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Preface

The word “dependability” that appears in the title is not used so often to be familiar
with. The word has wider meaning and not only means “reliability” but also includes
robustness, safety, security, resilience, and so on. Fault-tolerance technology that
equips the redundant subsystems or components in preparation for failure in order
to improve “reliability” has been used for many decades. In the meantime, J.C.
Laprie expanded the term dependability as a wider concept in 1985 [1] because the
meaning of “reliability” that the fault-tolerance technology treated had broadened.
After then, dependability and dependable have been used in various fields to this
day. Based on such situation and as I also belonged to the committees concerning
“dependability,” I dare to use “dependability” in this text, thinking it is one of my
vocations to spread the term.

As for terms related to reliability, the two terms have been used exclusively
in Japanese. The Japanese word shinrai-do means quantitative index of reliability
and the word shinrai-sei means qualitative character of reliability. In my personal
opinion, the shinrai-sei may fall on the dependability.

As written in the title of this book, mitigation of hardware failures, soft errors,
and electro-magnetic disturbances is indispensable in order to realize depend-
ability of electronic systems. This book introduces authors’ original mitigation
technologies of soft errors, electro-magnetic interference, and power supply noise,
in addition to general mitigation technologies.

The authors have brought up the mitigation technology to realize dependability
through a lot of industrial fields such as railroad, atomic energy, and IT networks.
The dependable technology starts unifying with the latest LSI technology and being
succeeded by the safety processor technology by on-chip redundancy. As a result,
great reduction in costs will become possible by the effect of mass production of
LSI technology in the future. I am convinced that we can contribute to safety and
convenience of our ordinary life using dependable technology in more falimiar field
such as automotives.

Lake Hatori, Japan Nobuyasu Kanekawa
3rd May, 2010
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