

Wiley Series on Solid-Phase Organic Syntheses
Peter J.H. Scott, Series Editor

Solid-Phase Organic Syntheses

Solid-Phase Palladium Chemistry

Volume 2

EDITED BY
PETER J. H. SCOTT

 WILEY

Table of Contents

Solid-Phase Organic Syntheses

Title Page

Copyright

Contributors

Preface

Abbreviations

Part I: Introduction

Chapter 1: An Introduction to Solid-Phase Palladium Chemistry

1 Introduction

2 Palladium-Catalyzed Reactions

3 Polymer-Supported Reagents and Catalysts

4 Palladium Cleavage

5 Conclusion

References

Part II: Palladium-Mediated SPOS

Chapter 2: P-Catalyzed Solid-Phase Decoration of the 2(1*H*)-Pyrazinone Scaffold

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

Chapter 3: One-Step Palladium- and Phenylsilane-Activated Amidation of Solid-Supported Ally Esters

[1 Procedure](#)

[2 Discussion](#)

[References](#)

Chapter 4: Solid-Phase Reactions of Polymer-Bound Arenesulfonates with Aryl Grignard Reagents

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix](#)

[References](#)

Chapter 5: Fluorous Synthesis of 3-Aminoimidazo[1,2-*a*]-Pyridine/Pyrazine Library

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 6: Resin-to-Resin Transfer Reactions \(RRTR\) Via Sonogashira Coupling](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Part III: Immobilized Catalysts and Ligands](#)

[Chapter 7: Polymer-Supported Palladium Catalysts for Suzuki and Heck Reactions](#)

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 8: Solid-Phase Catalytic Activity of a Polymer-Supported Palladium Complex](#)

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 9: Polyaniline-Immobilized Palladium for Suzuki-Miyaura Coupling Reaction in Water](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[References](#)

[Chapter 10: Synthesis of Polymer-Supported Aryldicyclohexylphosphine for an Efficient Recycling in Suzuki-Miyaura Reaction](#)

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[References](#)

[Chapter 11: C-C or C-N Reactions Catalyzed by Diadamantylphosphine Palladium-Based Catalyst Supported on DAB-Dendrimers](#)

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Part IV: Palladium-Mediated Multifunctional Cleavage](#)

[Chapter 12: Solid-Phase Reactions of Resin-Supported Boronic Acids](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 13: A Simple Diversity Linker Strategy Using Immobilized ENOL Phosphonates as Electrophiles for Suzuki-Miyaura Reactions](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 14: Heck Cleavage of Resin-Bound Triazenes](#)

[1 Procedure](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[References](#)

[Chapter 15: Pd-Mediated Cleavage from Tetrafluoroarylsulfonate Linker Units](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

[Chapter 16: Palladium-Catalyzed Solid-Phase Synthesis of Allylic Amines](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix Experimental Supplement](#)

[References](#)

[Chapter 17: Palladium-Catalyzed Solid-Phase Synthesis of 4-Methylene Pyrrolidines](#)

[1 Procedures](#)

[2 Discussion](#)

[Waste Disposal Information](#)

[Appendix: Experimental Supplement](#)

[References](#)

Index

Solid-Phase Organic Syntheses

Editor-in-Chief

Prof. Peter J. H. Scott

University of Michigan, Ann Arbor, MI, USA

Editorial Advisory Board

Prof. George Barany

University of Minnesota, Minneapolis, MN, USA

Prof. Dr. Stefan Bräse

Institute of Organic Chemistry, Karlsruhe, Germany

Prof. Richard C. D. Brown

University of Southampton, Southampton, UK

Prof. Anthony W. Czarnik

University of Nevada, Reno, NV, USA

Dr. Scott L. Dax

Galleon Pharmaceuticals, Horsham, PA, USA

Prof. Ryszard Lazny

University of Bialystok, Bialystok, Poland

Prof. K. C. Nicolaou

The Scripps Research Institute, La Jolla, CA, USA

Dr. Marcel Pátek

Sanofi-Avenits, Tuscon, AZ, USA

Prof. Alan C. Spivey

Imperial College, London, UK

Dr. Patrick G. Steel, Ph.D

University of Durham, Durham, UK

Prof. Patrick H. Toy

University of Hong Kong, Hong Kong, People's Republic of
China

Solid-Phase Organic Syntheses

VOLUME 2
SOLID-PHASE PALLADIUM CHEMISTRY

Edited by

PETER J. H. SCOTT, PhD
*The University of Michigan
Ann Arbor, Michigan*

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care

Department within the United States at (800) 762-2974,
outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Solid-phase palladium chemistry / edited by Peter J. H. Scott.
p. cm. – (Wiley series on solid-phase organic syntheses ; 2)

Includes bibliographical references and index.

ISBN 978-0-470-56665-7 (hardback)

1. Organopalladium compounds. 2. Organic compounds—
Synthesis. 3. Solid-phase synthesis. I. Scott, Peter J. H.

QD412.P4S65 2012

547'.056362-dc23

2011053468

Contributors

Fernando Albericio

Chemistry and Molecular Pharmacology Programme, Institute for Research in Biomedicine, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park-Barcelona, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain

George Barany

Department of Chemistry, University of Minnesota, Minneapolis, MN

Stefan Bräse

Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany

Richard C. D. Brown

The School of Chemistry, The University of Southampton, Highfield, Southampton, UK

Lynda J. Brown

The School of Chemistry, The University of Southampton, Highfield, Southampton, UK

Andrew N. Cammidge

School of Chemistry, University of East Anglia, Norwich, UK

Bertrand Carboni

Institut des Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France

François Carreaux

Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Rennes, France

Chul-Hee Cho

School of Chemical Engineering and Materials Science,
Chung-Ang University, Dongjak-Gu, Seoul, South Korea

Christopher B. Cooper

Department of Early Discovery Chemistry, Bristol-Myers
Squibb Pharmaceutical Research Institute, Princeton, NJ

Hervé Deleuze

UMR 5255 "Institut des Sciences Moléculaires,"
Université de Bordeaux, Talence, France

Maria M. Dell'Anna

Dipartimento d'Ingegneria delle Acque e di Chimica del
Politecnico di Bari, Bari, Italy

Martin L. Fisher

The School of Chemistry, The University of Southampton,
Highfield, Southampton, UK

Agnès Fougeret

Groupe Matériaux, Université de Bordeaux 1/CNRS,
Talence, France

Eric Framery

Université Lyon 1, ICBMS UMR-CNRS 5246, Villeurbanne,
France

Carmen Gil

Instituto de Química Médica, Madrid, Spain

Katarzyna Glegola

Université Claude Bernard Lyon 1, ICBMS, UMR-CNRS
5246, Equipe Catalyse Synthèse et Environnement,
Villeurbanne, France

Karine Heuzé

Groupe Matériaux, Université de Bordeaux 1/CNRS,
Talence, France

Nicole Jung

Karlsruhe Institute of Technology, Institute of Organic
Chemistry, Karlsruhe, Germany

M. Lakshmi Kantam

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

R. Michael Lawrence

Department of Early Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ

Julietta Lemo

Groupe Matériaux, Université de Bordeaux 1/CNRS, Talence, France

Pravin R. Likhari

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India

Yimin Lu

Discovery Chemistry, Fluorous Technologies, Inc., Pittsburgh, PA

Rita S. Majerle

Department of Chemistry, University of Minnesota, Minneapolis, MN;

Department of Chemistry, Hamline University, St. Paul, MN

Piero Mastorilli

Dipartimento d'Ingegneria delle Acque e di Chimica del Politecnico di Bari, Bari, Italy

Vaibhav P. Mehta

Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan, Leuven, Belgium

Zainab Ngaini

School of Chemistry, University of East Anglia, Norwich, UK

Cosimo F. Nobile

Dipartimento d'Ingegneria delle Acque e di Chimica del Politecnico di Bari, Bari, Italy

Kwangyong Park

School of Chemical Engineering and Materials Science,
Chung-Ang University, Dongjak-Gu, Seoul, South Korea

Michael Poss

Department of Early Discovery Chemistry, Bristol-Myers
Squibb Pharmaceutical Research Institute, Princeton, NJ

Christelle Pourbaix-L'Ebraly

Galapagos, Romainville, France

Daniel Rosario-Amorin

Groupe Matériaux, Université de Bordeaux 1/CNRS,
Talence, France

Moumita Roy

Inorganic and Physical Chemistry Division, Indian
Institute of Chemical Technology, Hyderabad, India

Zheming Ruan

Department of Early Discovery Chemistry, Bristol-Myers
Squibb Pharmaceutical Research Institute, Princeton, NJ

Peter Styring

Department of Chemical and Biological Engineering, The
University of Sheffield, Sheffield, UK

Judit Tulla-Puche

Department of Chemistry, University of Minnesota,
Minneapolis, MN;

Institute for Research in Biomedicine, Barcelona, Spain

Erik V. van der Eycken

LOMAC, Department of Chemistry, University of Leuven
(KU Leuven), Celestijnenlaan 200F, Leuven, Belgium

Katy van Kirk

Department of Early Discovery Chemistry, Bristol-Myers
Squibb Pharmaceutical Research Institute, Princeton, NJ

Sylvia Vanderheiden

Karlsruhe Institute of Technology, Institute of Organic
Chemistry, Karlsruhe, Germany

Tom M. Woods

School of Chemical Sciences, The University of Auckland,
Auckland, New Zealand

Wei Zhang

Department of Chemistry, University of Massachusetts
Boston, Boston, MA

Preface

When I had the privilege of taking over as the Editor-in-Chief of *Solid-phase Organic Syntheses* from Anthony Czarnik in 2009, I chose to introduce themed volumes into the series to showcase the elegant solid-phase organic synthesis (SPOS) that has been developed in the last few decades. After completing doctoral studies in solid-phase palladium chemistry with Dr. Patrick Steel at the University of Durham, this area seemed like the natural starting point for continuation of the series. Every organic chemist is aware of, and thankful for, the development of the palladium-mediated cross-coupling reactions. Since their introduction in the late seventies and early eighties, it is fair to say that they have revolutionized the science of carbon–carbon bond formation and become a workhorse in the modern synthetic organic chemistry laboratory. Thus it seems fitting that the release of this volume coincides with the recognition of palladium chemistry and Professors Heck, Negishi, and Suzuki by the Nobel Foundation (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/).

Solid-Phase Organic Syntheses, Volume 2: Solid-Phase Palladium Chemistry initially provides an overview of solid-phase palladium chemistry by Carmen Gil (Instituto de Química Médica, Spain), showcasing the synergistic effect of combining Nobel Prize winning SPOS with Nobel Prize winning palladium chemistry. The remainder of the volume is then divided into three sections offering highlights from the field through a series of monographs covering palladium reactions on solid phase (Part 2), supported ligands and catalysts for palladium chemistry (Part 3), and the use of palladium chemistry as a multifunctional cleavage strategy (Part 4).

I am deeply indebted to the authors and editorial board that have made Volume 2 a reality. These experts in both SPOS and palladium chemistry have responded to this volume with endless enthusiasm, whether by preparing the monographs found herein, or through their careful reviewing of the reported synthetic procedures. Thanks are also due to Tony for entrusting me with the series, and Jonathan Rose at Wiley who has enthusiastically backed this project from the start and patiently seen it through to publication. I also appreciate the support and encouragement of all my family, and particularly my wife Nicole, who tolerates all the early mornings, late nights, and weekends spent in my office, which are essential for bringing such projects to fruition. I would like to dedicate this book to my grandmother, Ena, who passed away in 2011 before publication was complete.

Finally, *SPOS Volume 3* will focus on microwave-enhanced solid-phase synthesis and will be published in due course. Potential authors, as well as guest volume editors, are encouraged to submit proposals for monographs and/or future volumes to the Editor (pjhscott@umich.edu).

Peter J. H. Scott, Ph.D

*The University of Michigan
Ann Arbor, Michigan
October 2011*

Abbreviations

AAEMA	2-(Acetoacetoxy)ethylmethacrylate
acac	Acetylacetone
ACN	Acetonitrile
AcOH	Acetic acid
AIBN	Azobisisobutyronitrile
Ar	Aryl
Boc	<i>tert</i> -Butyloxycarbonyl
Bu	Butyl
BuLi	Butyl lithium
dba	Dibenzylideneacetone
DCM	Dichloromethane
DEAD	Diethyl azodicarboxylate
DIAD	Diisopropyl azodicarboxylate
DIC	<i>N,N</i> -Diisopropylcarbodiimide
DIEA	Diisopropylethylamine
DMAP	4-Dimethylaminopyridine
DME	Dimethoxyethane
DMF	<i>N,N</i> -Dimethylformamide
dppe	1,2-Bis(diphenylphosphino)ethane
dppf	1,1'-Bis(diphenylphosphino)ferrocene
dppp	1,3-Bis(diphenylphosphino)propane
E+	Electrophile
equiv.	Equivalents
Et	Ethyl
EtOAc	Ethyl acetate
EtOH	Ethanol
GC	Gas chromatography
GC-MS	Gas chromatography-mass spectrometry
ICP-AES	Inductively coupled plasma atomic emission spectroscopy
<i>i</i> Pr	<i>iso</i> -Propyl
LC-MS	Liquid chromatography-mass spectrometry
LDA	Lithium diisopropylamide
<i>m</i> CPBA	<i>m</i> -Chloroperbenzoic acid
Me	Methyl
MeOH	Methanol
MW	Microwave
NMR	Nuclear magnetic resonance
OAc	Acetate

PA-Pd	Polyaniline-palladium
PANI	Polyaniline
PEG	Polyethylene glycol
Ph	Phenyl
PS	Polystyrene
PTSA	<i>p</i> -Toluenesulfonic acid
R	Alkyl
rt	Room temperature
SPOS	Solid-phase organic synthesis
<i>t</i> Bu	<i>tert</i> -Butyl
TC	Thiophene-2-carboxylate
TEA	Triethylamine
TES	Triethyl silane
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMEDA	Tetramethylethylenediamine
TMOF	Trimethyl orthoformate
TMS	Tetramethyl silyl
TMSOK	Potassium trimethylsilanolate

Part I

Introduction

Chapter 1

An Introduction to Solid-Phase Palladium Chemistry

Carmen Gil

1 Introduction

Palladium chemistry has a central position in organic chemistry because of its ability to selectively form carbon–carbon and carbon–heteroatom bonds between organic fragments [1].

Palladium-catalyzed reactions represent one of the most powerful and versatile tools in organic synthesis for the preparation of fine chemicals, pharmaceutical intermediates, active pharmaceutical ingredients, and also bioactive drugs [2].

In recent years, the synthesis of combinatorial libraries has emerged as a valuable tool in the search for novel lead structures. The success of combinatorial chemistry in drug discovery is dependent, in part, on further advances in solid-phase organic synthesis (SPOS). The generation of molecular diversity to create libraries for drug discovery was originally focused on the synthesis of peptide and nucleotide libraries. However, the limitation of such libraries is the pharmacokinetic properties of large polymeric and often hydrophilic structures that make these molecules less suitable as leads in drug discovery [3]. It is therefore desirable to develop methods to prepare small,

nonpolymeric molecules with sufficient diversity [4]. The rapid generation of such small-molecule libraries can be executed effectively by employing combinatorial or simultaneous parallel synthesis on solid supports [5-7]. Considerable work has been carried out to optimize many of the useful reactions from the organic chemists' arsenal for solid-phase conditions and to design versatile linkers [8, 9]. In this respect, palladium chemistry is a powerful synthetic methodology for the preparation of libraries of small organic compounds by multiparallel synthesis schemes on solid supports [10]. In particular, the development of reliable procedures with a wide scope for the formation of carbon-carbon bonds is of great importance together with the new solid-supported reagents, ligands, and catalysts [11, 12].

Some of the commonly employed palladium-catalyzed organic couplings that lead to the formation of carbon-carbon or carbon-heteroatom bonds have been named by prominent researchers in this field, such as Stille, Heck, Suzuki, Sonogashira, Kumada, Negishi, Nozaki-Hiyama, Buchwald-Hartwig, and Tsuji-Trost [13]. These reactions are usually very efficient, although the main drawback is that palladium is often retained by the isolated product. This is, however, a serious drawback because pharmaceutical ingredients official guidelines place exacting limits on the permissible levels of heavy-metal contaminants. In this sense, the use of resin-bound catalyst systems is particularly beneficial in reducing metallic contamination of the final products [14].

Numerous research groups have developed new metal complexes and ligands, expanding the scope of these transformations to give access to more complex molecules [15, 16]. The development of solid-phase palladium chemistry is also another approach to access such molecules, offering straightforward syntheses, without tedious and time-consuming purifications.

2 Palladium-Catalyzed Reactions

Palladium-catalyzed coupling reactions are very efficient for the introduction of new carbon-carbon bonds onto molecules attached to solid supports. The mild reaction conditions, the compatibility with a broad range of functionalities, and high reaction yields have made this kind of transformation a very common tool for the combinatorial synthesis of small organic molecules.

2.1 Heck Reactions

This reaction has become one of the most powerful tools to bring up complex structural changes, in particular when conducted intramolecularly. Owing to the mild conditions employed and the toleration of many functional groups, the Heck reaction has been successfully adapted in a broad scope to organic synthesis in the solid phase [11, 17]. This reaction between terminal olefins and alkyl/aryl halides has been widely employed in various intra- and intermolecular versions in solid phase, taking advantage of the ready accessibility of starting materials. The Heck reaction involves immobilized aryl or alkenyl halides with soluble alkenes as well as vice versa (Scheme [1.1](#)) [18, 19].

Figure 1.1 Heck reactions in solid-phase synthesis [18].