentrated force
Р	External load vector
P _{cr}	Critical load
q	Arbitrary smoothing function
$q, q_k, ar{q}_k$	Orthotropic parameters
q_i	Nodal values of the arbitrary smoothing function
(r, θ)	Local crack tip polar coordinates
r_J	Radius of J integral contour
$r_{\rm d}, r_{\rm s}$	Dilatational and shear distance functions
r_1, r_s	Orthotropic distance functions
$r_{\rm p}, r_{\rm p1}, r_{\rm p2}$	Crack tip plastic zone
R	Ramp function
R_K	Ratio of dynamic stress intensity factors
R_{δ}	Ratio of opening to sliding displacements
$R_i^p(\xi)$	NURBS function of order <i>p</i>
S	Roots of characteristic equation $s = s_1 + is_2$
Sk	Roots of characteristic equation $s_k = s_{kx} + is_{ky}$

\bar{s}_k	Roots of characteristic equation $\bar{s}_k = \bar{s}_{kx} + i\bar{s}_{ky}$
S_m	Roots of characteristic equation $s_m = s_{m1} + is_{m2}$
\bar{S}_n	Slope of softening curve
S_{ij}	Material constants
$\mathbf{S}(\xi_1,\xi_2)$	NURBS surface
t	Time
t	Traction
\mathbf{t}_h	Unit vector for tangential direction
t_{ij}	Material function
t_0	Time for the wave to reach the crack tip
t _p	FRP thickness
$T_i(t)$	Time shape functions
Tj	Enriched time interval
Tj	Transformation matrix
\mathbf{T}_{i}	Control points
u	Displacement vector
ù	Velocity vector
ū	Prescribed displacement
ū	Prescribed velocity
ü	Acceleration vector
u _i	Displacement field component
u _i	Velocity field component
ü _i	Acceleration field component
$\mathbf{u}_i^{\mathrm{aux}}$	Auxiliary displacement field component
$\dot{\mathbf{u}}_i^{\mathrm{aux}}$	Auxiliary velocity field component
u ^{enr}	Enriched displacement field
u ^{FE}	Classical finite element displacement field
u ^{XFEM}	XFEM displacement field
u ^{tra}	Transition enrichment part of the displacement field
u ^H	Heaviside enrichment part of the displacement field
u ^{tip}	Crack-tip enrichment part of the displacement field
u ^{mat}	Weak discontinuity enrichment part of the displacement field
$\mathbf{u}_{tip}^{Enr}(\mathbf{x},t)$	Crack-tip part of the approximation
u_n^h	Displacement at time <i>n</i>
\dot{u}_n^h	Velocity at time <i>n</i>
\ddot{u}_n^h	Acceleration at time <i>n</i>
$\mathbf{u}^h, \mathbf{u}^h(\mathbf{x})$	Approximated displacement field
$\dot{\mathbf{u}}^h$	Approximated velocity field
ü ^h	Approximated acceleration field

Nodal displacement vector
Displacement angular functions
<i>x</i> , <i>y</i> and <i>z</i> displacement components
Local displacements of the nodes along the crack in the singular element
Symmetric and antisymmetric crack tip displacements
Strain energy
Elastic and plastic strain energies
Surface energy
Crack-tip velocity
Velocity vector
Classical velocity DOFs
Additional velocity DOFs
Vector of approximated velocity degrees of freedom
Volume
External work
Auxiliary work
Virtual work of the external loading
Gauss weight factor
Weights associated with each control point <i>i</i>
Gauss weighting factor for contour Γ
Gauss weighting factor for area inside contour integral J
Internal virtual work
Interaction work
Kinetic energy density
Strain energy density
Time weight function
Cartesian coordinates
Global coordinate system
Global coordinate system
Position vector
Position of crack or discontinuity
Position of the crack tip
Position of the projection point on an interface
2D coordinate system
Material axes
Local crack tip coordinate axes
Complex variable $z = x + iy$
Conjugate complex variable $\bar{z} = x - iy$
Complex parameters

$\frac{d}{dt}$	Time derivative
$\frac{D}{Dt}$	Material time derivative
\dot{f}, \ddot{f}	The first and second temporal derivatives of a function
$f^{\prime},f^{\prime\prime}$	The first and second spatial derivatives of a function
$\bar{f}, \bar{\bar{f}}$	The first and second integrals of a function
$\nabla = \partial / \partial x$	Nabla operator
$\langle \rangle$	Jump operator across an interface
:	Inner product of two second order tensors
\otimes	Tensor product of two vectors
Re	Real part of a complex number
Im	Imaginary part of a complex number
\propto	Proportional
BEM	Boundary element method
CAD	Computer aided design
CNT	Composite nanotube
COD	Crack opening displacement
CTOD	Crack-tip opening displacement
DCT	Displacement correlation technique
DEM	Discrete element method
DOF	Degree of freedom
EDI	Equivalent domain integral
EFG	Element free Galerkin
ELM	Equilibrium on line
EPFM	Elastic plastic fracture mechanics
FDM	Finite difference method
FE	Finite element
FEM	Finite element method
FGM	Functionally graded materials
FMM	Fast marching method
FPM	Finite point method
FRP	Fibre reinforced polymer
GFEM	Generalized finite element method
GNpj	Generalized Newmark approximation of degree p for equations of order j
HRR	Hutchinson-Rice-Rosengren
IGA	Isogeometric analysis
LEFM	Linear elastic fracture mechanics
LSM	Level set method
MCC	Modified crack closure
MLPG	Meshless local Petrov Galerkin

Moving least squares
Non-uniform rational B-splines
Ordered upwind method
Partition of unity
Partition of unity finite element Method
Reproducing kernel particle method
Statically admissible stress recovery
Stress intensity factor
Smoothed particle hydrodynamics
Single step approximation of degree p for equations of order j
Space time extended finite element method
Time extended finite element method
Weighted least squares
Extended finite element method
Extended isogeometric analysis