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Preface

This book presents entirely new vistas in the following two

disciplines:

1. For the first time, it applies basic principles of

synergetics – the science of cooperation – to multirobot

systems.

2. It applies a modern method developed for active,

nonequilibrium quantum systems to molecular robots – a

rapidly developing, fascinating field within nanoscience

and technology.

In both cases (1) and (2), this book deals with active units,

that is, robots or molecules, capable of forming

spatiotemporal structures or collective action based on

cooperation. In other words, it deals with synergetic agents.

In order to reach a broad audience, it is written in a

pedagogical style that will allow even nonspecialists to

acquaint themselves with our approach. (A few more

technical sections are marked by asterisk.)

In fact, both fields, that is, multirobot systems and

molecular robots have become highly interdisciplinary

endeavors that comprise disciplines such as robotics,

mechanical and electrical engineering, physics, informatics,

chemistry, biology, medicine, mathematics, and other fields.

Our book applies to graduate students, professors, and

scientists. Though occasionally we refer to experiments, our

emphasis is laid on theoretical approaches. Among our

numerous results are

the Haken–Levi theorem in its classical and quantum

mechanical formulation relating robot motion to

probability distribution;

a whole chapter presenting our quantum theory of

muscle contraction based on actin–myosin interaction;



a detailed quantum theoretical model of the motion of

molecular robots.
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Prologue I: Synergetic Agents:

Classical

Self-Organization in Collective

Systems

Collective systems in technique and biology move more and

more into the focus of basic research in the fields of natural

science such as physics, biology, chemistry, and

engineering science such as mechanical engineering,

computer science, cybernetics, and robotics. In biology,

swarms of bees or ants, flocks of fish or birds, and networks

of natural neural networks such as those realized in different

kinds of brains demonstrate very impressively the power

and the abilities of such collective systems. These

advantages are also expected in technical collective

systems like cooperative production systems, distributed

traffic managements, all facets of internet, and last but not

least swarms of mobile robots (on land, in water, and in air).

What are the dominant features of natural and artificial

collective systems that are so fascinating for all of us?

The two basic scientifically most relevant features of all

these aforementioned collaborative systems that

immediately catch our eye are the ability to create

distributed intelligence (meaning the emergence of

intelligence; the whole is more than the sum of all parts)

and the competence of self-organization (Levi and Kernbach,

2010). In addition to the dominant property of an

“intelligent” collectivity generated by self-organization is the

increase of adaptation, of reliability, of flexibility, of self-

development, and of self-healing.



In standard artificial collective systems, for example, in

traffic management, the intelligence is brought into the

system by engineers, but the interplay that creates the self-

organization and all the other complementary features like

reliability is still very important for inanimate or artificial

systems. A very prominent example of a self-organized

technical system that is constructed by physicists and

engineers is the laser. It demonstrates very clearly the

phase transition from noncoherent light of a lamp to

coherent light of a laser by self-organization.

The basic concept to define and to implement self-

organization is given by the methods of synergetics (Haken,

2004). It is the theory of the cooperation of parts of a

system that generate by themselves an “order parameter

field” that in turn exerts a strong feedback to its many

originators (circular causality). In this book, the parts of a

collective system are mainly (but not exclusively) inanimate

units.

All features of an intelligent and self-organized system are

the result of the cooperative interplay between the global

structure (organization principle) of the system, the

behavior of the individual units, and the different

functionalities “generated” by individual members. As an

example of this assertion, consider a swarm of bees.

Relevant questions are here: how they organize their

foraging, how they perform their navigation and exploration

tasks, how they do the foraging, how they distribute the

collected nutrition, how they regulate the homeostatic

mechanisms, and so on?

The transfer of these features and behaviors to inanimate,

artificial swarms of robots, which was mentioned before, is

primarily motivated by the approach to get answers to

these basic, biological questions by picking up these

questions of animated systems and trying to get relevant

responses by technical systems. In view of classical artificial



intelligence (AI) and its more philosophically based

connection to cognitive science that are both characterized

by a top-down approach we will present in this book, the

new bottom-up approach of collective robotics (Pfeifer and

Scheier, 1999) starts from the microscopic parts (e.g.,

robots) and studies the emergence of intelligence, self-

organization, and cognition, for example, in a swarm or

even in an organism that is generated out of such a swarm

(Floreano and Mattiussi, 2008; Levi, 2009; Siciliano and

Khatib, 2008).

Such a distinction between a swarm mode (phase) and an

organism mode offers the possibility to analyze the essential

features of a part that are inevitable to generate an

intelligent swarm (e.g., swarms of house flies never show

swarm intelligence). What is different if a swarm is going

together in order to build an organism (may be considered a

morphogenetic phase transition)? What features of a swarm

member are changed if it “mutates” to a “cell” of an

organism? How do these new “cells” differentiate

themselves to different organs or parts of an organism?

Such questions are considered in the so-called symbiotic

collective robotics (Levi and Kernbach, 2010). Swarm

behavior is also very beneficial in soccer games, for

example, in RoboCup, where the robots are no longer small

robot cells (about 5 cm3) but have a bigger volume of about

20 cm3 (Rajaie et al., 2011).

Besides these basic questions of swarm mode and

organism mode, the bottom-up approach in robotics is

characterized by the so-called “embodiment,” meaning that

there can be no intelligence and cognition if there is no body

(matter) available; intelligence and cognition require a body.

This statement is augmented by the concept of

“situatedness,” denoting that each part of such a system

can acquire information about the current situation under

given environmental conditions, perform an individual



interpretation of the existing situation (e.g., by pattern

recognition), and finally it makes an individual decision

concerning its next activities. The bodies and the situations

can be simple or complex. According to the bottom-up

approach that is accomplished by our approach, we consider

as the first step simple bodies and nonsophisticated

situations. In order to complete the two strongly interwoven

concepts of “embodiment” and “situatedness,” we include

in our approach the additional concept of an agent. This is

an active part of a whole system (the so-called multiagent

system, MAS) that is afflicted with a corpus, is autonomous,

and is aware of situations (Weiss, 1999). An agent realizes

internally the two concepts of “embodiment” and

“situatedness,” and it is able to learn. An agent represents a

basic concept of robotics and artificial intelligence.

In this book, we create the concept of a synergetic agent.

This is an agent that uses internally the methods of

synergetics to calculate the sensor-based acquired

information and comes to appropriate decisions and actions

in response to the calculated information (situation

description). The correct information handling is the engine

of progress of the interplay between the theory of

synergetics – here we mean especially the circular causality

of self-organization, the emergence of new qualities by

nonequilibrium phase transitions in open systems, and

reduction of complexity – and the theory of the emergence

of cognition and intelligence of an agent that finally is

condensed in intelligent decisions.

The construction and design principles for synergetic

agents are based on those of informatics-based agents, but

they must be dominantly extended by a paradigm change in

physical descriptions of synergetic processes and by a new

principle of information.

The paradigm change can very clearly be explained if we

compare the classical laser paradigm (a nearly inexhaustible



source of inspiration) and a multirobot system (MAS), be it

in swarm or in organism mode. The most dominant

commonality is, for example, the “circular causality”: the

participating parts generate one or more “order parameter

fields” that operate recurrently and therefore “enslave” the

originating parts. Another important commonality is the

supplement of the principal coupling to the environment.

Here, the following effects have to be considered: damping,

fluctuations, and dissipation processes of open systems.

The essential difference is that all atoms that generate the

coherent electromagnetic field (order parameter field) are

passive and are neither intelligent nor situated, nor able to

learn. Robots also obey equations of motion, but their real

movement must be generated by controllers for steering

(Shen et al., 2004), where an internal force that mimics an

external force constrains them to move on a prescribed

trajectory. Such controllers have to consider details of the

transaction type (type of drive system) and details of the

properties of the underground (e.g., land or water) and

unforeseen situations (like obstacles or holes). As a result,

the “cognitive” decision making of a robot (realized as an

agent) generates the appropriate response to unforeseen

situations (Levi, 2010). A good example for this latter

statement is the kind of response of a soccer robot if it is

attacked by one or more robots of the opponent team. This

decision is highly influenced by the learned team strategy

(how to play the game and if possible to win).

An important supplement for every kind of motion is the

coupling to environment. In a classical physical approach,

these are the effects of damping, fluctuations (noise), and

dissipation. But for mobile robots, we have also to consider

new and different types of uncertainties. These are failures

in sensor data, aged sensor data, and incorrect steering

statements (more generally spoken: degraded information).

The correct handling of such degraded information (also



including trustworthiness in information source) demands

implementation of cognitive processes. In human decision

making as part of a cognitive process, the anchoring bias is

an example of a dominant focus on a trait of information

that is degraded (Kahneman and Tversky, 1996).

This kind of cognitive response has clearly to be

distinguished from the elementary stimulus–response cycle

that occurs very often on lower levels in biological systems

(e.g., consider the Braitenberg vehicle (Braitenberg, 1984)).

In view of information theory, the reaction on unexpected

situations is dictated by a minimum of individual

information. As bigger the surprise concerning an event the

smaller is the probability for this event or for other features

like anchoring.

The close connection between the acquired information of

an agent and the reaction to this information is formulated

by the Haken–Levi information principle.

Each individual synergetic agent minimizes its local

information.

(I.1) 

where  is the joint probability of the value  of the variable

of agent “s” and of the value  of the order parameter of

the whole system.

This implies that each individual synergetic agent disposes

of information that regulates already the feedback caused

by the circular causality already mentioned.

This relationship is most clearly expressed when we use

the relation

(I.2) 

where  is the probability distribution of the order

parameter that is collectively generated by all the agents of

the system, and  the conditional probability that the

enslaved variable  acquires that value provided the value 



is given. By using (I.1) and (I.2), we define the conditional

information  of agent s:

(I.3) 

If we consider the whole system (e.g., let it be an

organism assembled by robot cells), the total system

information is maximized. This means the expectation value

of all individuals, where information is maximized

(I.4) 

where

(I.5) 

is the information of the order parameter and

(I.6) 

the expectation value of (I.3) (Haken, 2006).

By means of the local information (I.1), we may express

the equation of motion (or more generally the behavior) of

an agent (a robot vehicle):

(I.7) 

(This is a special case of the H-L principle). In (I.7),  is – in

general – the three-dimensional position vector, m the mass

of the robot,  a damping constant, Q the strength of the

random force  acting on the robot, and  the nabla

operator. (For details, cf. Chapter 2.)

There are three main effects attributable to agents. First,

we can formulate the circular causality of self-organization

by the combined application of the H-L principle to each

individual robot and to the system of all robots. Second, we

can formulate the equations of motion for one robot or for

all robots by the calculation of the gradient of information.

Third, we can store the individual and total information gain

by the calculation of the Kullback measure. If we perform

this calculation by iteration and store each information gain



or information loss, then we have implemented a dedicated

method to learn.

At first sight, Equation (I.7) might look like a simple

rewriting of the equation of motion of a robot agent (as part

of a multirobot system), namely, instead of using a potential

function  directly, we write it in a somewhat disguised

form. In other words, (I.7) seems to rest on some tautology.

In mathematics, tautologies are surely not a crime; rather

the individual steps used there are just a sequence of

tautologies! In the present case, the situation is different,

however. First of all, the concepts of the equations of

(mechanical) motion and of information in its scientific,

mathematical form stemming from information theory

originate from two conceptually quite different scientific

disciplines. Thus, (I.7) provides us with a qualitatively new

insight. As a consequence, we may interpret and use

information i under entirely new aspects. Namely, in

practice, a robot must acquire the appropriate information

by its own activities and rather limited preprogramming.

Since it does not “know” the positions of the other robots

and objects (e.g., obstacles) beforehand, it must measure

their relative directions and distances. It then has to

attribute to these quantities appropriate artificial potentials.

To this end, it has to distinguish between other robots,

obstacles, and attractive objects (e.g., energy sources). In

specific situations, for example, soccer games, it must

distinguish between friend and foe. All these cases require

specific preprogrammed potentials (leaving aside aspects of

robot learning and evolution).

As we shall see in detail, for instance, when we study

docking maneuvers, the robot information may switch from

one kind of information to another, depending on the

situation. To mention a simple example, the information may

switch from the use of one potential function to another

one.



Clearly, higher order programs may also be installed in the

expression for the information. We will discuss some

examples in our book, for example, the self-organized

formation of letters by suitable configurations of robots.

Let us discuss how the robot uses the instructions enfolded

in the information , (I.1), or, in other words, how it

unfolds its information. In principle, it may solve its equation

of motion according to (I.7) and use a control mechanism to

secure the realization of the wanted motion. In practice, the

situation is quite different, at least in general in a multirobot

system. First of all, to calculate its future path, the robot

must be informed on the future paths of all other robots and

vice versa. This requires the action of a “master” computer

of very high capacity outside the multirobot system.

In a swarm situation, such a procedure is not possible at

all and contradicts the principle of self-organization. The

practical procedure must be quite different. Based on its

measurements of distances and directions to all other

objects (including the other robots), the robot under

consideration acts on its actuators from moment to moment

in such a way that for a given, measured value of the r.h.s.

of (I.7) the robot accelerates or decelerates, including

damping. Because the robot relies on the measured r.h.s., it

can even act if slip is present. It may follow its path, though

with some time delay. In this way, the artificial potential

appears as an evaluation function of the quality of reaching

the robot's goal.

As we know from the theory of swarms, an essential

ingredient of their collective behavior is the requirement

that each individual keeps a mean distance to all its nearest

neighbors.

There is yet another aspect to our approach: The whole

system altogether acts as a parallel computer (in contrast to

a sequential computer). All its components (the agents!)

collect their information in parallel and act in parallel. This



information acquisition may be active (e.g., measuring

distances to objects) or both active and passive (e.g.,

communication among agents in collective pattern

recognition; see Chapter 3). We believe that our

information-based approach opens new vistas to dealing

with multirobot or, more generally, multiagent systems. For

readers who wish to learn more about the scientific concept

of information, we include the following section.

The Tricky Concept of

Information (Shannon)

“Information” in ordinary sense is a message (e.g., birth of a

child, accident, winning of an election, etc.), an instruction,

a set of data, and so on. In more technical terminology,

information is essentially a measure of probabilistic

uncertainty (not of principal uncertainty, for example, in

quantum mechanics (Genz, 1996)). In terms of the discipline

of stochastics, the appropriate methodological terms are

stochastic events (e.g., unexpected obstacle during an

exploration tour of a mobile robot), stochastic variables

(e.g., set of sensor data), and stochastic “functions” (e.g.,

instructions and algorithms). In our book, “information” is a

terminus technicus that allows a quantitative treatment in

terms of the three aforementioned basic definitions.

However, the meaning of information is often not very

clearly defined, and we will try in the first step to elucidate

this meaning before we present it as a useful concept in

robotics.

Let us start with the first step by explaining Shannon

information ((Shannon, C.E., 1948), (Shannon, C.E., Weaver,

W., 1949)) (originally conceived as a measure of the

capacity of data transmission channels). We begin our

“explanation route” by a set of discrete events labeled by



an index λ, where N is a fixed number. Typical examples of

such events are tossing of a coin that yields the two events

head or number, rolling a die with six outcomes (i.e., events

are λ = 1, . . ., 6). A more sophisticated example that is for

our wanted robot applications more illustrative is the

exploration tour of mobile robots in an unknown

environment as a task that is a typical part of probabilistic

robotics (Thrun, Burgard, and Fox, 2005). This new

methodology imposes weaker restrictions on the accuracy

(greater uncertainty) of sensor data than the classical

deterministic interpretation of measurement data. Typical

events during such an exploration tour are the emergence

of unexpected obstacles, possibilities of several navigation

paths with different lengths (stochastic variable), and the

stability (robustness) of the internal power supply

(stochastic function in the sense of a homeostasis).

We consider now a very frequent repetition of trials. The

probability (frequency) of outcome of event λ is defined by

where we require the normalization of the distribution

function  by

The information that a positive occurrence of an individual

event delivers is called information of event λ and is defined

by

(I.8) 

We can also use  instead ln because , where 

, and both logarithmic expressions differ only by a

constant factor c.

Shannon defined information as the expectation value of

all individual information

(I.9) 



Formula (I.9) calculates information as a measure of

stochastic uncertainty. This term is also called information

entropy. The reason for this other naming is the fact that

(I.9) is the same mathematical expression as it is used in

thermodynamics for entropy. Therefore, von Neumann

suggested to Shannon not to use two different names for

the identical formula. Today, this argument is no longer fully

accepted since the relationship between the information as

a measure of (probabilistic) uncertainty and the physical

meaning of entropy as the number of microstates, for

example, in gases, is clearly distinguished (Penrose, 2006).

If we want to point out the equality of the same expression

for two different approaches and meanings, (I.9) will be

called information entropy in order to accentuate the

nonphysical aspect.

Furthermore, in this book we focus on nonequilibrium

phase transitions that are characteristics of many

dissipative, open systems that not only include living beings

but also, for example, robots as artificial “ingredients” of

inanimate nature. In open systems, the information can

even be increased if a nonequilibrium phase transition

occurs and a final system is generated after a bifurcation

that has an increased order (Haken, 2006). An example for

this declaration is the transition from a lamp (below the

bifurcation threshold) to a laser (well above the bifurcation

threshold). In closed systems, the opposite effect occurs. In

an equilibrium state (constant energy) phase transition, the

information entropy decreases if (after the bifurcation) a

more ordered system state is achieved.

Maximum and Minimum

Principles of Information



We get a feeling on the significance of individual information

(I.1) and the total system information of Shannon (I.2) if we

treat the following two examples:

1. All but one  are zero: ; , , then the

individual event information and the total system

information are both zero:

This means that there is no uncertainty, no surprise

with respect to the outcome of a trial. Or, in other words,

there is complete certainty as long as we use the

information available to us.

2. All  are equal. The considered probability distribution

is given by the uniform distribution 

,  = 1/N. In this case, the system information  maximal:

.

This is the case if there are no additional constraints

besides the standard restriction of normalization of the

probability distribution. The uncertainty is maximal since

all outcomes are equally likely. Laplace called it the

“principle of insufficient reason,” which states that all

outcomes are equally likely if there is no reason to the

contrary (Kapur and Kesavan, 1992). In physics, this

result corresponds to the equipartition theorem.

The Kullback measure K(p, q) (Kullback, 1951) calculates

the difference between two probability distributions

where each probability distribution (density) is separately

normalized to 1, and K(p, q) is nonnegative and vanishes if

and only if p = q. Usually, the Kullback measure can also be

called “information gain” since q is a fixed a priori

distribution and p is a probability distribution that is

searched with the aid of K in order to maximize the

divergence of p from q. But this expression can also be used



to minimize the difference (“information adjustment”).

Closer the distance from p to q, the more the probabilities of

the different observed events confirm the a priori

experiences (knowledge of the experimenter). The

application of this method is then directed to find a

distribution p that is closest to q and fulfills the same

restrictions as q.

However, despite the existing conceptual differences of

Shannon measure and Kullback measure there is a central

relation between both approaches. There is a tight

connection between the maximization of  and the

minimization of K(p, q) if we assume that q is given by the

uniform probability distribution u:

(I.10) 

Maximizing  is identical to minimizing K(p, q) if the a

priori probability distribution is uniform (q = u). By

maximizing the uncertainty, we minimize the probabilistic

distance to a given distribution.

We close this short excursion to two often used

expressions for information calculation by the remark that

the Shannon approach is not invariant under coordinate

transformations, whereas the Kullback approach is invariant

under coordinate transformations.

After these remarks, we address ourselves again to the

further investigation of the Shannon information in the light

of the “maximum information principle” of Jaynes (Jaynes,

1957). This theorem postulates that we are looking for

probability distribution p that guarantees  = maximum is

fulfilled under all given constraints that also include

normalization. In more details, this means that a system

tries to realize all “allowed” configurations, that is,

configurations that obey the constraints.

For more illustration, we treat another example. Let N = 2,

 be and . We introduce again the



information of event λ: .

We discuss two questions that are basic for understanding

Jaynes' principle by analyzing the results of Figures I.1–I.3:

1. For which x does becomes  a maximum?

According to Figure I.3, we find x = 1/2, p1 = p2; is(p) =

ln 2

2. For which x does  or ( ) get a maximum?

According to Figures I.1 and I.2, we find x=1, p1 = 1, i1

= 0. The probability p1 is maximum if the information for

event 1, i1, is a minimum.

These two resulting answers lead us to the formulation of

two principles that will be important in our book. We start

with the general case:

(I.11) 

and additional constraints that all together will be taken

care of by the use of Lagrange multiplicators to maximize 

 (for more details, consult Section 1.4). We consider

Figure I.4 and reformulate the two questions put above into

one similar, combined question.

Figure I.1 pλ versus x; l.h.s.: λ = 1, r.h.s.: λ = 2.

Figure I.2 −ln pλ versus x; l.h.s.: λ = 1, r.h.s.: λ = 2.



Figure I.3 i versus x.

Figure I.4 Discrete probability distribution pλ as function of

λ.

Which  is(are) maximum or which  is minimum?

The answer is: a maximal  minimizes the individual event

information . Or, to turn the argument around, a small 

means that the event λ is rare or unexpected, which implies

that  must be large. This is the reason why some scientists


