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Preface

We dedicate this volume to Professor Parimala on the occasion of her 60th birthday.
It contains a variety of papers related to the themes of her research. Parimala’s first
striking result was a counterexample to a quadratic analogue of Serre’s conjecture
(Bulletin of the American Mathematical Society, 1976). Her influence has contin-
ued through her tenure at the Tata Institute of Fundamental Research in Mumbai
(1976–2006), and now her time at Emory University in Atlanta (2005–present).

A conference was held from 30 December 2008 to 4 January 2009, at the Uni-
versity of Hyderabad, India, to celebrate Parimala’s 60th birthday (see the confer-
ence’s Web site at http://mathstat.uohyd.ernet.in/conf/quadforms2008). The orga-
nizing committee consisted of J.-L. Colliot-Thélène, Skip Garibaldi, R. Sujatha,
and V. Suresh. The present volume is an outcome of this event.

We would like to thank all the participants of the conference, the authors who
have contributed to this volume, and the referees who carefully examined the sub-
mitted papers. We would also like to thank Springer-Verlag for readily accepting to
publish the volume. In addition, the other three editors of the volume would like to
place on record their deep appreciation of Skip Garibaldi’s untiring efforts toward
the final publication.

We are grateful for the support and the hospitality of the University of Hyder-
abad, especially the members of the Department of Mathematics and Statistics. We
would like to thank the office staff of the Department of Mathematics and Statistics
and the other staff of the University responsible for providing administrative and
logistical support.

We are also extremely grateful to the University Grants Commission, India and
the National Board for Higher Mathematics for financial support.

Paris, France J.-L. Colliot-Thélène
Atlanta, USA Skip Garibaldi
Mumbai, India R. Sujatha
Hyderabad, India V. Suresh
December 2009

v

http://mathstat.uohyd.ernet.in/conf/quadforms2008


vi Preface

Fig. 1 Parimala during her high school years
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Fig. 2 Parimala at Emory in 2009
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Multiples of forms

Eva Bayer-Fluckiger

To my friend Parimala

Summary The aim of this paper is to survey and extend some results concerning
multiples of (quadratic, hermitian, bilinear...) forms.

Introduction

Let k be a field of characteristic �= 2. Let ks be a separable closure of k, and set
Γk = Gal(ks/k). Let cd2(Γk) be the 2-cohomological dimension of Γk. It is a clas-
sical question whether it is possible to characterize quadratic forms over k up to
isomorphism via some cohomological invariants. For instance, it is well-known that
if cd2(Γk) = 1, then two quadratic forms are isomorphic if and only if they have the
same dimension and discriminant.

The same problem is relevant for hermitian forms over division algebras,
G-forms (where G is a finite group), systems of quadratic or hermitian forms, etc.

Such a direct comparison does not seem to be possible for fields of arbitrary
cohomological dimension. For this reason, the following weaker question was pro-
posed in [2, 8.5] (in the context of trace forms of Galois algebras). Let I be the
fundamental ideal of the Witt ring of k, let d be a positive integer, and let φ ∈ Id .
Can we compare φ ⊗q and φ ⊗q′ in terms of some cohomological invariants ?

This question was mostly studied for hermitian forms over division rings with
involution and for trace forms of Galois algebras (see for instance [2–4, 7]). This
paper will survey and slightly extend these results. For instance, we will show the
following

E. Bayer-Fluckiger
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4 Eva Bayer-Fluckiger

Theorem. Suppose that cd2(Γk)≤ d, and let G be a finite group that has no quotient
of order 2. Let q and q′ be two G-quadratic forms defined on the same k[G]-module,
and let φ ∈ Id−1. Then

φ ⊗q� φ ⊗q′.

1 Multiples of Quadratic Forms

1.1 Galois Cohomology

Let ks be a separable closure of k, and setΓk = Gal(ks/k). For any discreteΓk-module
C, set Hi(k,C) = Hi(Γk,C). We say that the 2-cohomological dimension of Γk is at
most d, denoted by cd2(Γk) ≤ d, if Hi(k,C) = 0 for all i > d and for every finite
2-primary Γk-module C.

Set Hi(k) = Hi(k,Z/2Z), and recall that H1(k) � k∗/k∗2. For all a ∈ k∗, let us
denote by (a) ∈ H1(k) the corresponding cohomology class. We use the additive
notation for H1(k). If a1, . . . ,an ∈ k∗, we denote by (a1)∪ ·· · ∪ (an) ∈ Hn(k) their
cup product.

If U is a linear algebraic group defined over k, let H1(k,U) be the pointed set
H1(Γk,U(ks)) (cf. [11], [12, Chap. 10]).

1.2 Quadratic Forms

All quadratic forms are supposed to be nondegenerate. We denote by W (k) the Witt
ring of k, and by I = I(k) the fundamental ideal of W (k). For all a1, . . . ,an ∈ k∗, let
us denote by 〈〈a1, . . . ,an〉〉 = 〈1,−a1〉⊗ · · ·⊗ 〈1,−an〉 the associated n-fold Pfister
form. It is well known that In is generated by the n-fold Pfister forms. The following
has been conjectured by Milnor

Theorem 1.2.1 (cf. Orlov–Vishik–Voevodsky [8]). For every positive integer n,
there exists an isomorphism

en : In/In+1→ Hn(k)

such that
en(〈〈a1, . . . ,an〉〉) = (a1)∪·· ·∪ (an)

for all a1, . . . ,an ∈ k∗.

It is easy to see that the above theorem has the following consequences (cf. [3]):

Corollary 1.2.2. Suppose that cd2(Γk)≤ d. Let q and q′ be two quadratic forms with
dim(q) = dim(q′), and let φ ∈ Id. Then φ ⊗q� φ ⊗q′.
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For every quadratic form q, let us denote by disc(q) ∈ H1(k) its discriminant.
Recall that if n = dim(q), then disc(q) = (−1)n(n−1)/2det(q).

Corollary 1.2.3. Suppose that cd2(Γk)≤ d. Let q and q′ be two quadratic forms with
dim(q) = dim(q′), and let φ ∈ Id−1. Then

φ ⊗q� φ ⊗q′ if and only if ed−1(φ)∪ (disc(q)) = ed−1(φ)∪ (disc(q′)) ∈ Hd(k).

For any quadratic form q, let us denote by w2(q) ∈ Br2(k) the Hasse–Witt invari-
ant of q. Recall that if q � 〈a1, . . . ,an〉, then w2(q) =∏i< j(ai,a j), where (ai,a j) is
the quaternion algebra over k determined by ai and a j. We can extend the previous
results as follows:

Corollary 1.2.4. Suppose that cd2(Γk) ≤ d. Let q and q′ be two quadratic forms.
Suppose that dim(q) = dim(q′) and det(q) = det(q′). Let φ ∈ Id−2. Then

φ ⊗q� φ ⊗q′ if and only if ed−2(φ)∪w2(q) = ed−2(φ)∪w2(q′) ∈ Hd(k).

Proof. Let Q = q⊕ (−q′), and let dim(q) = dim(q′) = m, det(q) = det(q′) = d,
Then det(Q) = (−1)md2 = (−1)m in k∗/k∗2, hence disc(Q) = (−1)m(−1)m = 1.
This implies that Q ∈ I2.

As Q ∈ I2, e2(Q) is defined. We have e2(Q) = w2(q) + w2(q′). Indeed, we
have w2(−q′) = w2(q′)+ (−1,(−1)m(m−1)/2dm−1), and w2(Q) = w2(q)+ w2(q′)+
(d,(−1)md). Using this, a computation shows that w2(Q) = w2(q) + w2(q′) +
(−1,(−1)m(m−1)/2). On the other hand, we have e2(Q) = w2(Q) if m≡ 0,1 (mod 4),
e2(Q) = w2(Q)+(−1,−1) if m≡ 2,3 (mod 4). Therefore, we get e2(Q) = w2(q)+
w2(q′). ��

Let φ ∈ Id−2. Then φ ⊗ q � φ ⊗ q′ if and only if φ ⊗Q is hyperbolic. This is
equivalent to ed−2(φ)∪ e2(Q) = 0, hence to ed−2(φ)∪w2(q) = ed−2(φ)∪w2(q′).

2 Hermitian forms over Division Algebras with Involution

Let D be a division algebra over k. An involution of D is a k-linear antiautomor-
phism σ : D→ D of order 2. Let K be the center of D. We say that (D,σ) is a
division algebra with involution over k if the fixed field of σ in K is equal to k. If
K = k, then σ is said to be of the first kind. After extension to ks, the involution σ
is determined by a symmetric or a skew-symmetric form. In the first case, σ is said
to be of orthogonal type, in the second one, of symplectic type. If K �= k, then K is a
quadratic extension of k and the restriction of σ to K is the nontrivial automorphism
of K over k. In that case, the involution is said to be of the second kind, or a unitary
involution, or a K/k-involution. Details on algebras with involution are in Chap. 8
of Scharlau’s book [10].

Let (D,σ) be a division algebra with involution over k. A hermitian form over
(D,σ) is by definition a pair (V,h), where V is a finite dimensional D-vector space,
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and h : V ×V → D is hermitian with respect to σ . We say that (V,h) is hyperbolic
if there exists a sub D-vector space W of V with dim(V ) = 2dim(W ) and such that
h(x,y) = 0 for all x,y ∈W . This leads to a notion of Witt group W (D,σ) (see for
instance [10, Chap. 7, Sect. 2]). Note that the tensor product of a quadratic form over
k with a hermitian form over (D,σ) is a hermitian form over (D,σ), hence W (D,σ)
is a W (k)-module.

Let (V,h) be a hermitian form over (D,σ), as above. Let n = dimD(V ), and let
H be the matrix of h with respect to some D-basis of V . Let us denote by Nrd :
Mn(D)→ k the reduced norm. The discriminant of h is by definition disc(h) =
(−1)n(n−1)/2Nrd(H) ∈ k∗/k∗2.

Let (D,σ) be a division algebra with involution over k. Let us denote by J the
sub W (k)-module of W (D,σ) consisting of the hermitian forms (V,h) with dimD(V )
even. Suppose that cd2(Γk)≤ d. The following is proved in [3, Sect. 2]:

Theorem 2.1.1.

(a) We have IdJ = 0.
(b) If σ is of the second kind, then Id−1J = 0.
(c) If σ is of the first kind and of the symplectic type, then Id−2J = 0.

Part (a) was proved by Chabloz in [7].
The following three results follow from theorems of Parimala, Sridharan and

Suresh [9], and of Berhuy [6], and are proved in [3, Sect. 2]:

Theorem 2.1.2. Suppose that D is a quaternion algebra, and that σ is of the first
kind and of the orthogonal type. Suppose that cd2(Γk) ≤ d. Let h ∈ J, and let φ ∈
Id−1. Then φ ⊗h is hyperbolic if and only if ed−1(φ)∪ (disc(h)) = 0.

Corollary 2.1.3. Suppose that D is a quaternion algebra, and that σ is of the first
kind and of the orthogonal type. Suppose that cd2(Γk) ≤ d. Let h and h′ be two
hermitian forms over (D,σ) with dim(h) = dim(h′), and let φ ∈ Id−1. Then φ⊗h�
φ ⊗h′ if and only if ed−1(φ)∪ (disc(h)) = ed−1(φ)∪ (disc(h′)).

Let us denote by J2 the sub-W(k)-module of J consisting of the classes of the
hermitian forms h such that disc(h) = 1. Then we have (cf. [3, Sect. 2]):

Corollary 2.1.4. Suppose that D is a quaternion algebra, and that σ is of the first
kind and of the orthogonal type. Suppose that cd2(Γk)≤ d. Then Id−1J2 = 0.

Let h be a hermitian form over a quaternion algebra D endowed with an invo-
lution σ of the first kind and of orthogonal type. Suppose that h ∈ J2. Then one
can define the Clifford invariant C (h) ∈ Br2(k)/(D), cf. [5, Sect. 2]. We have the
following:

Theorem 2.1.5. Suppose that D is a quaternion algebra, and that σ is of the first
kind and of the orthogonal type. Suppose that cd2(Γk) ≤ d. Let h ∈ J2, and let φ ∈
Id−2. Then φ ⊗h is hyperbolic if and only if ed−2(φ)∪C (h) = 0.
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Proof. By Berhuy [6, Th. 13], it suffices to show that ed−2(φ)∪C (h) = 0 if and
only if en,D(φ ⊗ h) = 0 for all n ≥ 0 (see [6, 2.2] for the definition of the invariant
en,D). As cd2(Γk)≤ d, we have en,D(φ ⊗h) = 0 for n > d, so it suffices to check that
ed−2(φ)∪C (h) = 0 is equivalent with en,D(φ ⊗h) = 0 for all n = 0, . . . ,d. Let k(D)
be the function field of the quadric associated to D. Then D⊗k(D)�M2(k(D)), and
hk(D) corresponds via Morita equivalence to a quadratic form qh over k(D). Note that
e2(qh) = C (h). Similarly, the hermitian form (φ ⊗h)k(D) corresponds to a quadratic
form qφh over k(D), and we have qφh � φ ⊗qh.

For all n = 0, . . . ,d, we have by construction that en,D(φ ⊗ h) = 0 if and only if
en(qφh) = 0 (cf. [6, 2.2]). But qφh � φ ⊗qh, hence

en(qφh) = en(φ ⊗qh) = en−2(φ)∪ e2(qh) = en−2(φ)∪C (h).

If n < d, then en−2(φ) = 0 as φ ∈ Id−2. We have ed(qφh) = ed−2(φ)∪(C (h)). Hence
en(qφh) = 0 for all n≥ 0 if and only if ed−2(φ)∪C (h) = 0. This concludes the proof.

��
Let us denote by J2 the sub W (k)-module of J2 consisting of the classes of the

hermitian forms h such that C (h) = 0.

Corollary 2.1.6. Suppose that D is a quaternion algebra, and that σ is of the first
kind and of the orthogonal type. Suppose that cd2(Γk)≤ d. Then Id−2J3 = 0.

Proof. This is an immediate consequence of 2.1.5. ��

3 Galois Cohomology of Unitary Groups

Let k be a field of characteristic �= 2. Let A be a finite dimensional k-algebra, and
let σ : A→ A be a k-linear involution. Let UA be the linear algebraic group over k
defined by

UA(E) = {x ∈ AE | xσ(x) = 1}
for any commutative k-algebra E . The group UA is called the unitary group of (A,σ).
Let us denote by U ′A the connected component of the identity. Let φ be a quadratic
form of dimension n, set Aφ = Mn(k)⊗k A, and let σφ : Aφ → Aφ be the involu-
tion given by the tensor product of the involution on Mn(k) induced by φ with the
involution σ .

Recall that ks is a separable closure of k, that Γk = Gal(ks/k), and that for any
linear algebraic group U , we use the standard notation H1(k,U) = H1(Γk,U(ks))
(see [11, 12] for basic facts concerning nonabelian Galois cohomology). With the
notation as above, we have natural maps H1(k,U ′A)→ H1(k,UA) and H1(k,UA)→
H1(k,Uφ ).

Let RA be the radical of the algebra A, and set A = A/RA. We have

A� A1×·· ·×As× (As+1×A′s+1)×·· ·× (Am×A′m),
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where Ai is a simple algebra for all i = 1, . . . ,m, with σ(Ai) = Ai for i = 1, . . . ,s and
σ(Ai) = A′i for i = s+ 1, . . . ,m. Let ai be the index of Ai.

Theorem 3.1.1. Suppose that cd2(Γk)≤ d.

(i) Let φ ∈ Id. Then the map H1(k,UA)→H1(k,Uφ ) is trivial.
(ii) Let φ ∈ Id−1. Suppose that if σi is orthogonal and i = 1, . . . ,s, then ai = 1. Then

the composition H1(k,U ′A)→H1(k,UA)→H1(k,Uφ ) is trivial.

Proof. The projection A → A induces a bijection of pointed sets H1(k,UA) →
H1(k,UA). Let Fi be the maximal subfield of the center of Ai such that σi is Fi-linear
if i = 1, . . . ,s, and let Ui be the norm-one group of (Ai,σi). For i = s+ 1, . . . ,m, let
Fi be the center of Ai, and let Ui be the norm-one group of ((Ai×Ai),σi). Then Ui is
a linear algebraic group defined over Fi for all i = 1, . . . ,m. We have a bijection of
pointed sets

H1(k,UA)→ ∏
i=1,...,m

H1(Fi,Ui).

If i = s+1, . . . ,m, then Ui is a general linear group, hence H1(Fi,Ui) = 0. Hence we
have a bijection of pointed sets H1(k,UA)→∏i=1,...,s H1(Fi,Ui). For all i = 1, . . . ,s,
the simple algebra Ai is a matrix algebra over a division algebra with involution Di.
The group Ui is the unitary group of a hermitian form hi over Di, and it is well-
known that H1(Fi,Ui) is in bijection with the isomorphism classes of the hermitian
forms over Di of the same dimension as hi.

Let Rφ be the radical of Aφ . The map f : H1(k,UA)→ H1(k,Uφ ) induces f :
H1(k,UA)→ H1(k,Uφ ), and

fi : H1(Fi,Ui)→ H1(Fi,UMn(Ai))

for all i = 1, . . . ,s. The image of the isomorphism class of the hermitian form h′i is
the hermitian form φ ⊗h′i.

If φ ∈ Id , then by 2.1.1 (a) φ ⊗ hi � φ ⊗ h′i for every hermitian form h′i with
dim(h′i) = dim(hi). This implies that fi is trivial for all i = 1, . . . ,s, hence f is trivial.
Therefore f is trivial, which proves (i).

Let us prove (ii). Let us denote by f ′ the composition H1(k,U ′A)→ H1(k,UA)→
H1(k,Uφ ). Let U ′i be the connected component of the identity in Ui. If σi is unitary or
symplectic, then Ui =U ′i . If σi is orthogonal, then by hypothesis ai = 1, so H1(Fi,Ui)
is in bijection with the isomorphism classes of the hermitian (actually, quadratic)
forms over Di = Fi of the same dimension and same discriminant as hi.

Let us denote by f ′i the composition H1(Fi,U ′i )→ H1(Fi,Ui)→ H1(k,UMr(Ai))
for all i = 1, . . . ,s. Suppose that φ ∈ Id−1. Then 2.1.1 (b) and (c) imply that f ′i
has trivial image if σi is unitary or symplectic. If σi is orthogonal, then we have
di = 1, therefore by 1.2.3 the map f ′i is trivial. This implies that f ′ is trivial, and this
completes the proof. ��
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4 Systems of Quadratic and Hermitian Forms

Let V be a finite dimensional k-vector space, and let S = {q1, . . . ,qr} be a system of
quadratic forms, qi : V×V → k. We say that two systems S and S′= {q′1, . . . ,q′r} are
isomorphic if there exists a k-linear isomorphism f : V → V such that q′i( f x, f y) =
qi(x,y) for all x,y ∈V and for all i = 1, . . . ,r.

Let K be a quadratic extension of k, and let W be a finite dimensional K-vector
space. Let us denote by x �→ x the involution of K given by the unique nontrivial
k-automorphism of K. We can then consider systems of hermitian forms Σ =
{h1, . . . ,hr}. We say that two systems Σ and Σ ′ = {h1, . . . ,hr} are isomorphic if
there exists a K-linear isomorphism f : W →W such that h′i( f x, f y) = hi(x,y) for
all x,y ∈W and for all i = 1, . . . ,r.

Let φ be a quadratic form over k. Then the tensor product φ ⊗ S of φ with a
system of quadratic forms is a system of quadratic forms, and the tensor product
φ ⊗S of φ with a system of hermitian forms is a system of hermitian forms.

Theorem 4.1.1. Suppose that cd2(Γk)≤ d.

(i) Let S and S′ be two systems of quadratic forms, and suppose that S and S′ are
isomorphic over ks. Let φ ∈ Id. Then φ ⊗S� φ ⊗S′.

(ii) Let Σ and Σ ′ be two systems of hermitian forms, and suppose that Σ and Σ ′ are
isomorphic over ks. Let φ ∈ Id−1. Then φ ⊗Σ � φ ⊗Σ ′.

Proof. Write A(S) for the set of all (e, f ) ∈ End(V )×End(V ) such that qi(ex,y) =
qi(x, f y) for all i = 1, . . . ,r and write A(Σ) for the set of (e, f ) ∈ End(W )×End(W )
such that hi(ex,y) = hi(x, f y) for all i = 1, . . . ,r. These are the algebras associated to
the systems S and Σ , cf. [1]. They are endowed with involutions defined by (e, f ) �→
( f ,e), and the automorphism groups of the systems can be identified with the unitary
groups of these algebras, see [1] for details.

The isomorphism classes of the systems of quadratic forms that become isomor-
phic to S over ks are in bijection with H1(k,UA(S)). Hence (i) follows from 3.1.1(i).

The isomorphism classes of the systems of hermitian forms that become isomor-
phic to Σ over ks are in bijection with H1(k,UA(Σ)). As the forms are hermitian with
respect to the nontrivial involution x �→ x, the decomposition of the algebra A(Σ) as
in Sect. 3 has no orthogonal components. Therefore, the hypothesis of 3.1.1(ii) are
satisfied, and this implies part (ii) of the theorem. ��

5 G-Quadratic Forms

Let G be a finite group, and let us denote by k[G] the associated group ring.
A G-quadratic form is a pair (M,q), where M is a k[G]-module that is a finite di-
mensional k-vector space, and q : M×M→ k is a nondegenerate symmetric bilinear
form such that

q(gx,gy) = q(x,y) for all x,y ∈M and all g ∈ G.
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We say that two G-quadratic forms (M,q) and (M′,q′) are isomorphic if there exists
an isomorphism of k[G]-modules f : M→M′ such that q( f (x), f (y)) = q′(x,y) for
all x,y ∈M. If this is the case, we write (M,q) �G (M′,q′), or q�G q′.

If φ is a quadratic form over k, and q a G-quadratic form, then the tensor product
φ ⊗q is a G-quadratic form.

For any G-quadratic form (M,q), let

A = A(M,q) =
{

(e, f ) ∈ Endk[G](M)×Endk[G](M)
∣∣∣∣ q(ex,y) = q(x, f y) for all

x,y ∈M

}

be the associated algebra (cf. [1]). Then the unitary group UA can be identified with
the group of automorphisms of (M,q), and the set of isomorphism classes of G-
quadratic forms (M,q′) is in bijection with the set H1(k,UA).

Theorem 5.1.1. Suppose cd2(Γk) ≤ d. Let (M,q) and (M,q′) be two G-quadratic
forms.

(i) Let φ ∈ Id. Then φ ⊗q� φ ⊗q′.
(ii) Suppose moreover that G has no quotient of order 2, and let φ ∈ Id−1. Then

φ ⊗q� φ ⊗q′.

Proof. Part (i) follows immediately from 3.1.1(i). In order to prove part (ii), note
that as G has no quotient of order 2, the group G has no nontrivial orthogonal char-
acters, hence UA = U ′A. Therefore, 3.1.1(ii) implies part (ii) of the theorem. ��
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Summary We present a synthesis of Saltman’s work (Adv. Math. 43(3):250–283,
1982; J. Alg. 314(2):817–843, 2007) on the division algebras of prime-to-p degree
over the function field K of a p-adic curve. Suppose Δ is a K-division algebra.
We prove that (a) Δ ’s degree divides the square of its period; (b) if Δ has prime
degree (different from p), then it is cyclic; (c) Δ has prime index different from p if
and only if Δ ’s period is prime, and its ramification locus on a certain model for K
has no “hot points”.
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These notes are based on Saltman’s seminal work on the Brauer group Br(K) of
the function field K of a p-adic curve XQp . In [S1, S2] Saltman showed the index
of an element in the prime-to-p part of Br(K) divides the square of its period, and
that all division algebras of prime degree q �= p are cyclic. He also gave a geo-
metric criterion for a class of prime period q �= p to have index q. We reprove these
theorems, modulo some of [S2, Sect. 1], expanding some proofs, consolidating some
results, and providing some additional background along the way.
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Saltman based his analysis on four observations: First, that while K is the func-
tion field of the curve XQp over Qp, it is also the function field of a regular model
X of that curve, over Zp; second, that associated to every α ∈ H2(K) is a divi-
sor Dα ⊂ X , which may be assumed to have normal crossings; third, that purity
holds for all such X ; and fourth, that the unramified Brauer group H2

nr(K) is trivial.
The goal in splitting, then, is to construct a field extension L/K over which α is
unramified:

∂w(αL) = 0 for all w ∈V (L).

In particular, we avoid the construction of an explicit model for XL, over which α
would have zero ramification divisor. Constructing L turns out to be tricky, mainly
due to the prospect of divisors in the ramification locus of αL, on any (hypothetical)
model of XL that are centered on closed points of X . The general strategy is to use
local equations for Dα to construct an element f ∈ K, set L = K( f 1/n), compute the
residue of αL at all w using a local structure theorem (this uses purity), and adjust
f accordingly, if necessary. The methods are extremely valuation-theoretic. If we
can manage αL = 0 and ind(α) = n is prime, we have cyclicity, by a theorem of
Albert.

It is possible to see why the index should divide the square of the period; in light
of the triviality of H2

nr(K), it is traceable to the dimension of X (see also the excel-
lent summary of [S1] in the review [C-T2], which includes additional citations and
context). The existence of a radical splitting field in prime degree is not apparent,
even locally, and the proof is quite technical.

Examples. The following two examples illustrate the approach. Write

K∗ −→ H1(K,μn) via a �−→ (a)

for the Kummer homomorphism, suppressing the n because it is always implicit.
We write a ·b for the cup product of cohomology classes a and b, but we write

(a,b) df= a · (b) ∈ Hp(K,μ⊗(p−1)
n )

when a ∈ Hp−1(K,μ⊗(p−2)
n ) and b ∈ K∗, especially when a ∈ H1(K,Z/n).

Suppose α = (θ ,π) for θ ∈ H1(K,Z/n) and π ∈ K∗, and let L = K(π1/n).
Since (π)L = 0, we compute αL = (θ ,π)L = 0, so L splits α . More difficult: Sup-
pose α = (θ0,π0) + (θ1,π1), where div π0 and div π1 are prime divisors on X ,
and θi ∈ H1

nr(K,Z/n). Let L = K((π0π1)1/n). Since (π0π1)L = 0 = (π0)L + (π1)L,
αL = (−θ0 +θ1,π1)L. If w ∈V (L), then

∂w(αL) = w(π1)(−θ0 +θ1)κ(w).

If w’s center on X has codimension one, then it is easy to show w(π1) = 0 (mod n).
However, if the center is a closed point, in general w(π1) �= 0, and since we cannot
expect (−θ0 +θ1)κ(w) to be zero, the strategy fails in general. We try to salvage it as
follows. Let w0 be a discrete valuation on L extending the valuation v0 on K defined
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by π0, and let α(w0) = αKv0 (θ0) be the value of α at w0. Then α(w0) is defined over
κ(v0), and we can prove

∂w(αL) = w(π1)∂v0,v̄1(α(w0))

where v̄1 is the valuation induced by the image of π1 in κ(v0). If we could zero out
α(w0), we could solve the problem for all w. This strategy turns out to be viable.
If α has prime degree, then α(w0) is cyclic, and the parameter part of α(w0) varies
with f = π0π1. Finding an “anti-parameter” u ∈ K, we zero out α(w0) by replacing
f with u f . But now, div u f may no longer match Dα and if (div u)∩Dα is not
empty, there is a problem.

In general, there are other, more serious problems. Dα may not be principal in
the first place, forcing us to contend with the extra “rogue” components in any div f .
If Dα has more than one nodal point, there is a globalization problem. In the end we
produce f by a type of successive approximation, and at each stage we must check
that the earlier stages have not come undone.

1 Discrete Valuations

Let X be an integral noetherian scheme, and let K be a field containing the func-
tion field F(X) of X . If v is a discrete valuation on K, let Ov ⊂ K denote the cor-
responding discrete valuation ring, pv ⊂ Ov the prime ideal, and κ(v) the residue
field. SpecK is an open subset of SpecOv, so SpecK → X induces a rational map
SpecOv ��� X . We say v has a center on X if this is a morphism, and then denote
by xv the image of the closed point Specκ(v). Thus, v has a center on X if there is a
point xv ∈ X such that OX ,xv ⊂Ov and mxv = pv∩OX ,xv (see [Liu, Def. 8.3.17]). We
then say v is an X-valuation of K. Denote the set of all normalized X-valuations of
K by

VX(K).

If S is a fixed base, or by default if S = SpecZ, write V (K) instead of VS(K). Sim-
ilarly, we write Vx(K) for those centered on x, and V (X) for the discrete valuations
on F(X) that have codimension-one center on X . Substitute κ(x) and A for x and X
when x = Specκ(x) and X = SpecA. If xv belongs to the set X (1) of codimension-
one points on X , we have a prime divisor

Dv
df= {xv}.

Remark 1.1. If v ∈ Vx(K), then κ(x) ⊂ κ(v), and v ∈ VOX ,z(K) for all z ∈ {x}. If
φ : Y → X is a morphism of integral schemes, then Vy(F(Y ))⊂ Vφ(y)(F(Y )) for all
y ∈ Y , and conversely, if φ is proper then VY (F(Y )) = VX(F(Y )).

Lemma 1.2. Suppose A = (A,m,k) is a two-dimensional regular local domain with
fraction field K, and m = (π0,π1). Suppose f ∈ A, L = K( f 1/n), and v ∈ V (K)
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extends to w ∈V (L). Then w|K = e(w/v)v, and e(w/v) = n/gcd(v( f ),n). In partic-
ular, if v( f ) ∈ (Z/n)∗, then v is totally ramified in L.

Proof. Since pv∩A = m, k ⊂ κ(v), both v and w are normalized; so e(w/v) = [Z :
w(K∗)]. After replacing f by a prime-to-n power of f if necessary, we may assume
v( f ) = m divides n. At the completions

w =
e(w/v)
[Lw : Kv]

v◦NLw/Kv

so w|K = e(w/v)v. Over Kv, we write f = πm
v u, where v(u) = 0. The polynomial

T m − u is separable over κ(v), and Kv(u1/m) is unramified by Hensel’s lemma.
Then T n/m − u1/mπv is an Eisenstein polynomial over Kv(u1/m), and since Lw =
Kv(u1/m,(u1/mπv)n/m), we conclude e(w/v) = n/m. ��

2 Residue Map

The material in this section is standard; see [C-T,GMS] or [GS] for additional back-
ground. Let X be a scheme, and let n be invertible on X , meaning that n is prime to
the residue characteristic of κ(x) for all x ∈ X . We write

Hq(X) df= Hq(Xét,μ
⊗(q−1)
n )

If f : Y → X is a map of schemes, then f ∗Z/n = Z/n and we have a restriction map

resX |Y : Hq(X)→Hq(Y ).

If α ∈ Hq(X), we will sometimes write αY instead of resX |Y (α), and if X = SpecA
and/or Y = SpecB, we write Hq(A) and αB.

Let K be a field, and let v ∈ V (K). Suppose n is prime to charκ(v). By [C-T,
3.10, p. 26], for any r ∈ Z and q≥ 1 we have an exact sequence

0→ Hq(Ov)→Hq(K) ∂v−→ Hq−1(κ(v))→ 0 (2.1)

such that if πv ∈ Ov is a uniformizer and θ ∈ Hq−1(Ov), then

∂v(θ · (πv)) = θκ(v). (2.2)

The map ∂v is called the residue map, the images are called residues, and α ∈Hq(K)
is said to be unramified at v if ∂v(α) = 0.

Definition 2.3. If α ∈ Hq(K) and T = X , A, etc., the ramification locus of α with
respect to T is the set

divT (α) df= {v ∈V (T ) : ∂v(α) �= 0}.
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The ramification locus or ramification divisor for α on X is

Dα
df=
{
∑
v

Dv : v ∈ divX(α)
}
.

Diagrams 2.4. If L/K is a finite separable extension and w∈V (L), then for v = w|K
we have a commutative diagram

0 −−−−→ Hq(Ow) −−−−→ Hq(L) ∂w−−−−→ Hq−1(κ(w)) −−−−→ 0�⏐⏐
�⏐⏐

�⏐⏐e(w/v) resκ(v)|κ(w)

0 −−−−→ Hq(Ov) −−−−→ Hq(K) ∂v−−−−→ Hq−1(κ(v)) −−−−→ 0.

Let Kv denote the completion of K with respect to v, and let Ôv be the valuation
ring of v on Kv. Then the inflation map Hq(κ(v))→Hq(Ôv) is an isomorphism, and
we have a commutative diagram

0 −−−−→ Hq(κ(v)) −−−−→ Hq(Kv)
∂v−−−−→ Hq−1(κ(v)) −−−−→ 0�⏐⏐ �⏐⏐ ∥∥∥

0 −−−−→ Hq(Ov) −−−−→ Hq(K) ∂v−−−−→ Hq−1(κ(v)) −−−−→ 0

If πv ∈ Kv is a uniformizer, then any α ∈ Hq(Kv) may be expressed as

α = α◦+(θv,πv)

where α◦ ∈ Hq(κ(v)) and θv = ∂v(α) ∈ Hq−1(κ(v)) are defined over Ôv via infla-
tion. The element α◦, of course, depends on the choice of πv. If α ∈ Hp(Kv) and
β ∈ Hq(Kv), then by (2.2) we have the formula

∂v(α ·β ) = α ·∂v(β )+ (−1)q∂v(α) ·β + ∂v(α) ·∂v(β ) · (−1) (2.5)

interpreted over Kv.

Value of a class 2.6. Suppose α ∈ Hq(K), L/K is a finite separable extension,
w ∈V (L), and θw = ∂w(αL). Define the value of α at w to be

α(w) =

{
αLw if θw = 0

αLw(θw) if q = 2

where Lw(θw)/Lw is the cyclic extension defined by the inflation of the character θw

from κ(w) to Lw. Note in any case α(w) is defined over κ(w)(θw).
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3 Surfaces

We state some well-known facts and definitions. See [Liu, Lbm, Si] for additional
background and proofs.

Definition 3.1. Let S be a Dedekind scheme.

1. A projective curve over a field k is a subscheme of Pm
k for some m ≥ 0, whose

irreducible components are one-dimensional.
2. A projective flat S-curve X is a 2-dimensional, integral, projective, flat S-scheme.
3. An arithmetic surface X → S is a regular projective flat S-curve.

Remarks 3.2. If X → S is an arithmetic surface, then for each closed point z ∈ X (2),
A = OX ,z is a two-dimensional regular noetherian local domain, which is factorial by
Auslander-Buchbaum’s theorem ([Mat, 20.3]). If S is excellent, then X is excellent,
and A is excellent. Since X → S is proper, V (K) = VX(K) by the valuative criterion
for properness.

If X is a normal projective flat S-curve, and S is a one-dimensional Dedekind
scheme, then the generic fiber XK is a nonsingular integral curve over K, and each
closed fiber Xs, s ∈ S, is a projective curve over κ(s) ([Liu, 8.3.3]). If X → S is
arithmetic, then each Xs→ κ(s) is a local complete intersection ([Liu, 8.3.6]), hence
Xs has no embedded points. Xs is generally not reduced. Every effective irreducible
divisor D ⊂ X is either a component of some Xs (D is vertical), or the closure of a
closed point x ∈ XK of the generic fiber (D is horizontal).

Intersections on an arithmetic surface 3.3. See [Liu,Lbm]. Let X be an arithmetic
surface. Since X is normal, every prime (Weil) divisor defines a discrete valuation
v ∈V (X), via the local ring of its generic point. If f ∈ K, then

div f = ∑
V (X)

v( f )Dv,

the sum being finite since X is noetherian. If D and E are two effective divisors with
no common irreducible components, the intersection multiplicity (D ·E)z at a closed
point z is defined to be

(D ·E)z
df= lengthOX ,z

OX ,z/(ID,z + IE,z)

where ID and IE are the ideal sheaves, and the subscript z means “localized at z”. If
D is prime and g ∈ K is a local equation for E at z, then (D ·E)z = vz̄(g), where vz̄

is the valuation on D induced by z.

Definition 3.4 (Normal crossings). An effective divisor D on a regular noetherian
scheme X has normal crossings at z ∈ X if X is regular at z, and for some system
of parameters f1, . . . , fn for OX ,z, there is an integer 0 ≤ m ≤ n and integers r1, . . . ,
rm ≥ 1, such that ID,z is generated by f r1

1 · · · f rm
m . We say D has normal crossings on
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X if it has normal crossings at every point. If D has normal crossings, we will also
say that the set {vi} of discrete valuations centered on the generic points of D has
normal crossings.

This definition, from [Liu, 9.1.6], is different from the relative version in [SGA1,
XIII, 2.1.0]. We obtain that version by replacing “normal crossings” by “strictly
normal crossings” and “smooth over” by “regular”. A normal crossings divisor need
not be reduced, but its irreducible components are nonsingular, and meet each other
transversally, meaning their local equations form part of a system of parameters at
each intersection point.

Existence of a Model 3.5. Let S be an excellent one-dimensional affine Dedekind
scheme, with function field F, and let K be a field extension of F of transcendence
degree one. Then there exists a normal connected projective curve XF with function
field K, and a normal projective flat S-curve X with generic fiber XF . If F is perfect,
XF is smooth over F.

In fact, there is a category equivalence between normal connected projective
curves over F and function fields of transcendence degree one over F , where the
morphisms between curves are dominant morphisms ([Liu, 7.3.13]). For curves,
normal and regular are the same, and if F is perfect, regular and smooth are the
same ([Liu, 4.3.33]), so XF is smooth if F is perfect. The rest is stated in [Liu,
10.1.6].

Strong Desingularization 3.6. Let X be a two-dimensional, excellent, reduced,
noetherian scheme. Then X admits a desingularization in the strong sense, i.e., a
proper birational morphism f : X ′ → X with X ′ regular, and f an isomorphism
above every regular point of X. In particular, this holds for X a projective flat
S-curve over an excellent Dedekind scheme. If S is affine, X ′ → S is then an arith-
metic surface.

This is a theorem of Lipman ([Liu, 8.3.44]). To prove the last statement, note that
since f is birational, X ′ is integral, and X → S is flat, the induced map X ′ → S is
flat, since X ′ dominates S ([Liu, 4.3.9]). Since S is affine, f is projective by [Liu,
8.3.50], and since the composition of projective morphisms is projective, X ′ → S is
an arithmetic surface.

Embedded Resolution 3.7. Let X → S be an arithmetic surface over an excellent
Dedekind scheme, and let D be a divisor on X. Then there exists a projective bi-
rational morphism f : X ′ → X with X ′ an arithmetic surface, such that f ∗D has
normal crossings.

This is [Liu, 9.2.26]. We will need the following lemma from the proof.

Blowup Lemma 3.8. Suppose X → S and D are as in the statement of Embedded
Resolution (3.7), f : X ′ → X blows up a closed point z∈ X, and D has normal cross-
ings at z. Then X ′ → S is an arithmetic surface, and f ∗D has normal crossings at
every point of the exceptional fiber E. Moreover, E meets the irreducible compo-
nents of the strict transform D̃ in at most two points, and these points are rational
over κ(z).
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One of Saltman’s basic observations is that the ramification locus of a Brauer
class on an arithmetic surface can be conditioned to have normal crossings.

Existence of Surfaces 3.9. Let S be an excellent one-dimensional affine Dedekind
scheme, and let s ∈ S be a closed point. Suppose F = F(S), and K is a field of
transcendence degree one over F. Then for any α ∈ H2(K), there exists an arith-
metic surface X → S with function field K = F(X) and fiber Xs, such that the union
Dα ∪Xs has normal crossings on X.

Proof. By Existence of a Model 3.5 there exists a normal projective flat S-curve
X ′′ → S with function field K. Therefore by Strong Desingularization 3.6, there ex-
ists an arithmetic surface X ′ → S with function field K. Suppose α ∈ H2(K). Then
by Embedded Resolution (3.7), there exists an arithmetic surface X → S and a pro-
jective birational morphism f : X→ X ′ such that f ∗(D′α ∪X ′s) has normal crossings,
where D′α is the divisor of α on X ′. Since the irreducible components of f ∗(D′α ∪X ′s)
equal those of Dα ∪Xs, this proves the result. ��

4 Unramified Brauer Group and Arithmetic Surfaces

By definition, if K is a field, S = SpecR is a base, and V (K) is the set of discrete
S-valuations on K,

H2
nr(K/R) df=

⋂
V (K)

H2(Ov).

We write H2
nr(K) if the sum is over all discrete valuations on K.

Purity for curves 4.1. Let C be a smooth integral projective curve over a field k,
with function field F . Then

H2(C) = H2
nr(F/k).

This is proved in the affine case for the Brauer group in [Ho, Th.], and extended
using the fact that Br is a Zariski sheaf, as in [S1, Th. 1.4].

Let X be a two-dimensional regular noetherian scheme. Then by [GB, II, 2.7],
Br(X) = H2(X ,Gm). Let

H̄2(X) df= n H2(X ,Gm)

denote the n-torsion subgroup, where n is as in Sect. 2. For any regular quasi-
compact integral scheme X with function field K, the natural map H2(X ,Gm)→
H2(K,Gm) is injective [M, III.2.22]. Thus we may view H̄2(X) as the image of
H2(X) in H2(K). Since H2(X)→H2(K) factors through H2(Ov) for any v ∈VX(K),
we have

H̄2(X)⊂
⋂

VX (K)

H2(Ov).
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Using Auslander–Goldman’s theorem [AG, Prop. 7.4] and the fact that Br is a
Zariski sheaf, it is not hard to prove the following ([GB, II, Prop. 2.3], or [S1,
Th. 1.4]).

Purity for Surfaces 4.2. If X is a regular integral noetherian surface, then

H̄2(X) =
⋂

V (X)

H2(Ov).

If X is projective over S = SpecR, then H̄2(X) = H2
nr(K/R).

We will use purity for surfaces in two ways, first to show that when S = SpecZp,
to split α ∈ H2(K) it is sufficient to construct a finite separable extension L/K over
which ∂w(α) = 0 for all w ∈ V (L) (Theorem 4.5); and second, to prove a local
structure theorem for H2(K), which provides the computational foothold we need
in order to construct such an L locally.

Lemma 4.3. Let S be a henselian local scheme, let Y → S be a proper S-scheme,
and let Y0→ S0 be the closed fiber. Then for all q≥ 0,

Hq(Y ) = Hq(Y0).

This is a corollary to the proper base change theorem ([GB, III, 3] or [M, VI.2.7]).

Lemma 4.4. Let Y0 be a normal crossings divisor on an arithmetic surface Y ,
and let {Di} denote Y0’s irreducible components. Then the natural map H2(Y0)→⊕

i H2(Di) is injective.

This is [S1, Lemma 3.2], and it is also in [GB, III]. The following fundamental
result is [S2, Th. 0.9].

Theorem 4.5. If L is the function field of a p-adic curve, and n is prime-to-p, then
H2

nr(L) = 0. Thus if αL ∈ H2(L), and ∂w(αL) = 0 for all w ∈V (L), then αL = 0.

Proof. Let S = SpecZp. By Existence of Surfaces (3.9) there is an arithmetic surface
Y → S with function field L, such that the closed fiber Y0 has normal crossings.
Every discrete valuation on L has a center on S, so H2

nr(L/Zp) = H2
nr(L). We then

have H2
nr(L) = H̄2(Y ) by Purity for Surfaces (4.2), and H2(Y ) = H2(Y0) by Lemma

4.3. Therefore since H2(Y )→ H̄2(Y ) is surjective, it suffices to show H2(Y0) = 0.
The second statement then follows immediately.

Let k = Fp. Y0 is projective over k by [Liu, 8.3.6(a)], and since Y0 has normal
crossings, the irreducible components C of Y0 are regular and projective over k, and
H2(Y0)⊂⊕H2(C) by Lemma 4.4. Let F = k(C). Since k is finite, Vk(F) = V (F) is
the set of all normalized discrete valuations on F , and C is smooth over k by [Liu,
8.3.33]. Therefore, by Purity for Curves (4.1),

H2(C) =
⋂

V (F)

H2(Ov)
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On the other hand, by Class Field Theory we have an exact sequence

0→H2(F)→
⊕
V (F)

H1(κ(v))→ H1(k)→ 0

(see [M, III.2.22(g)] and [GB, III, Remark 2.5b]). We conclude H2(C) = 0 by (2.1),
hence H2(Y0) = 0, as desired. ��

5 Modified Picard Group

We briefly summarize [S2, Sect. 1], which shows how, on an arithmetic surface over
a complete discrete valuation ring, we can represent a divisor class whose restriction
to the closed fiber is an n-th power by a divisor that is itself an n-th power, while
avoiding a fixed finite set of closed points. The results of this section will not be
applied until the very end.

Let X be a projective scheme with no embedded points over an affine scheme.
This hypothesis applies to an arithmetic surface over an affine Dedekind scheme, or
one of its closed fibers. Let z = {zi}I ⊂ X be a finite set of closed points, and let
ι : z→ X be the closed immersion so that ι∗O∗z =

⊕
I ιi∗κ(zi)∗. Let zO∗X denote the

sheaf of units with value 1 at each zi, defined by the exact sequence

1−→ zO∗X −→ O∗X −→ ι∗O∗z −→ 1.

Let KX denote the (quasi-coherent) sheaf of total fractions of X . We have a commu-
tative diagram

1 −−−−→ zO∗X −−−−→ K∗X −−−−→ K∗X/zO∗X −−−−→ 1⏐⏐� ∥∥∥ ⏐⏐�
1 −−−−→ O∗X −−−−→ K∗X −−−−→ K∗X/O∗X −−−−→ 1

(5.1)

Set

DivX = H0(X ,K∗X/O∗X) PicX = H1(X ,O∗X)

z DivX = H0(X ,K∗X/zO∗X ) z PicX = H1(X , zO∗X )

z DivX = H0(X ,K∗X/zO∗X) is the set of {(Uj, f j)} such that not only is f j/ fk a unit
on Uj ∩Uk, but ( f j/ fk)(z) = 1 for each z ∈ z∩ (Uj ∩Uk). By definition, we have an
exact sequence

1−→ ι∗O∗z −→ K∗X/zO∗X −→ K∗X/O∗X −→ 1. (5.2)


