Preface

The Nineteenth American Peptide Symposium (APS) was held in San Diego, California on June 18-23, 2005. More than 1,000 scientists, accompanying persons, and exhibitors from all over the world attended the conference, and as Editor of the Proceedings of the 19th APS, I am very pleased to share the state-of-the art research projects and ideas that were presented during this event.

The symposium began with a special session focused on protein design cosponsored by the Protein Society and the American Peptide Society to encourage discussion between two complementary fields of science. For example, the contribution in this book by Dr. Etzkorn on the mechanism of peptidyl-prolyl isomerase clearly shows how short peptides can be used as tools to investigate the biology of larger protein. This session organized by Dr. Jeff Kelly, President-Elect of the Protein Society and co-Chair of the 19th APS was a great success and opened future opportunities for interactions between the two societies.

The increasing active participation of young investigators to the field of peptide research was clearly seen with the outstanding lectures at the Bert Schram Young Investigator mini-symposium sponsored by the Escom Science Foundation and chaired by Dr. John P. Mayer and Dr. Alain Fournier (a number of which are described in this Proceedings), and the large number of poster entries for the Young Investigator's Poster Competition (organized by Dr. DeAnna Long).

As demonstrated by the contributions to this Proceedings, the topics of the Symposium covered cutting-edge research presented by a wide range of distinguished speakers. As outlined by the contribution by Dr. Richard Houghten, recipient of the Merrifield Award, as well as the Goodman Memorial Session, the progresses in peptide and peptidomimetic chemistry are driven by the need to develop novel therapeutics or tools to understand biological natural events. Novel approaches to generate peptides by biological means were also presented at this symposium. Other increasing topics included quorum sensing, post-translational modifications of peptides, peptide quaternary structures in material science and disease, and proteomics.

I wish to thank all authors of the contributions for their efforts and their willingness to participate to this book, and Michael Chorev and Donna Freher-Lyons for their assistance in the preparation of this book. Lastly, I wish to give special thank to my husband and daughter for their support and encouragement in preparing the Proceedings of the 19th American Peptide Symposium.

Sylvie Blondelle

Message from the President of the American Peptide Society

The 19th American Peptide Symposium was another successful addition to the American Peptide Society's series of biennial symposia. An international group of 980 registrants from 33 countries contributed to the high quality program that is documented in this volume. Thank you to all of the lecturers and poster presenters for your excellent contributions. Congratulations to co-chairs Jeffery Kelly and Tom Muir along with their staff and the organizing and program committees for a successful meeting. Thank you also to all of our sponsors and exhibitors. And finally, thank you to Past President Roger Freidinger for his oversight of this effort.

The American Peptide Society recognized the achievements of outstanding scientists involved in peptide science through several awards and special sessions at the symposium. Richard Houghten of the Torrey Pines Institute for Molecular Studies was the recipient of the 2005 R. Bruce Merrifield Award, which recognizes outstanding career achievements in peptide science. Richard described his pioneering work on combinatorial chemistry in his lecture "From Tens to Trillions: Advances in Synthetic Combinatorial and Diversity Oriented Methods over the Past 20 Years." Robin Offord of the University of Geneva presented the Makineni lecture, which honors long time peptide science supporter Rao Makineni, and described his research on medicinal chemistry applied to a synthetic protein. The Dr. Bert L. Schram Young Investigators Mini-symposium that started off the meeting on Saturday and the Young Investigators Poster Competition highlighted the accomplishments of young scientists in our field. The Society presented 59 Travel Awards, totaling \$31,000, to young scientists from all over the world so that they could present their research at the symposium. The Murray Goodman Memorial Session honored our good friend and colleague, a leader who influenced our field and the people in it in so many ways - through his research, his mentoring, his service to the Society as President, and as Founding Editor of Biopolymers (Peptide *Science*). Murray will be greatly missed by his friends and colleagues.

American Peptide Society activities go beyond those at the symposium. American Peptide Society members receive *Biopolymers (Peptide Science)*, the official society journal which publishes both original research and review articles, in print and electronic forms as part of their membership so that they can keep abreast of advances in our field in between symposia. All Society members are invited to submit manuscripts to the journal. The American Peptide Society is now a full member of the Federation of American Societies for Experimental Biology (FASEB). Our membership in FASEB increases the visibility of our Society in the biomedical research community, provides the benefits of FASEB membership to our members and allows our participation in FASEB public affairs initiatives. Other activities and special discounts for Society members are described on the society website www.americanpeptidesociety.com.

We're looking ahead to the 20th American Peptide Symposium that will be held June 26-30, 2007 in Montreal. Co-chairs Emanuel Escher and William Lubell are working hard on assembling an exciting program with the theme "Peptides for

Youth." I look forward to working with you in American Peptide Society activities and seeing you in Montreal in 2007.

My best wishes for success in your peptide activities!

Jane V. Aldrich University of Kansas

19th American Peptide Symposium

June 18-23, 2005 San Diego, California

Co-Chairs

Jeffery W. Kelly, Ph.D. Scripps Research Institute Department of Chemistry, MB 12 10550 N. Torrey Pines Road La Jolla, CA 92037 jkelly@scripps.edu Tom W. Muir, Ph.D Rockefeller University Synthetic Protein Chemistry Lab 1230 York Avenue, MC 223 New York, NY 10021 muirt@rockvax.rockefeller.edu

Scientific Program Committee

Samuel H. Gellman, Ph.D., University of Wisconsin - Madison
Richard A. Houghten, Ph.D., Torrey Pines Institute for Molecular Studies
Jeffery W. Kelly, Ph.D., Scripps Research Institute
William D. Lubell, Ph.D., University of Montreal
Hisakazu Mihara, Ph.D., Tokyo Institute of Technology
Tom W. Muir, Ph.D., Rockefeller University

Symposium Organizing Committee

Donna M. Freher-Lyons, American Peptide Society **Richard A. Houghten**, Ph.D., Torrey Pines Institute for Molecular Studies **Jeffery W. Kelly**, Ph.D., Scripps Research Institute **Tom W. Muir**, Ph.D., Rockefeller University

Student Affairs Committee

J. Ryan Holder, Ph.D. (Co-Chair) Amgen, Inc. DeAnna W. Long, Ph.D. (Co-Chair), Peptides International John Blankenship, University of Montreal Florence Brunel, Ph.D. The Scripps Research Institute Audrey Kelleman, University of California, San Diego Jason Moss, The Scripps Research Institute Krista Wilson, University of Florida

Mini-Symposium Committee

Alain Fournier, Ph.D. (Co-Chair), INRS - Institute Armand Frappier John P. Mayer, Ph.D. (Co-Chair), Eli Lilly & Company J. Ryan Holder, Ph.D., Amgen, Inc. DeAnna W. Long, Ph.D., Peptides International, Inc.

Travel Grant Committee

Phil Dawson, Ph.D. (Chair), The Scripps Research Institute David Andreu, Ph.D., Universitat Pompeu Fabra Alain Fournier, Ph.D., INRS - Institute Armand Frappier John P. Mayer, Ph.D., Eli Lilly & Company Marcey L. Waters, Ph.D., University of North Carolina

Volunteer Staff

Maia Carnevali Aikomari Guzman Rebecca Harbach David Hitt Audrey Kelleman Ryan Lamer Kevin Oliver Becci Perea Jenni Peterson Mika Tomioka Aaron Wohlrab

List of the 19th American Peptide Symposium Sponsors

Platinum Level Sponsor

SynPep Corporation

Gold Level Sponsor

PolyPeptide Laboratories, Inc.

Silver Level Sponsors

Bachem Eli Lilly & Company UCB Bioproducts, Inc.

Mercury Level Sponsors

AAPPTEC American Peptide Company Amersham Health/GE Healthcare C S Bio Co. Cambridge Research Biochemicals Merck Research Laboratories Midwest Bio-Tech, Inc. NeoMPS, Inc. New England BioLabs Inc. Senn Chemicals USA Sinopep Pharmaceutical Inc.

Copper Level Sponsors

Amgen, Inc. Biomol International Chemicon International Inc. ESCOM Science Foundation Genentech Hoffmann-La Roche Inc. Novo Nordisk A/S Peptides International, Inc. Sussex Research Synthetech, Inc.

Contributors

Chemistry Today PharmaChem RSP Amino Acids LLC

List of the 19th American Peptide Symposium Exhibitors

AAPPTEC Abgent AC Scientific, Inc. Activotec Ltd. Advanced ChemTech Akzo Nobel / Eka Chemicals American Peptide Company American Peptide Society AnaSpec, Inc. Australian Peptide Association BACHEM Bentham Science Publishers Ltd. **BioBlocks** Inc. Bio-Synthesis, Inc. C S Bio Co. C.A.T GmbH & Co. Cambridge Research Biochemicals CBL-PATRAS SA **CEM** Corporation Chem Impex CPC Scientific, Inc. Elim Biopharmaceuticals, Inc. EMD Chemicals Inc. EMD Biosciences, Inc. European Peptide Society Fluorous Technologies, Inc. Genzyme Pharmaceuticals Georg Thieme Verlag KG GL Biochem (Shanghai) Ltd. Global Peptide Services, LLC

Intavis **IRIS Biotech GmbH** Japanese Peptide Society John Wiley & Sons Jupiter Bioscience Limited Midwest Biotech Inc. MP BioMedical NeoMPS (Groupe SNPE) Peptides International, Inc. Peptisyntha, Inc. Polymer Laboratories, Ltd. PolyPeptide Laboratories, Inc. Protein Society Protein Technologies, Inc. Rapp Polymere GmbH Roche Colorado Rohm and Haas Company Senn Chemicals USA SciGene Sigma Aldrich Springer SynPep Corporation Synthetech, Inc. Tianjin Nankai Hecheng Sci. & Tech. Co., Ltd. UCB Bioproducts SA VersaMatrix A/S Waters Corporation YMC Co., Ltd. / Seika Corporation of America

The American Peptide Society

The American Peptide Society (APS), a nonprofit scientific and educational organization founded in 1990, provides a forum for advancing and promoting knowledge of the chemistry and biology of peptides. The approximately one thousand members of the Society come from North America and from more than thirty other countries throughout the world. Establishment of the American Peptide Society was a result of the rapid worldwide growth that has occurred in peptide-related research, and of the increasing interaction of peptide scientists with virtually all fields of science.

The American Peptide Society is a Sustaining Associate Member of the Federation of American Societies for Experimental Biology (FASEB). Our affiliation with FASEB increases the visibility of our Society in the biomedical research community and allows our participation in any FASEB public affairs initiatives.

Biopolymers (Peptide Science) is the official journal of the American Peptide Society. A full year subscription to this journal is automatically included with membership in the APS. The journal publishes both original articles and reviews covering all aspects of peptide science. Eminent peptide scientists Lila Gierasch and Charles Deber serve as the journal editor and current trends editor, respectively, and they welcome your manuscript submissions. Members also have free access to the Society's continually evolving web site where the latest information on American Peptide Society activities and developments in peptide science may be found. Free professional position and resume posting is offered at the site. Membership in the American Peptide Society is open to scientists throughout the world who are interested in the chemistry or biology of peptides and small proteins. The American Peptide Society strongly believes in supporting the young scientists entering our field. Reduced membership rates for students and postdoctoral fellows are provided. Information on the American Peptide Society is available at the society website www.americanpeptidesociety.com.

American Peptide Symposia

Symposium Year		Chair (s)	Location
1st	1968	Saul Lande	Yale University
		Yale University	New Haven, CT
		Boris Weinstein	
		University of Washington-Seattle	
2nd	1970	F. Merlin Bumpus	Cleveland Clinic
		Cleveland Clinic	Cleveland, OH
3rd	1972	Johannes Meienhofer	Children's Cancer Research
		Harvard Medical School	Foundation, Boston, MA
4th	1975	Roderich Walter	The Rockefeller University
		University of Illinois Medical	and Barbizon Plaza Hotel
		Center – Chicago	New York, NY
5th	1977	Murray Goodman	University of California - San
		University of California San Diego	Diego, San Diego, CA
6th	1979	Erhard Gross	Georgetown University
- 1	1001	National Institutes of Health	Washington, DC
7/th	1981	Daniel H. Rich	University of Wisconsin-
0.1	1002	University of Wisconsin- Madison	Madison, Madison, WI
8th	1983	Victor J. Hruby	University of Arizona
0.1	1005	University of Arizona	Tucson, AZ
9th	1985	Kenneth D. Kopple	University of Toronto
		Charles M. Deber	Toronto, Ontario, Canada
		University of Toronto	
10^{th}	1987	Garland R Marshall	Washington University
10	1707	Washington University School of	St Louis MO
		Medicine	50 2000, 110
11^{th}	1989	Jean E. Rivier	University of California-San
		The Salk Institute for Biological	Diego, San Diego, CA
		Studies	
12^{th}	1991	John A. Smith	Massachusetts Institute of
đ		Massachusetts General Hospital	Technology, Cambridge, MA
13 th	1993	Robert S. Hodges	Edmonton Convention Center
th		University of Alberta-Edmonton	Edmonton, Alberta, Canada
14 ^m	1995	Pravin T.P. Kaumaya	The Ohio State University
a a th		The Ohio State University	Columbus, OH
15 th	1997	James P. Tam	Nashville Convention Center
a eth		Vanderbilt University	Nashville, TN
16	1999	George Barany	Minneapolis Convention Center
		University of Minnesota	Minneapolis, MN
		Gregg B. Fleids	
17 th	2001	Richard A Houghten	Town and Country Report Hotal
1/	2001	Torray Pinas Instituta for Molecular	San Diego $C\Delta$
		Studies	San Diego, CA
		ST00000	

	Michal Lebl Spyder Instruments and Illumina	
2003	Michael Chorev	Marriott Copley Place
	Beth Israel Deaconess Medical	Boston, MA
	Center	
	Tomi K. Sawyer	
	ARIAD Pharmaceuticals	
2005	Jeffery Kelly	Town and Country Resort Hotel
	Scripps Research Institute	San Diego, CA
	Tom Muir	
	Rockefeller University	
	2003 2005	Michal Lebl Spyder Instruments and Illumina 2003 Michael Chorev Beth Israel Deaconess Medical Center Tomi K. Sawyer ARIAD Pharmaceuticals 2005 Jeffery Kelly Scripps Research Institute Tom Muir Rockefeller University

The Merrifield Award

Endowed by Rao Makineni (1997) Sponsored by the Pierce Chemical Company (1977-1995)

Richard A. Houghten

Dr. Richard A. Houghten, founder and President of Torrey Pines Institute for Molecular Studies, received his doctorate in organic chemistry from the University of California, Berkeley, in 1975. Following positions at the University of California, San Francisco, and Mount Sinai School of Medicine, he joined the Scripps Research Institute in 1981. Torrey Pines Institute for Molecular Studies began operations in 1989 with eight employees. Now in its 17th year, it has become internationally recognized for its scientific contributions in a wide range of fields, including multiple sclerosis. chemistry, diabetes, immunology, infectious disease, heart disease, cancer vaccines and pain management. The

institute has grown to include over 65 scientists, technicians and administrative staff, all of whom work in an environment that emphasizes personal and professional growth by encouraging the development of independent research ideas as well as the development of collaborative efforts with scientists throughout the world. Dr. Houghten's scholarly contributions include over 500 publications and 60 issued patents. He also founded the journal, The Journal of Peptide Research and is active on several other editorial boards.

In addition to Torrey Pines Institute for Molecular Studies, Dr. Houghten founded three commercial businesses, one of which became a publicly-traded biotechnology company. His achievements have been recognized in the form of numerous honors and awards. Most recently, his contribution to the field of peptide science was acknowledged by the 2004 Ralph F. Hirschmann Award in Peptide Chemistry. Other honors received include the Vincent du Vigneaud Award for Excellence in Peptide Science (2000) and the UCSD Connect Athena Pinnacle Award for Empowering Women in the Workplace. His acceptance of the Athena Pinnacle Award in 1999 further distinguishes Dr. Houghten and his dedication to the mentoring and advancement of women scientists in the work place.

Dr. Houghten's scientific contributions include the "tea bag" approach, which was originally utilized to facilitate the synthesis of peptides. The tea bag method, in which solvent permeable packets are used during the synthesis process, has now resulted in not only the synthesis of millions of peptides, but also the synthesis of millions of low molecular weight compounds. In collaboration with his long time associates and colleagues at Torrey Pines Institute for Molecular Studies, he has also developed approaches in combinatorial chemistry which are invaluable for the rapid identification of individual compounds from millions to billions of others (positional

scanning), the use of existing combinatorial libraries to generate entirely new diversities of compounds (libraries from libraries), the cross-referencing of library screening results with gene data bases in order to fine-tune the direction towards which further testing moves for a given disease target (biometrical analysis), and novel volatilizable solid supports.

2005 - Richard A. Houghten, Torrey Pines Institute for Molecular Studies

- 2003 William F. DeGrado, University of Pennsylvania, School of Medicine
- 2001 Garland R. Marshall, Washington University Medical School

1999 - Daniel H. Rich, University of Wisconsin - Madison

1997 - Shumpei Sakakibara, Peptide Institute, Inc.

1995 - John M. Stewart, University of Colorado - Denver

1993 – Victor J. Hruby, University of Arizona – Tucson

1991 – Daniel F. Veber, Merck Sharp & Dohme, Inc.

1989 – Murray Goodman, University of California, San Diego

1987 - Choh Hao Li, University of California, San Francisco

1985 - Robert Schwyzer, Swiss Federal Institute of Technology

1983 – Ralph F. Hirschmann, Merck Sharp & Dohme, Inc.

1981 - Klaus Hofmann, University of Pittsburgh, School of Medicine

1979 - Bruce Merrifield, The Rockfeller University

1977 - Miklos Bodansky, Case Western Reserve University

The Makineni Lecture Award

Endowed by PolyPeptide Laboratories, Inc., and Murray and Zelda Goodman Sponsored by the American Peptide Society

Robin E. Offord

Professor E. Robin Offord began in nuclear physics but soon changed to biology. He first worked at the Medical Research Council Laboratory, Cambridge, U.K. (1962-1966), in the group Frederick Sanger where he obtained his Doctorate and collaborated with, among others, César Milstein and Aaron Klug. He taught and researched at Oxford from 1966 – 1980 (University Lecturer in Molecular Biophysics, Tutor, Christ Church), when he left to become Director of the Département de Biochimie Médicale at Geneva. He was also

President of Basic Medicine in Geneva from 1994 to 2000. Prof. Martin Rodbell (Nobel Prize 1994) was a visiting member of his group for two years in the early 1980s. In 2004 he became the founding Director of a new Department in the Medical Faculty, the Department of Structural Biology and Bioinformatics. Prof. Offord has written, co-authored, or edited 6 books and is the author or co-author of 180 published scientific papers, mainly in various fields of protein science. He is co-inventor on several granted Patents.

Prof. Offord was one of the pioneers of the technique of protein semisynthesis. He was responsible for the first of the so-called anti-HIV "fusion inhibitors" and building on this he and his colleagues have designed and made a series of semisynthetic and synthetic proteins which are among the most powerful anti-HIV substances currently known. One of them is the first to give full protection against infection in macaques. His Geneva research group receives support from the United States National Institutes of Health for this work as an overseas applicant, as well as support from the Swiss Government.

Prof. Offord has been adviser to governments in several countries, and to international organizations. He is currently adviser to the Netherlands Government on proteomics, to the UN International Trade Centre, and a member of the Geneva government's Council for Regional Economic Development. He has been a Journal Managing Editor, member of many Editorial Boards and has consulted for many major pharmaceutical and biotechnology firms. He has been a co-founder of a number of start-ups. He was a co-founder of the Swiss Institute for Bioinformatics and is Chairman of the Advisory Board of Eclosion, Geneva's new life-sciences incubator. He shared the "Man of the Year 2002" award of the Swiss financial newspaper 'L'agefi'. He is Secretary of the American Peptide Society.

Achievement Award for Scientific and Administrative Excellence

The American peptide Society initiated this new award in 2005 to recognize and honor those who have made outstanding scientific and administrative contributions in the promotion and advancement of research in peptide science that resulted in the advancement of public health.

Rao S. Rapaka

Dr. Rao S. Rapaka was recognized for the depth of his range of scientific knowledge of the neuro-biochemistry of peptide science and his twenty-five years of continuous contributions to organizing dozens of mini-symposia, review articles, and focused journal special editions in this field.

Dr. Rapaka received his training in medicinal and peptide chemistry in the laboratories of a number of leading scientists including Professors Eugene Jorgensen (University of California) and Dan W. Urry (University of Alabama Medical Center). His research carrier started with a study of the role of stereochemical factors that influence the pressor activity of angiotensin via the synthesis and structure-activity relationships od strategically designed analog of angiotensin II. He showed the critical part that stereochemical factors played on the conformation of the peptide chain. This early success laid to the foundation for many of his other significant contributions to important peptides. For example, Dr. Rapaka demonstrated that hydroxylation was a very critical step for the stability and activities of collagen polypeptides. Upon studying analogs of the protein elastin, Dr. Rapaka demonstrated that coacervation was due to hydrophobic interactions between certain amino acid side chains. Using Fourier Transform-Infrared methods, not only he showed the ß-turn and ß-sheet conformations of enkephalins but he also found that ethanol abolishes these conformations for [Met⁵]-enkephalinamide, thus abolishing the opiod receptor recognition for μ - and δ -receptor interaction.

The breath of his contributions is exemplified in over 100 publications and 18 research monographs. Through his long tenure at the NIH Dr. Rapaka has initiated a large number of grants and research contracts in organic syntheses and medicinal chemistry, and promoted new research areas and technologies enhancing both medicinal chemistry and drug discovery. Furthermore, Dr. Rapaka administers a National program of "Drug Supply and Related Research Services" and manages a medicinal chemistry program at NIDA. His current areas of interest are lipid maps and isolation of new bioactive endogenous lipid ligands.

Peptide Society Travel Grants

The Travel Award Committee's mission was to administer financial support for travel and housing expenses in order to provide a broad opportunity for young investigators to participate in a major scientific event, meet leaders and colleagues in the field, and present their research projects to the scientific community.

Awardees:

Kalpana Bhargara (University of North Carolina) Damien R. Boeglin (University of Montreal) Malene Brandt (Royal Veterinary & Agriculture University) James P. Cain (University of Arizona) Andrea Caporale (University of Padova) Pradip Chakraborty (University of Gottingen) Arvind K. Chappa (University of Kansas) Jeffrey D. Copps (Creighton University) Sonya Cressman (University of British Columbia) Nadia J. Edwin (Lousiana State University) Marcus A. Etienne (Louisiana State University) Wei-Jie Fang (University of Kansas) Fabrice Galaud (University of Montreal) Sharon Gilead (Tel Aviv University) Krisztina Heredi-Szabo (Creighton University) Frank W. Kotch (University of Wisconsin-Madison) Vinod V. Kulkarni (University of Arizona) Ulrike Kusebauch (Max Planck Institute of Biochemistry) Teresa Lama (University of Naples Federico II) Mian Liu (University of Minnesota) Erica S. Lovelace (University of Queensland) Luciana Malavolta (Universidade Federal de Sao Paulo) Chris R. Manz (Duke University) Fernanda F. Marques (University of Michigan) Larry R. Masterson (University of Minnesota) Remco Merkx (Utrecht University) Christopher M. Micklitsch (University of Delaware) Byoung J. Min (University of Arizona) Barbara Mulinacci (University of Florence) Michael C. Owen (Creighton University) Ilaria Paoloini (University of Florence) Angela Peck (University of Kansas) Ravil R. Petrov (University of Arizona) Magdalena J. Przydzial (University of Michigan) Beili Quan (Indiana University at Bloomington) Karthikan Rajagopal (University of Delaware) Soumendra Rana (Indian Institute of Technology, Bombay) Cesar Manuel Remuzgo Ruiz (University of Sao Paulo) Rebecca A. Roof (University of Michigan)

Deborah M. Rothman (Massachusetts Institute of Technology) Ronak Rughani (University of Delaware) Giuseppina Sabatino (University of Florence) Lillian Sando (University of Queensland) Rajesh Sankaranarayanan (University of Arizona) Yu Tian (Center of Advanced Biotechnology & Medicine) Aleksandar Todorovic (University of Florida) Simona Tomaselli (University of Naples Federico II) Isabelle van den Eynde (Vrije Universiteit Brussel) Karolien van Rompaey (Vrije Universiteit Brussel) Dirk-Janvan Zoelen (Utrecht University) Miquel Vila-Perello (Universitat Pompev Fabra) Aude Violette (CNRS – IBMC, Strasbourg) Xin Wang (University of Kansas) Jia Wang (Louisiana State University) John K. Whitehead (Louisiana State University) Ekaphol Wooden (University of Arizona) Weiming Xu (Rutgers University) Tatyana V. Yakovlev (University of Kansas) Hailin Zheng (Weizmann Institute of Science)

Bert Schram Young Investigators' Mini-Symposium

The Bert Schram Young Investigator Mini-Symposium was the opening session of the meeting and as in previous years was generously supported by ESCOM Science Foundation. The session was chaired by John Mayer (Eli Lilly) and Alain Fournier (University of Quebec).

We were fortunate to have an excellent selection of graduate students as well as postdoctoral fellows from the world-wide peptide community. In the spirit of the symposium the speakers were chosen to reflect the diverse scientific disciplines within the peptide community. First Place was awarded to Matthew Hartmann (Massachusetts General Hospital/Harvard Medical School), Second Place (a tie) to Deborah Rothman (MIT) and Florence Brunel (Scripps Research Institute) and Honorable Mention to Barbara Mulinacci (University of Florence). We wish all participants continued success in their careers.

Participants

John Blankenship (University of Montreal) Florence Brunel (The Scripps Research Institute) Jaimes Cain (University of Arizona) Luis J. Cruz (University of Barcelona) Christina Foerg (Swiss Federal Institute of Technology Zurich) Evgenia Glukhov (Hospital of Sick Children Toronto) Matthew Hartmann (Massachusetts General Hospital/Harvard Medical School) Remco Merkx (Utrecht University) Barbara Mulinacci (University of Florence) Beili Quan (Indiana University) Karthikan Rajagopal (University of Delaware) Deborah Rothman (Massachussetts Institute of Technology) Miquel Vila-Perello (Universitat Pompeu Fabra) Hope Wilson (California Alliance for Minority Participation) David Zoeteway (University of Guelph)

Young Investigators' Poster Competition

On behalf of the Student Affairs Committee, we would like to thank all the people involved with the Young Investigator Poster Competition held at the 19th American Peptide Symposium. This year's Young Investigator Poster Competition featured over 60 poster presentations. We would like to send a special thank you to our sponsor, CS Bio, the volunteer judges, and the Symposium organizing committee for the 19th APS. Thank you to all the students and post-doctoral associates for their participation and for their excellent presentations to make this event a success. On behalf of the American Peptide Society, Congratulations to all of our winners!

Award Winners

First Place:

Melissa Shults (Massassuchetts Institute of Technology - B. Imperiali)

Second Place:

Dirk-Jan van Zoelen (Utrecht Institute for Pharmaceutical Sciences - R.M.J. Liskamp)

Third Place:

Brian Lohse (Riso National Laboratory - R. Berg) Justin Murray (University of Wisconsin - S. Gellman) Ronak Rughani (University of Delaware - J. Schneider)

Honorable Mention:

Pradip Chakraborty (Institute for Organic and Biomolecular Chemistry - U. Diederichsen) Marcus Lynch (Ohio State University - Pravin Kaumaya) Hinke Malda (Eindhoven University of Technology - T. Hackeng) Christopher Micklitsch (University of Delaware - J. Schneider) Audrey Kelleman (University of California San Diego - M. Goodman and M.S. Van-Nieuwenhze) Michael Owen (Creighton University Medical Center – S. Lovas) Krista Wilson (University of Florida- C. Haskell-Luevano)

We give a BIG thank you to over 30 volunteer judges for the mini-symposium and poster competition who generously donated their time and expertise during the competition.

Judges:

Jungmo Ahn Michael Carrasco Ralph Casale Krys Darlak Jesse Dong Alain Fournier Paolo Grieco Robert P. Hammer Jie Han Deborah L. Heyl-Clegg Thomas Hoeg-Jensen Ryan Holder Pravin T.P. Kaumaya

Maria Kempe Michal Lebl William Lubell Claudio Mapelli John McMurray Hisakazu Mihara Yuji Nishiuchi

xxii

Laszlo Otvos Annamaria Papini David Perrin Christian Renner Paolo Rovero Mark Spaller Kripa Srivastava Wilfred van der Donk Sandy Vigil Cruz Cody, Wayne Liang Zeng Yan

Abbreviations

μ	hydrophobic moment	AGRP	Agouti-related protein
[0]	mean residue ellipticity	AHL	N-acylhomoserine lactone
A	active site	Aib	α-aminoisobutyric acid
aaAs	$C^{\alpha,\alpha}_{\alpha}$ -disubstituted amino acids	AIDS	aquired immune deficiency
22	amino acid		syndrome
	amino acid analysis	Alloc	allyloxycarbonyl
And	a aminohevanedioic acid	AMBER	assisted model building and
	amphiphilia a haliy		energy refinement
AAn	ampinpinne u-nenx	AMC	amino-4-methyl coumarin
Ар	amytoid p-protein; amytoid p-	AMPs	antimicrobial peptides
A 1- 7	peptide	AMPB	(4-
A0/			aminomethyl)phenylazobenzoic
A 1	acid		acid
Aba	4-amino-1,2,4,5-tetranydro-2-	AMPP	[3-(3-aminomethyl-phenylazo)-
4.1	benzazepine-3-one		phenyl]-acetic acid
Abc	4 -aminomethyl-2,2 -	AN	electron acceptor
	bipyridine-4-carboxylic acid	Ang	angiotensin
ABP	arterial blood pressure	Ang II	angiotensin II
ABPP	activity-based protein profiling	ANPP	4-anilino-N-phenethyl-
Abu	α -amino- <i>n</i> -butyric acid		nineridine
Abz	o-aminobenzoyl	AnV	Annexin-A5
AC	adenylyl cyclase	Ane	2-amino-8-oxo-9 10-epoxy
Ac	acetyl; acyl	1100	decanoic acid
Aca	adamantanecarboxyl-; ε-amino	APB	(4-amino)phenylazobenzoic
	acaproic acid	7 H D	acid
ACAB	4,4'-azobenzene-dicarboxylic	APC	antigen presenting cell
	acid-(4-iodo-but-2-ynyl)-bis-	4Anh	4-aminophenylalanine
	amide	Ano A-I	anolinoprotein A ₋ I
ACC	adrenocortical carcinoma; 7-	ApoCaM	Ca-free calmodulin
	amino-4-	ADD	amyloid & precursor protein
	carbamoylmethylcoumarin	AFF	anyloid p-precuisor protein
Ac5c	1-aminocyclopentane	AFA	aguagus
	carboxylic acid	AQ.	aqueous reflection
Ac _n c	1-aminocycloalkane-1-	An	anomatic residue
	carboxylic acid		acute respiratory distress
ACE	angiotensin-converting enzyme	AKD5	acute respiratory distress
Ach	1-amino-1-cyclohexane	Acu	2 amino suborio agid
	carboxylic acid	ASU	2-amino suberic acid
Acm	acetamidomethyl	ASE	Ang II recentor
ACN	acetonitrile	AI ₁	Ang in receptor
ACP	acyl carrier protein		Amorican Tyre Culture
Acpc	1-aminocyclopropane-1-	AICC	Callection
	carboxylic acid	A TT	collection
ACTH	adrenocorticotropin;	AIL	adult 1-cell leukellila
	adrenocorticotropic hormone	Atmp	4-amino-2,2,0,0-
AD	Alzheimer's disease		tetrametnyipiperidine
Ad	adenovirus	ATP	adenosine tripnosphate
Adc	10-aminodecanoic acid	AIK-IK	attenuated total reflection infra
ADCC	antibody dependent cell-		red spectroscopy
	mediated cytotoxicity	AUC	area under the curve
ADNP	activity-dependent	AVP	arginine vasopressin
	neuroprotective protein	-	
Ae9	2-amino-9-alkenoic acid	BAL	backbone amide linker
AEM	affinity enhancing motifs	BBB	blood brain barrier
Aens	2-amino-(n-1)-alkenoic acids	Bbs	4-tert-butyl-benzenesulfonyl
AFM	atomic force microscopy	BD	healthy blood donor serum;
Agl	aminoglycine		blood donors

BEMP	2-tert-butylimino-2-	Cit	2-amino-5-ureido-n-valeric acid
	diethylamino-1,3-dimethyl	CLEAR	cross-linked ethoxylate acrylate
	perhydro-1,3,2-diaza		resin
	phosphorine	CLL	chronic lymphocytic leukemia
BHI	brain heart infusion	CM	chloroform-methanol
BHO	Black Hole Quencher	CN	cinchonine
BIV	biospecific interaction analysis	CNBr	ovenogen bromide
Diat	biotinul	CND	cyallogen biolinde
Din	high angle leading Andread	CNS C-1	
ыр	sphenylalanine, 4-phenyl-	COEV	
	phenylalanine; p-(4-	COSY	correlated spectroscopy
DI	biphenylyl)alanine	Cov	coronavirus
BK	bradykinin	CPDs	cyclobutane pyrimidine dimers
BNP	brain natriuretic peptide	CpG	α -cyclopentylglycine
Boc; <i>t</i> Boc	<i>tert</i> -butyloxycarbonyl	CPP	cell penetrating peptide
Bom	benzyloxymethyl	cPPL	crude porcine pancreatic lipase
BOP	(benzotriazol-1-yloxy)-	CPWR	coupled plasmon waveguide
	tris(dimethylamino)phosphoniu		resonance
	m hexafluorophosphate;	CRDs	cysteine-rich domains
	benzotriazolyiloxy-hexamethyl	CRPs	collagen-related peptides
	phosphoramide	CsA	Cyclosporin A
Bpa	<i>p</i> -benzovlphenylalanine	CSD	chemical shift deviation
BSA	hovine serum albumin	CSL	chemical shift indice: chemical
BTC	his(trichloromethyl)carbonate	0.01	shift index
BTY	batrachotoxin	CSPG	chondroitin sulfate
tBu	t butyl	0.01	enonaronni sunate
Da	hongovi	CTC	proteogrycan
DZ D_1	benzoyi	CIC	chlorotrityl chloride
BZI	benzyi	CIF	C-terminal tragment
		CIL	cytotoxic T-lymphocyte
CaM	calmodulin	CVFF	consistent valence force field
CAMM	computer assisted molecular		
	modeling	2 D	two dimensional
cAMP	cyclic adenosine-3',5'-	3D	three dimensional
	monophosphate	DA	dopaminergic
CAMs	constitutively active mutants	Da	Dalton
CAR	coxackie-adenovirus receptor	Dab	2.4-diaminobutyric acid
CBD	chitin binding domain	Dabeyl	(4-[4-(dimethylamino)
Cbm	carbamovl	240091	phenylazolbenzoyl
Chz	carbobenzoxy.	DAMGO	$(D_A)_2$ MePhe4 Gly-
COL	benzyloxycarbonyl	DAMOO	ol5)enkenhalin: H Tyr D Ala
CCK	cyclic cystine knot:		Chy NMaPha Chy al
CCK	cyclic cystilic Kilot,	Dev. DAD	2.2 diaminananiania asid
CCD	CC al and a lain a manufacture	Dap; DAP	2,3-diaminopropionic acid
CCK	CC chemokine receptor	DAPI	4',6-diamidino-2-phenylindole
CD	circular dichroism;	DAS	diaminosuberic acid
	cinchonidine	Dbzg	dibenzyl glycine
c3diPhe	1-amino-c-2,t-3-diphenylcyclo	DBU	1,8-diazabicyclo[5.4.0]-undec-
	propane-r-1-carboxylic acid		7-ene
CD ₃ OH	methan-d ₃ -ol	DCC	N,N'-dicyclohexylcarbodiimide
CE	capillary electrophoresis	DCM	dichloromethane
CecB2	cecropin B2	Dde	1-(4,4-dimethyl-2,6-
CF	5(6)-carboxyfluorescein		dioxocvclohexvlidene)ethvl
CFDA	carboxyfluorescein diacetate	DDI	DNA-directed immobilization
cfu	colony forming units	DEA	diethylamine
CGRP	calcitonin gene related peptide	DEAD	diethyl azodicarboxylate
Cha	cyclohexylalanine	Deg	diethylglycine
Cha	o avalabayyidhadina	JAINIT DID	D1D looking EC
CIII	ahalastaral	DEO	r i K lackling EC
CHL	cholesterol	DFU	
CHU	Chinese hamster ovary	DhHP	deuteroheamin-His-peptides
CHROBA	cnromism-based assay	Dhp	3-(2,6-dimethyl-4-
cHx	cyclohexyl		hydroxyphenyl)-propanoic acid

DIAD Dibal-H Diba	diisopropyl azodicarboxylate diisobutylaluminium hydride diisobutylalycine	DSC	differenti calorimet
DIC, DIPCDI	N,N'-diisopropy1carbodiimide	DSLET	H-Tyr-D-
DIEA, DIPEA	2.5 dilatanin ana ing	DTMD	2.2.4345
DKP	2,5-diketopiperazine	DINP	Z,Z ditilio
DLS	dynamic light scattering	DIPA	IN,IN-DIS[2
DM	dodecyl maltoside		etnyi)ami
Dmab	4{N-[1-(4,4-dimethyl-2,6-		triaminep
	dioxo-cyclohexylidene)-3-	Dts	dithiasuco
	methylbutyl]-amino}benzyl	DTT	dithiothre
DMAP	N,N-dimethylaminopyridine	Dyn	dynorphi
DMB	2,4-dimethoxybenzyl		
DME	dimethoxyethane, glyme	E	exosite
DMEM	Dulbecco's modified Eagle's	EADI	(E)-alken
	medium	EC	N-termin
DMF	N,N-dimethylformamide		domain
Dmmb	2-mercapto-4.5-dimethoxy	EC_{50}	50% effe
	benzyl	ECD	extracellu
DMP	Dess-Martin periodinane		circular d
dmpa	dimethoxyphenylacetyl	ED_{50}	median e
DMPC	1,2-dimyristoyl-sn-glycero-3-	Eda	ethylened
	phosphocholine; dimyristoyl		amino ac
	phosphatidylcholine	Edans: EDANS	5-[(2'-am
DMPG	1,2-dimyristoyl-sn-glycero-3-		naphthale
	[phospho-rac-(1-glycerol)];	EDC	1-(3-dim
	dimyristoyl		ethvl carl
	phosphatidylglycerol		hydrochle
DMS	dimethyl sulfide	EDL	extensor
DMSO	dimethyl sulfoxide	EDT	1 2-ethan
DMT, Dmt	2',6'-dimethyltyrosine	FDTA	ethylened
DMT-MM	4-(4,6-dimethoxy-1,3,5-triazin-	22	acid
	2-yl)-4-methylmorpholinium	<u>ee</u>	enantiom
	chloride	FGF	eniderma
DN	electron donor	FGFP	enhanced
DNA	dezoxyribonucleic acid	2011	protein
Dnp, DNP	2,4-dinitrophenyl	FGFR	EGE rece
DOPC	dioleoyl-DL-3-phosphati	FLISA	enzyme l
	dylcholine	LEIGH	immunos
DOR	δ-opioid receptor	FM	electron r
DOTA	1.4.7.10-	EMSA	electronh
	tetraazacvclododecane-	LWGA	accave
	N.N'.N"'.N"'-tetraacetic acid	aNOS	andothali
DPDPE	cvclo[D-Pen2 D-	enos	synthese
DIDID	Pen5lenkephalin	Env	envelope
DPH	phenytoin	Env	ethoxycou
DPhPC	diphytanovl	aPC	org volk
Dime	phosphatidylcholine	EDI	egg york
DPI CF	DPen? Cys4 enkenhalin	EPL	expressed
DPPA	diphenylphosphoryl azide	EPO	alastron
DPPC	1 2-dipalmitoyl-sn-glycero-3-	EPK	election
DITC	nhosphatidylcholine		resonance
DPPG	dipalmitoyl	eq	equivalen
DITO	nhosphatidylglycerol	ES ES MS	electrospi
DPPIV	dipentidyl amino pentidase IV	ES-MS	electrospi
DPPS	dipalmitovl phosphatidylsering	ESI ECI MO	electrospi
Dnr	diaminonronionio acid	ESI-MS	electrospi
DOF COSV	double quantum filtered	DCD	spectrom
DQT-CUS1	aorralatad graatragaary	ESR	electron s
	conclated specific scopy	ET3N	triethylan

DSC	differential scanning
	calorimetry; N,N-
	disuccinimidyl carbonate
DSLET	H-Tyr-D-Ser-Gly-Phe-Leu-Thr- OH
DTNP	2.2 dithiobis(5-nitronyridine)
DTPA	N N-bis[2-[bis(carboxy-
DIIA	ethyl)aminolethyll: diethylene
	triaminanantagastia agid
Dta	dithiosussinovi
DIS	dithiothroital
DII	
Dyn	dynorphin
Е	exosite
EADI	(E)-alkene dipeptide isostere
EC	N-terminal extracellular
	domain
EC 50	50% effective concentration
ECD	extracellular domain: electronic
	circular dichroism
EDro	median effective dose
Eda	ethylenediamine: enediyne
Laa	amino acid
Edans: EDANS	5-[(2'-aminoethyl)amino]
Luans, LDANS	naphthalenesulfonic acid
EDC	1 (3 dimethylaminopropyl) 3
EDC	athyl carbodiimide
	hydrochloride
EDI	avtenson digitarium langua
EDL	
EDI	
EDIA	acid
ee	enantiomeric excesses
EGF	epidermal growth factor
EGFP	enhanced green fluorescent
	protein
EGFR	EGF receptor
ELISA	enzyme linked
	immunosorbance assay
EM	electron microscopy
EMSA	electrophoretic mobility shift
	assays
eNOS	endothelial nitric oxide
	synthase
Env	envelope glycoprotein
Eoc	ethoxycarbonyl
ePC	egg yolk phosphatidylcholine
EPL	expressed protein ligation
EPO	ervthropoietin
EPR	electron paramagnetic
	resonance
ea	equivalent
ES	electrospray
ES-MS	electrospray mass spectrometry
FSI	electrospray ionization
ESI MS	electrospray ionization mass
ESI-MS	spectrometry
ECD	alastron spin reserverse
ESK ET2N	triathylomine
EISIN	uteutylamine

EtOH	ethanol	GnRH	gonadotropin-releasing
EtSH	ethyl sulfide		hormone
		GPCR	G-protein-coupled receptor
E5c	2 3 4 5 6-pentafluorocinnamovl	GPC	gel permeation chromatography
EACS	fluoroscopeo estivated coll	GPI	guinea pig ileum
TAC5	indorescence-activated cell	Grb2	growth factor receptor-bound
EAD		0102	protein ?
FAD	familial Alzneimer's disease	GRF	growth hormone releasing
FAF	familial amyloidosis-Finnish	OIG	factor
	type	CPDs	alvaina riah protaina
FAM	carboxyfluorescein	CSU	grychic-field proteins
FBS	fetal bovine serum	USH CSSC	avidized glutathione
FGF	fibroblast growth factor	GSSG	oxidized glutathione
FIB	focused ion beam	6511	giutamine synthetase
FITC	fluorescein isothiocyanate	CER	translational inhibitor
FKBP	FK506 binding protein	GIP	guanosine triphosphate
Flu	fluorescyl 5-carboxyl	GIT	glucose tolerance test
Fmc	fluorenyl-9-methylcarbonyl		
fMLP	formyl-Met-Leu-Phe	HA	hemagglutinin
Fmoc	9-fluorenylmethoxycarbonyl	HABA	4'-hydroxyazobenzene-2-
FN	fibronectin		carboxylic acid
Fol	1,2 aminoalcohol	HAP	histo-aspartic protease
	phenylalaninol	HAT	histone acetyl transferase
FP	fusion peptide	hAT1	human angiotensin II type 1
FPLC	Fast Performance Liquid	HATU	N-[(dimethylamino)-1 H -1 2 3-
1120	Chromatography	11110	triazolo[4 5-b]pyridin-1-y]-
EDD	farnesyl dinhosphate		methylenel_N_methyl
FPR	formyl pentide receptor		methanaminium hexafluoro
FDR	FKBP ranamycin binding		phosphate N oxide
TKD	domain	Шh	homoglabin
EDET	domani	IIDTU	O honzotniozolul N N N' N'
FKEI	transfor	пыто	O-Delizotriazotyi- <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> , -
г			
FSa	Turanoid sugar aminoacid		phosphate; N-[1H-benzotiazoi-
FIICK	Fourier-transform ion cyclotron		
	resonance		(dimethylamino)methylenej-N-
FTIR	Fourier transform infrared		methylmethanminium
			nexafluoro phosphate-N-oxide
g A	gramicidin; gramicidin A	HBV	hepatitis B virus
ĞΑ	gibberellin	HCV	hepatitis C virus
Gal	galactose	Hcy	homocysteine
GAS	group A streptococcal	HDAC	histone deacetylase
gB	glycoprotein B	HDL	high-density lipoprotein
Gd(III)DTPA	gadolinium(III)	HDX	hydrogen/deuterium exchange
	diethylenetriamine pentaacetic	HE	high exhaustion
	acid	HEK	human embryonic kidney
GdnHC1	guanidinium hydrochloride	HER	human epidermal growth factor
GEC	gel filtration chromatography		receptor
GEP	green fluorescent protein	HF	hydrogen fluoride
GGPD	geranylgeranyl diphosphate	HFA	hexafluoroacetone
GH	growth hormone	HFIP	hexafluoroisopropanol
	growth hormone releasing	HG	human gastrin
UHKP	growth normone-releasing	HGP	hairless guinea nig
CHG	peptide	HI	human insulin
GHS	growth normone secretagogue	hIAPP	human islet amyloid
UI GIT	gastro-intestinal	111/31 1	nolymentide
GIF	growth inhibition factor	HIE 1a	hypopide hypopide inducible factor 1 c
GICNAC	N-acetylgalactosamine	htt o	human interlaukin ⁹
gln II	glutamine synthetase II	111L-8 111V	human immuna dafiaian ay yi
GLP-1	glucagon-like peptide 1		human minunodenciency virus
Gm	gomesin	HIP	neparin interacting protein
		HLA	numan leukocyte antigen

Hmb HMBA	N-(2hydroxy-4-methoxy) 4-hydroxymethylbenzoic acid	Нур	hydroxyproline; trans-4- hydroxyproline
ID (C		-	
HMC	hydroxymethylcarbonyl	IAmp	4-(N-isopropyl)-
nMCR	numan melanocortin receptor		aminomethylphenylalanine
HMEC	human mammary epithelial	IBMX	3-isobutyl-1-methylxanthine
	cells	IC ₅₀	50% inhibition concentration
HmSer	α-hydroxymethylserine	i.c.v.	intracerebroventricular
HAM/TSP	HTLV-1 associated	Idp	3-isopropyl-3-(2,6-dimethyl-4-
	myelopathy/tropical spastic	•	hydroxyphenyl)propanoic acid
	paraparesis	IEX	ion exchange chromatography
HmVal	α-hydroxymethylvaline	IFN	interferon
HN	humanin	Ig	immunoglobulin
HNE	4-hydroxy-trans-2,3-nonenal	IĞF	insulin-like growth factor
¹ H-NMR	proton nuclear magnetic	Igl	α -(2-indanyl)glycine
	resonance	IL.	interleukin
HOAt	1-hydroxy-7-azabenzotriazole	Im	immunity protein
HOBt	1-hydroxybenzotriazole	IMPACT	intein-mediated purification
HONB	N-hydroxy-5-norbornene-2,3-	minner	with an affinity chitin-binding
	dicarboximide		tag
HOObt	3,4-dihydro-3-hydroxy-4-oxo-	IN	HIV-1 integrase
	1,2,3-benzotriazine	Ind	indoline-2-carboxylic acid
HoPhe	homophenylalanine	Indo	indomite-2-carboxyne acid
Hor	hydroorotyl	INOS	inducible nitrie oxide
HOSu	N-hvdroxysuccinimide	INOS	symthetese
HP	hot plate	Inn	isoninoaotia agid
Hpi	3a-hvdroxy-pyrrolo[2,3-	inp i.e	interpretence actor
	blindole	1.p.	intraperitoneal
HPLC	high performance liquid	IP ID 4	inositoi phosphate
	chromatography	IPA D-OU	
HPMVEC	human pulmonary	IPTOH	isopropanol
111111120	microvascular endothelial	IPIG	isopropyl-β-D-
hPrP	human prion protein		thiogalactopyranoside
Hpt	haptoglobin	IQFS	internally quenched fluorogenic
hPTH	human parathyroid hormone		substrate
HPV	human papilloma virus	IR	infrared spectroscopy; insulin
Hnx	hemonexin-like		receptor
HR	hentad repeat: hydrophobic	I/R	ischemia/reperfusion
IIIX	repeat	ITC	isothermal titration calorimetry
HR-MAS	high resolution-magic angle	i.v.	intravenous
IIIC-MAS	spinning	ivDde	1-(4,4-dimethyl-2,6-
HDMS	high resolution mass		dioxocyclohex-1-ylidene)-3-
111(111)	spectroscopy		methylbutyl
Нее	homoserine		
HSOC	heteropuclear single quantum	Ka	association equilibrium
nsqc	acharanaa/aarralation		constant
USV 1	hormon simpley virus type I	Kd	dissociation equilibrium
	human T call lymphatrania/		constant
HILV-I	laultamia vimus turna 1	KLH	keyhole limpet hemocyanin
UTC	high three hast series	KOR	kappa opioid receptors: Kaiser
HIS LUCD 1	high-throughput screening		resin
IUCP-I	human uncoupling protein 1		
HUVEC	numan umbilical vein	Las	linaaminaaaid
	endothelial cells		B lastamasa
Hva	homoveratryl	LAU	p-ractamase
HVN	nomovanillyl	LAH	Innum anuminum nydride
nvibk	numan vasopressin pituitary	LB	Luria-Bertani
11/20	receptor		lung cancer
hV2R	human vasopressin kidney	LUAI	iecitnin-cholesterol
	receptor		acyitransierase
Hyl	5-hydroxylysine		

xxviii

LC/ESI-MS	liquid	Mdm2	murine double minute 2
	chromatography/electrospray	Mdp	C^{α} -methyl DOPA; 3-methyl-3-
	ionization mass spectrometry	*	(2,6-dimethyl-4-
LCFA	long chain fatty acids		hydroxyphenyl)-propanoic acid
LC-MS,	<i>c i</i>	ME	2-mercaptoethanol
LC/MS/MS	liquid chromatograph/tandem	Me	methyl
20,000,000	mass spectrometry	MeCN	acetonitrile
I CP	linidic core pentide: linid core	MaOH	mathanal
LUI	nontido	Месон	
IDA	lithium diigannanulamida	MESHA	mercapioeinanesunome acid
LDA		MFS	major facilitator superfamily
lap	3-isopropyl-3-(2,6-dimethyl-4-	MHC	major histocompatibility
	hydroxyphenyl)propanoic acid		complex
LDL	low density lipoprotein	MHS	6-maleimidohexanoic acid N-
LDMS	laser desorption mass		hydroxysuccinimide ester
	spectroscopy	MIC	minimum inhibitory
LH	luteinizing hormone		concentration
LIF	laser induced fluorescence	MIP-1	macrophage inflammatory
	detection		proteins 1
LINCL	late-infantile neuronal ceroid	MM	molecular mechanics
	lipofuscinosis	MMP	matrix metalloproteinase
I MMP	longitudinal muscle with	Mmt	1 methovytrityl
Livilivii	myenteric pleyus	Mnno	N 2 moreante 1 (2
LMD	low molting point	Milpe	N-2-mercapio-1-(2-
		140	nitropnenyi)etnyi
LOI	leucinol	MO	molecular orbital
LPO	lipid peroxidation	Mob	4-methoxybenzyl
LPS	lipopolysaccharide	MOG	myelin oligodendrocyte
LVDP	left ventricular developed		glycoprotein
	pressure	MOR	mu opioid receptors
LVP	lysine vasopressin	MP	mastoparan
		MPA	methionine proximity assay
mAb	monoclonal antibody	MPER	membrane-proximal external
MALDI	matrix-assisted laser		region
	desorption/ionization	MR	magnetic resonance
MALDI TOF	matrix assisted laser	MRI	magnetic resonance imaging
MALDI-IOI	desormation/ionization time of	MRSA	methicillin-resistant
		1011CD/1	Stanbylococcus aurous
MAD	night	MS	mass spectrometry: multiple
MAP	multiple antigen peptide	WI3	aalamagia
MAPS	microwave assisted peptide		scierosis
	synthesis	MSA	methanesuitonic acid
MAPK	mitogen-activated protein	Msc	β-methylsulfonyl
	kinase		ethoxycarbonyl
Mapoc	4-dimethylaminophenacyloxy-	MsCl	methanesulfonyl chloride
	carbonyl	MSH	melanocyte stimulating
MaUCP-1	golden hamster UCP-1		hormone; melanotropin
MBC	minimal bactericidal	MSNT	2,4,6-mesitylene-sulfonyl-3-
	concentration		nitro-1,2,4-triazolide
MBHA	<i>n</i> -methylbenzhydrylamine	MTBD	7-Methyl-1,5,7-triazabicyclo-
MBD	maltose binding protein: myelin		[4 4 0]dec-5-ene
WIDI	hadio motoin	MTH	Ac-Nle-c[Asn-His-D-Phe-Arg-
14			Tro I vol NH
Mca	(/-methoxycoumarin-4-	M++	4 mosthy itnity
	yl)acetyl	MIU	4-memylimlyi
MCP-1	monocyte chemoattractant	MIII	3-[4,5-dimethyltmazoi-2-yi]-
	protein 1		2,5-dipnenyltetrazolium
mCPBA	3-chloroperbenzoic acid		bromide
MC	melanocortin;	MVD	mouse vas deferens
	microencapsulated	MVF	measles virus fusion protein
MCR	melanocortin receptor	MW	molecular weigth
MD	molecular dynamics	MW-SPPS	microwave-assisted solid-phase
MDA	malondialdehvde		peptide synthesis
		Myr	myristoyl

NA	neuraminidase	Nva	norvaline
NABH(OAc) ₃	sodium triacetoxyborohydride		
NADPH	nicotinamide	O BOC	one-bead one-compound
	adeninedinucleotide	OC2Y	O-(2.6-dichlorobenzyl)-tyrosine
	phosphate reduced form	OHDA	hydroxydopamine
Nal	naphthylalanine	Oic	octahydroindolyl-2-carboxylic
D-Nal-2	D-3-(2-nanhtyl)alanine	010	acid
NRA	nucleobase amino acid	OMe	methovy
NDC	N bromosuccinimido	OMPC	autor mombrana protain
NC	nonicontine nucleoconsid	OWIC	outer memorane protein
NCI	notive shemical lightion	NDC	complex a nitrah angan agulfanyi
NCL	native chemical ligation	ONBS	o-nitrobenzenesuitonyi
NE	norepi-nephrinergic	ONPS	o-nitrophenylsultenyl
N-ECD	N-terminal extracellular domain	OPtp	pentafluorophenyl ester
NEP	nephrilysin	Orn	ornithine
NET	norepinephrine transporter	Osu	N-hydroxysuccinimide ester
NFAT	nuclear factor of activated T-	OT	oxytocin
	cell	OTR	oxytocin receptor
NHMe	N-methylamide	OXL	5(4H)-oxazolone
NHS	N-hydroxysuccinimide		
Nif	niflumic acid	Pa	pseudomonas aeruginosa
NIR-FT	near-infrared, Fourier-	PA	partial agonist: anthrax
	transform	171	protective antigen
NIR-FT-		PAD	protective antigen
Raman	Near Infrared Fourier	DAGE	paluarulamida gal
	Transformed Raman	PAGE	polyacrylanide gei
	spectroscopy	D 1	
NK-R	neurokinin recentor	Pal	(3-pyridinyi)alanine
NIA	norleucine	D-3-Pal	D-3-(3-pyridyl)alanine
Mlau	N isobutyl glyging	PAL	peptide amide linker 5-(4-
NIC	IN-ISODULYI giyeme		Fmoc-aminomethyl-3,5-
NLS Nma	2 (N mathylamina)hanyayi N		dimethoxy phenoxy)valeric
INIIIa	2-(IN-Ineuryramino)benzoyi; IN-		acid; photoaffinity labeling
	methylanthranyl, N-	PAM	phenylacetamidomethyl resin
	methylalanine	PAO	p-aminophenylarsen(III)oxide
NMM	<i>N</i> -methylmorpholine; N-methyl	PAP	pulmonary artery pressure
	morpholamine	Pbf	2,2,4,6,7-pentamethyl-
NMP	<i>N</i> -methylpyrrolidinone		dihydrobenzofurane-5-sulfonyl
NMR	nuclear magnetic resonance	PBLA	poly-β-benzyl-L-aspartate
NO	nitric oxide	PBLG	poly-y-benzyl-L-glutamate
nOct	<i>n</i> -octanoyl	PBMC	peripheral blood mononuclear
NOE	nuclear overhauser effect;		cells
	nuclear overhauser	PBS	phosphate-buffered saline
	enhancement	PC	prosphate cancer
NOESY	nuclear overhauser enhanced	PCs	proprotein convertases
	spectroscopy	PCIBLA	poly(B-p-chlorobenzy) L-
Npa	2-nitrophenylacetyl	TCIDLA	poly(p-p-entorobenzy) E-
NPN	N-phenyl-naphtylamine	Don	(E) a phonyleinnemoyl
NPY	neuropentide Y	PCD	
5-Novs	5-nitropyridylsulfide	PCK	polymerase chain reaction
Nove	5_nitro_2_nvridinesulfenvl	PD	Parkinson's disease
Ne	2-nitrobenzenesulfonyl	Pd	palladium
	non staroidal anti inflammatory	PDGF	platelet derived growth factor
INSAIDS	dmas	PDI	protein disulfide isomerase
NCD	ulugs	PDMS	polydimethylsiloxane
Nao	non-specifically bound	PDB	protein data bank
INSC	2-(4-	PEG	polyethylene glycol
	nitrophenyisuironyi)ethoxy-	PEGA	polyethylene glycol
	carbonyl		polyacrylamide
NT	neurotensin	PEM	protein epitope mimetics
NII	naltrindol	Pen	penicillamine
NTS	nuclear targeting signal peptide	PES	potential energy surface

PET	positron emision tumography	PTHR	parathyroid hormone receptor
PFG	pulsed field gradient	<i>n</i> -TsOH	p-toluenesulfonic acid
PEGSE	pulsed-field-gradient spin-echo	PTX	pertussis toxin
Pfn	pentafluorophenyl ester	nTvr	phosphotyrosine
PEP	protein fingerprint	PVAc	polyvinylactetate
PFTase	protein farnesyltransferase	PWR	plasmon waveguide resonance
PG	protecting group		(7 azabenzotriazol 1 ylovy)
DU DU	plackstrip homology	I YAOI	(/-azabelizotriazor-r-yloxy)-
Dha	phony lalyaina		havefluorenhaanhata
DISU	thiophonol	DVDOD	(honzotriazol 1 vlovy)
Dht	phthaloyl	1 yb01	(belizoti idina) phasphanium
DI	philatoyi		havefluoronhosphoto
	photo induced erose linking of		nexanuorophosphate
FICUF	unmodified proteins	0-	
Din 1	unnounce proteins	QDs	quantum dots
PINI	protein interacting with NIMA	QCM	quartz crystal microbalance
D'	1	QSAR	quantitative structure-activity
Pip	L-pipecolic acid		relationships
pip	D-pipecolic acid		
PKA	cAMP-dependent kinase A	R CAM	ring-closing alkyne metathesis
PKC	protein kinase C	RCM	ring-closing metathesis: ring-
Plm	plasmepsin		closing alkene metathesis
PMA	phorbol-12-myristate 13-acetate	RDC	residual dipolar coupling
Pmc	2,2,5,7,8-pentamethylchroman-	rDNA	recombinant desoxynucleic
	6-sulfonyl	12101	acid
PMN	polymorphonuclear leukocyte	Rσ	radius of gyration
Pms	2-[phenyl(methyl)sulfonio]	RGA	reporter gene assay
	ethoxy carbonyl	RGD	Arg-Gly-Asn
pNA	<i>p</i> -nitroaniline	RUri	retro-inverso
PNA	peptide nucleic acid	DIC	redicimmunoscintigranhy
<i>p</i> NBS	p-nitrobenzenesulfonyl	DIT	radioimmunoteranhy
Pns	phenylnorstatine		
pNZ	p-nitrobenzyloxycarbonyl	TLys turn	
p.o.	oral administration	THIS DMCD amount	root mean square deviation
POMC	proopiomelanocortin	RMSD, rmsd	root mean square deviation
POPC	1-palmitoyl-2-oleoyl-sn-	RINASC	DNA selesse
	glycero-3-phosphocholine	RNAP	RINA polymerases
POPG	1-palmitoyl-2-oleoyl-sn-3-	RUE	Court and the function of the set
	[phospho -rac-(1-glycerol)]	DODON	Overnauser effect
POPE	1-palmitoyl-2-oleoyl-sn-	RUESY	rotating frame nuclear
	glycero-3-phospho-		Overnauser ennanced
	ethanolamine	DOM	spectroscopy
POPNA	pyrrolidine-based oxy-peptide	ROMP	ring-opening metathesis
	nucleic acid	rOIK	rat oxytocin receptor
PPLA	poly(β -phenethyl L-aspartate)	RP DD UDL C	reversed-phase
PPlase	peptidyl-prolyl isomerase	RP-HPLC	reversed-phase HPLC
PPT	polypurine/polypirimidine tract	rt/RT	room temperature
P1R	PTH receptor-1	RT-PCR	reverse transciptase-polymerase
PR8	A/Puerto Rico/8/34 influenza		chain reaction
	virus strain	RU	resonance units
Pra	propargylglycine	rUT	rat urotensin receptor
PRP	platelet rich plasma	rV1aR	rat vasopressin vasopressor
PrP ^C	cellular prion protein		receptor
ps	picosecond	rV1bR	rat vasopressin pituitary
PS	polystyrene: poly(styrol).		receptor
10	phosphatidylserine	rV2R	rat vasopressin kidney receptor
PSP	nhosphoserine nhosphatase		
PS-SCI	nositional scanning SCI	SA	simulated annealing
PTC	primary tumor cell: phase	SAR	structure activity relationship
	transfer catalysis	SARS	severe acute respiratory
РТН	narathyroid hormone		syndrome
1 1 1 1	Paramytola normone		•

SARS-CoV	SARS coronavirus	TBDMS	tert-butyldimethylsilyl
Sc, sc, s.c.	subcutaneous	TBDMSCl	tert-butyldimethylsilylchloride
SCAM	substituted cysteine	TBS	t-butyldimethylsilyl
	accessibility method	TBTU	2-(1H-benzotriazol-yl)-1,1,3,3-
Sce	Saccharomyces cerevisiae		tetramethyluronium
SCLC	small cell lung cancer		tetrafluoroborate
SCLs	synthetic combinatorial	<i>t</i> Bu	<i>tert</i> -butyl
	libraries	TCE	tetrachloroethane
SD	standard deviation; substitution	TCEP	tris(carboxyethyl)phosphine
	degrees	Тср	tetrachlorophthaloyl
SDF-1	stromal-derived cell growth	TCP	trityl chloride polystyrene
	factor 1	TCR	T cell receptor
SDS	sodium dodecyl sulfate	TD	tetramerization domain
SEC	size exclusion chromatography	TEA	triethylamine
Sec	selenocysteine	TEM	transmission electron
SEER	sequence-enabled reassembly		microscopy
SEM	scanning electron microscopy	TES	triethylsilane
SFTI	sunflower trypsin inhibitor	TF	tail-flick
SH	src homology domain	TFA	trifluoroacetic acid
SHU 9119	Ac-Nle-c[Asp-His-D-Nal(2')-	Tfa	trifluoroacetyl
	Arg-Trp-Lys]-NH ₂	TFE	trifluoroethanol
SICLOPPS	split intein circular ligation of	TFMSA	trifluoromethanesulfonic acid
	peptides and proteins	TfOH	triflic acid
siRNA	small interfering RNA	Tft	4,4,4-trifluorothreonine
SM	sphingomyelin	TG	tentagel
SO	superoxide	THF	tetrahydrofuran
SOD	superoxide dismutase	Thi	β -(2-thienyl)-alanine
SP	substance P	THP	triple-helical peptide;
SPA	scintillation proximity assay		tetrahydropyranyl
SPECT	single photon emission	ThT	thioflavin T
	computed tomography	Thz	thiazolidine-4-carboxylic acid;
SPPS	solid-phase peptide synthesis		thiazolidyl
SPR	surface plasmon resonance	Tic	1,2,3,4-tetrahydroisoquinoline-
SPS	solid phase synthesis		3-carboxylic acid
Sps	2-(4-sulfophenylsulfonyl)-	TIPS; TIS	triisopropyl silane
GL 12	ethoxycarbonyl	TLC	thin layer chromatography
Stat3	signal transduction and	TM	transmembrane, transmembrane
CTD NIMD	activator of transcription 3		helix
SID-NMR	saturation transfer difference	TM, TMD	transmembrane domain;
Stalm	NMR	T1 (A	transmembrane helix
Ste2p	a factor pheromone receptor	I MA	trimesic acid; tissue microarray
51111	saanning tunnelling microscony	1 mob	2,4,0-trimetnoxybenzyl
STM	signal transduction modulators	TMK	tetrametnyirnodamine
STIM	suborimidal	TMSD.	trimethylsilyl
SUIM	succinvl	TMSOTE	trimethylsilyloruu
SV40	simian virus 40	11/15011	trifluoromethanesulfonate
5 4 40	Similari virus 40	тмт	B mothyl 2' 6'
$T_{\alpha 1}$	throws a give of 1	1 191 1	dimethyltyrosine
	triazaovalanhana	TNF	tumor necrosis factor
Tag	tumor antigen	TNTU	2-(5-norbornene-2 3-
T-ag TAPP	$H_T v_{r-D} \Delta l_2 Phe_Phe_NH_1$	11110	dicarboximido)-1 1 3 3-
TASP	template-assembled synthetic		tetramethyluronium
17151	protein(s)		tetrafluoroborate
ТАТ	transactivating transcriptional	TOAC,Toac	2,2,6,6-tetramethylpiperidine-1-
	activator	,	oxyl-4-amino-4-carboxylic acid
TBAF	tetra- <i>n</i> -butylammonium	TOCSY	total correlation spectroscopy
	fluoride	Tos	tosyl
Tbc	tetrahydro-β-carboline	TP5	thymopentin
		TPP I	tripeptidyl-peptidase I

xxxii

Tris	tris(hydroxymethyl)
	aminomethane
Trt	trityl
Tsoc	triisopropylsilyloxy
U 69,593	(5α,7α,8β)-(-)-N-methyl-N-[7-
,	(1-pyrrolidinyl)-1-oxaspiro
	[4.5]dec-8-vl]
	benzeneacetamide
U-II	urotensin-II
UCP	uncoupling proteins
UDP-GlcNAc	uridine diphosphate N-acetyl
	glucosamine
USDA	United States Deprtment of
	Agriculture
UT	urotensin II receptor
UTI	urinary tract infection
UV	ultraviolet spectroscopy
UVR	ultraviolet radiation
UV-Vis	ultraviolet-visible spectroscopy
V1a-R	V1a receptor
VlaR	vasopressin vasopressor
Viuit	receptor
V1bR	vasopressin pituitary receptor
VCD	vibrational circular dichroism
VDAC	voltage dependent anion-
(Drie	selective channel
VEGE	vascular endothelial growth
V LOI	factor
VesCPs	Vesna chemotactic pentides
VIP	vasoactive intestinal peptide
VLDL	very low density lipoprotein
VMA	vacuolar membrane ATPase
vMIP-II	viral macrophage inflammatory
1111111	protein II
VP	vasopressin
∇Phe	2 3-cyclopropyl phenylalanine
V2R	vasopressin kidney receptor
VRF	vancomycin-resistant
VICE	enterococci
vWF	Willebrand factor
XX 7	
W ang	p-benzyloxubenzyl alcohol
WOA	resin
WGA	wheat germ agglutinin
WSCD	water-soluble carbodiimide
WT	wild type
X aa, Xxx	any amino acid
Z	benzyloxycarbonyl;
	pyroglutamic acid
ZF	zinc finger

Contents

Preface	v
Message from the President of the American Peptide Society	vi
Committees of the 19 th American Peptide Symposium	viii
Symposium Sponsors	Х
Symposium Exhibitors	xi
The American Peptide Society	xii
American Peptide Symposia	xiii
The Merrifield Award	XV
The Makineni Lecture Award	xvii
Achievement Award for Scientific and Administrative Excellence	xviii
Peptide Society Travel Grants	xix
Bert Schram Young Investigators' Mini-Symposium	xxi
Young Investigators' Poster Competition	xxii
Abbreviations	xxiv

Merrifield Award Lecture

From Tens to Trillions - Advances in Synthetic Combinatorial Chemistry of	
Peptides, Peptidomimetics and Heterocyclic Compounds Derived from Peptides	3
Richard A. Houghten	

Goodman Memorial

Peptides in the Days of Photonics	
Christian Renner and Luis Moroder	
It All Started in Brooklyn, NY, Forty-five Years Ago!	22
Claudio Toniolo	
Short Transmembrane Peptide Sequences as Nucleation Sites for Globular	26
Protein Folding	
Arianna Rath, Linda Lee, Rachel M. Johnson and Charles M. Deber	
Synthesis and In Vitro Opioid Activity Profiles of Novel Cyclic Enkephalin Analogs	31
Peter W. Schiller, Grazyna Weltrowska, Irena Berezowska, Carole Lemieux,	
Nga N. Chung and Brian C. Wilkes	
A Photo-Controlled β-Hairpin	36
Markus Löweneck, Shou-Liang Dong, Tobias E. Schrader, Wolfgang J. Schreier,	
Wolfgang Zinth, Luis Moroder and Christian Renner	
Structure-Function Relationship Studies of Analogs of PTH(1-11) Fragment	38
Containing Combinations of Aib and (aMe)Nle	
Andrea Caporale, Nereo Fiori, Elisabetta Schievano, Michael Chorev, Stefano	
Mammi and Evaristo Peggion	
Membrane Associated Structure of a Ghrelin Agonist as Determined by NMR	40
Dale F. Mierke, Andrea Piserchio, John Eynon, Jundong Zhang, John E. Taylor,	
Heather Halem, Michael D. Culler and Jesse Z. Dong	
Scaffold, Dendritic and Metal-Assisted Assembly of Collagen-Like Biomaterials	42
Weibo Cai, Sen Wai Kwok, Joseph P. Taulane and Murray Goodman	