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Preface

As its title indicates, this book is devoted to spatial analysis along networks, referred
to as network spatial analysis, or more explicitly, statistical and computational
methods for analyzing events occurring on and alongside networks.Network spatial
analysis is of practical use for analyzing, among other things, the occurrence of
traffic accidents on highways, the incidence of crime on streets, the location of
stores alongside roads, and the contamination of rivers (Chapter 1 introduces many
applications). This usefulness is the main reason we focus on network spatial
analysis in this volume. However, there is also a more general and somewhat more
ambitious justification for this work. That is, when viewed from a broader
perspective, we expect that network spatial analysis will prove to be a first step
toward next-generation spatial analysis.
Having reviewed the extant literature on spatial analysis, we note that most

empirical studies incorporate spatially aggregated data across subareas, such as
administrative districts, census tracts, and postal zones. We refer to this type of
spatial analysis as subarea-based spatial analysis or meso-scale spatial analysis.
One of the earliest and most notable examples of this type of spatial analysis is
included in a compilation titled The City (Park, Burgess, and McKenzie, 1925),
written by sociologists at the Chicago School (sometimes described as the
Ecological School). More specifically, Burgess (1925) surveyed land use of
subareas in Chicago and formulated the concentric-zone model, subsequently
followed by Hoyt’s (1939) sector model and the Harris–Ullman multiple nuclei
model (Harris and Ullman, 1945).
Since then, subarea-based spatial analysis has become one of the most important

approaches to empirical spatial analysis. Even today, we frequently employ
subarea-based spatial analysis for empirical studies because subarea data, including
population and other census-related data, are widely available and because it is
generally straightforward to apply ordinary statistical techniques, including re-
gression analysis, to the attribute values of subareas. Unlike the empirical literature,
we find that the development of most theoretical work on spatial analysis has
assumed an ‘ideal space’, that is, real space is represented by unbounded homo-
geneous space with Euclidean distance. This ideal space is convenient for devel-
oping pure theories of spatial analysis or spatial stochastic processes; indeed, the
derivations of many useful theorems employ this assumption (see, e.g., Illian et al.,
(2008)). However, ideal space is far from the real world.



In the late twentieth century, the availability of detailed spatial data increased
dramatically thanks to rapid progress in data acquisition technologies, such as the
global positioning system (GPS) and many kinds of geosensors. Better data
availability potentially enables us to analyze spatial events in detail by representing
individual entities in the real world in terms of geometric objects in two- or three-
dimensional Cartesian space instead of aggregating them into subareas (see
Chapter 2 for this representation).We describe this possible form of spatial analysis
as object-based spatial analysis or micro-scale spatial analysis, in contrast to the
well-established subarea-based spatial analysis or meso-scale spatial analysis. At
present, however, the methods for micro-scale spatial analysis are at an early stage.
We believe that one clue to micro-scale spatial analysis would be to represent real
space by networks embedded in two- or three-dimensional Cartesian space. This is
because many kinds of events or activities in the real world are constrained by
networks, such as streets, railways, water and gas pipe lines, rivers, electric wires,
and communication networks. A first step toward micro-spatial analysis would
thus appear to be network-constrained spatial analysis, which is themain concern of
this volume.
In network spatial analysis, we measure the shortest-path distance. Unfortunate-

ly, its computation is much more difficult than that of Euclidean distance because it
requires the management of network topology. Therefore, network spatial analysis
becomes practical only when efficient computational methods are available.
Dijkstra (1959) developed a key algorithm for this purpose in the middle of last
century. Since then, there has been extensive study of location problems on
networks by a variety of researchers, mainly in operations research (Handler and
Mirchandani, 1979; Daskin, 1995; for a review, see Labbe, Peeters, and Thisse
(1995)). We should note that the focus in these studies has been locational
optimization or the computing of network characteristics (e.g., Kansky, 1963;
Haggett and Chorley, 1969), with rather less attention paid to the statistical analysis
of events on networks.
To fill this gap in the literature, we develop statistical and computational methods

for network spatial analysis by introducing computational methods originally
developed for operations research and computational geometry (Preparata and
Shamos, 1985; Chapter 3 in this volume presents some basic computational
methods). In this sense, the network spatial analysis presented in this volume is
a first step toward micro-scale spatial analysis. However, we cannot present real
world space by either network or Euclidean space alone as it is a complex hybrid
system with elements of both. The next step, then, would be object-based spatial
analysis in a hybrid space consisting of a discrete network space with shortest-path
distance and a continuous space with Euclidean, or more generally, geodesic
distance. An initial attempt is Cressie et al. (2006).
We are now in the midst of an ongoing revolution brought about by information

and communication technologies. In the future, microcomputer tips, tags, and
geosensors will be embedded in almost every entity (including moving objects) in
our environment, and the integration of these devices with communication systems
(e.g., the Internet) will establish an intellectual system joining the virtual world of

xiv PREFACE



computers and the global real world. This systemwill then realize a society we refer
to as the ubiquitous computing society, in which at any time and in any place, people
can receive the most appropriate personalized information for action given their
particular circumstances in time and space (Sakamura and Koshizuka, 2005). To
construct this system,micro-scale spatial analysis is expected to extend to real-time
spatial analysis, that is, spatial analysis in which the circumstances of an acting
body (including a person, a group of persons, a company, or possibly a robot) are
analyzed and appropriate personalized information for action is derived almost
instantaneously (Okabe, 2009a, 2009b). We intend that this volume, in presenting
state-of-the-art methodology for network spatial analysis, will contribute a first
step toward micro-scale spatial analysis and encourage our readers to further
develop micro-scale spatial analysis and, from there, tackle the challenge of
real-time spatial analysis.

Atsuyuki Okabe
Kokichi Sugihara

March 2012

PREFACE xv





Acknowledgements

When we first thought of the concept underlying this book in June 2007, we
consulted Noel Cressie on possible publication. In turn, he was kind enough to
introduce our proposal to the statistics and mathematics section at John Wiley. A
positive response meant that our long project could begin in September 2007. Since
then, so very many people have helped us in different ways in developing and
presenting this book that it would be impossible to acknowledge all of them
individually.
To start with, we are very grateful to those who have read our drafts and offered

useful comments, particularly Ikuho Yamada on the general concepts underpinning
network spatial analysis (Chapters 1 and 2) and spatial autocorrelation (Chapter 8),
Toshiaki Satoh on kernel density estimation (Chapter 9) and GIS-based tools
(Chapter 12), and Kei-ichi Okunuki on the Huff model (Chapter 11). Our special
thanks also go to those with whom we discussed related subjects and who in turn
provided us with inspiration. These especially include Mike Tiefelsdorf and Barry
Boots on spatial autocorrelation, YuzoMaruyama and Yonghe Li on kriging, Shino
Shiode on inverse-distance weighting and cell counting, and Hisamoto Hiyoshi on
spatial interpolation. They also include Atsuo Suzuki, Takehiro Furuta, and Shinji
Imahori on equal cell splitting, Kei-ichi Okunuki and Masatoshi Morita on the K
function method, and Yasushi Asami and Yukio Sadahiro on urban analysis.
We would also like to express our thanks to those who helped us to run the

necessary programs, particularly Toshiaki Satoh, Kayo Okabe, Akiko Takahashi,
and the staff at theCenter for Spatial Information Science (CSIS) at theUniversity of
Tokyo and the Information Science Research Center at Aoyama Gakuin University.
We are also indebted to Ayako Teranishi for collecting the more than 500 related
papers, entering them in our database, and editing the references and compiling the
index, and to Tsukasa Takenaka for constructing the online database with which
we could develop our book while wewere away. We also thankMasako Yoshida for
the retrieval program used for the references, Tetsuo Kobayashi for collecting
research articles, and Aya Okabe for designing the website, along with the web
crew members involved in its management at CSIS, through which we received
many practical comments on the GIS-based toolbox known as SANET from users
across 51 countries.
We are thankful to the staff at John Wiley, particularly Richard Davies, Ilaria

Meliconi, Heather Kay, Susan Barclay, Kathryn Sharples, and Prachi Sinha Sahay
for their helpful assistance. We also acknowledge a grant-in-aid by the Japan



Society for the Promotion of Science for a project entitled ‘Development of
methods, algorithms, and GIS-based tools for statistical spatial analysis on
networks’ (#20300098), and data provision by the Chiba Prefectural Police, NTT
Data, and CSIS. Finally, we thank our respective partners, Kayo Okabe and Keiko
Sugihara, for their lifelong encouragement and invaluable support before and
during the writing of this book.

xviii ACKNOWLEDGEMENTS



1

Introduction

This book presents statistical and computational methods for analyzing events that
occur on or alongside networks. To this end, the first three chapters are concerned
with preparations. This chapter shows the scope of this book, Chapter 2 fixes a
general framework for spatial analysis, and Chapter 3 describes computational
methods commonly used throughout the subsequent chapters. In this introductory
chapter, we first describe the events under consideration, i.e., events that occur on
and alongside networks, termed network events. Second, we show that if traditional
spatial analysis assuming a plane with Euclidean distances, referred to as planar
spatial analysis, is applied to network events, then it is likely to lead to false
conclusions. Third, to overcome this shortcoming, we propose a new type of spatial
analysis, namely network spatial analysis, which assumes a network with shortest-
path distances. Fourth, we review studies on network events in the related literature
and show how to apply network spatial analysis to those studies. Last, we describe
the structure of the twelve chapters of the book and suggest how to read them
according to the reader’s interests. Note that network spatial analysis viewed from a
board perspective is described in the preface of this volume.

1.1 What is network spatial analysis?

To introduce this new type of spatial analysis, we first define a key concept, network
events, and next consider typical questions about network events to be solved by
network spatial analysis. We then describe the salient features of network spatial
analysis in contrast to the traditional planar spatial analysis.

Spatial Analysis along Networks: Statistical and Computational Methods, First Edition.
Atsuyuki Okabe and Kokichi Sugihara.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



1.1.1 Network events: events on and alongside networks

In the real world, there are numerous and various events that are strongly
constrained by networks, such as car crashes on roads and fast-food shops located
alongside streets. We call them network-constrained events (Yamada and Thill,
2007) or network events for short. Network events can be classified into two classes:
events that occur directly on a network (e.g., car crashes on a road), and events that
occur alongside a network rather than directly on it (e.g., fast-food shops located
alongside a street). We refer to the former as on-network events and the latter
as alongside-network events. Consequently, network events consist of on-network
events and alongside-network events (Figure 1.1). Note that we sometimes use
‘along’ for both ‘on’ and ‘alongside.’
Figure 1.2 illustrates an actual example of on-network events, where each dot

represents a traffic accident around Chiba station, Japan. As with this example,
many types of network event have been reported in the related literature, including
pedestrian and motor vehicle street accidents, roadkills of animals on forest roads,
street crime sites, tree spacing along the roadside, seabirds located along a coastline,
beaver lodges in watercourses, levee crevasse distribution on river banks, leakages
in gas and oil pipelines, breaks in a wiring network, disconnections on the Internet,
and blood clots in a vascular network (studies on network events including these
examples will be reviewed in Section 1.2).
Figure 1.3 depicts an actual example of alongside-network events, where the

black dots indicate advertisement agency sites alongside streets in Shibuya ward,
one of the subcentral districts in Tokyo. There are many facilities that are located
alongside street networks within densely inhabited areas. In fact, the entrances to
almost all facilities in a city are adjacent to streets and users access amenities
through these (Figure 1.1). Consequently, the locations of almost all facilitieswithin
an urbanized area can be regarded as alongside-network events.

network (constrained) events

alongside-network eventson-network events

SANET

Store

Figure 1.1 Network (constrained) events consisting of on-network events and
alongside-network events.
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0 0.5 1.0 km

Figure 1.3 The distribution of advertisement agency sites (the black points)
alongside streets (the gray line segments) in Shibuya ward, one of the subcentral
districts in Tokyo.

Tokyo Bay

0 1 2 km

Figure 1.2 Sites of traffic accidents around Chiba station, Japan (private roads are
not shown).
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On- and alongside-network events such as those in the above examples are the
major concern of this book.More specifically, this book primarily focuses on spatial
distributions and relationships of such events on and alongside networks. Typical
questions to be discussed in this volume are as follows:

Q1: How can we obtain the catchment areas of parking lots in a downtown
area including one-way streets, assuming that drivers access their nearest
parking lots?

Q2: Do boutiques tend to stand side-by-side alongside streets in a downtown area?

Q3: Do street burglaries tend to take place near railway stations?

Q4: Is the roadside land price of a street segment similar to those of the adjacent
street segments?

Q5: How can we locate clusters of fashionable boutiques alongside downtown
streets?

Q6: How can we estimate the density of traffic accidents and street crimes
incidence, and how can we identify locations where the densities of those
occurrence are high, referred to as black spots and hot spots?

Q7: How canwe spatially interpolate an unknownNOx (nitrogen oxides) density at
an arbitrary point on a road using knownNOx densities at observation points in
a high-rise building district, such as Midtown Manhattan?

Q8: Howcanweestimate theprobabilityofaconsumerchoosingaspecificfast-food
shop among alternative shops located alongside streets in a downtown area?

1.1.2 Planar spatial analysis and its limitations

To answer the above types of question,wemight conventionally use spatialmethods
that assume:

AP1: Events occur on a continuous (unbounded) plane.

AP2: If amethod for analyzing the events includes distance variables, the distances
are measured by Euclidean distance.

These types of spatial approach are referred to as planar spatial methods, and
analyses made in this way are termed planar spatial analyses. Originally, planar
spatial methods were designed for analyzing events on a plane, but in practice, as a
matter of convenience, planar spatial methods are often applied to network events.
However, this use is likely to lead to false conclusions, which are clearly demon-
strated in Figure 1.4.
Having assessed the distribution of points in Figure 1.4a, nobody would

consider that the points are randomly distributed. This view is true if the points
are considered as being distributed on a plane; however, this becomes false when
the points are seen to be located on a network indicated by the line segments in
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Figure 1.4b. In fact, the points in this figure are randomly generated according
to the uniform distribution across the network (for details, see Section 2.4.2 in
Chapter 2). Figure 1.4 provides the following warning: analysis of network events
using a planar spatial method is likely to lead to false conclusions. We shall show
examples in subsequent chapters.
The second assumption AP2, i.e., the Euclidean distance assumption, is also

arguable. The reasons for making this assumption are:

. it is much easier to compute Euclidean distance on a plane than the shortest-path
distance on a network; and

. it is believed that the shortest-path distance is approximated by Euclidean
distance.

The first reason remains true, although the difficulty is nowadays reduced
because the use of geographical information systems (GIS) makes it easy to
manage network data and to calculate shortest-path distances (a concise intro-
duction to GIS is provided by Okabe (2004, 2005, Chapter 1)). The second reason
may be true over a large region, but the validity of this concept is questionable
across a small area or within a city. For example, Maki and Okabe (2005) report
that in Kokuryo, a suburb of Tokyo, the difference between shortest-path distances
and their corresponding Euclidean distances is significant if the Euclidean
measurement is less than 400m (see Figure 1.5). In addition, as shown inTable 1.1,
the average radii of the service areas of many types of downtown store, exem-
plified by Shibuyaward in Tokyo, are less than 400m. Planar spatial methodsmay
be inappropriate therefore for analyzing alongside-network location events
affected by trip behavior (for a further discussion, see Section 6.3 in Chapter 6).

(a) (b)

Figure 1.4 Point distributions: (a) nonrandomly distributed points on a bounded
plane, (b) randomly distributed points on a network (note that the point distributions
in (a) and (b) are the same).
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1.1.3 Network spatial analysis and its salient features

To overcome the above limitations of planar spatial methods, we now introduce a
new type of spatial analysis that assumes:

AN1: Events occur on and alongside a network.

AN2: If amethod for analyzing the events includes distancevariables, the distances
are shortest-path distances.

Corresponding to the planar spatial methods mentioned above (AN1 and AN2
correspond to AP1 and AP2, respectively), we call these methods network spatial

Table 1.1 Average radii of service areas in Shibuya ward, Tokyo.

Store type Average radius (m)

Aromatherapy shop 282

Bag shop 271

Interior design shop 249

Daily necessities store 217

Preparatory school 216

Apartment estate agent 175

Printing store 167

Cafe 130

Japanese-style restaurant 106

Clothing store 85

Beauty shop 73

1000 400300 m  005002

1

2

3

4
ratio

Figure 1.5 Ratio of the shortest-path distance to its corresponding Euclidean
distance for the street network in Kokuryo, a suburb in Tokyo (data source: Maki
and Okabe (2005)).
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methods, and analyses that use network spatial methods, we call network spatial
analyses. It should be noted that network spatial analysis does not imply the
analysis of a network itself, such as geographical network analysis (Haggett and
Chorley, 1969), communication network analysis (Kesidis, 2007), and circuit
network analysis (Stanley, 2003). To avoid this confusion, we could use the terms
on- or alongside-network spatial analysis, network-constrained spatial analysis
(Yamada and Thill, 2004), network-based spatial analysis (Downs and Horner,
2007a, 2007b; Shiode, 2008) or more strictly, spatial analysis on and alongside
networks. In this text, we use network spatial analysis for short.
We make a few remarks on the above two assumptions, AN1 and AN2. The first

assumption AN1 describes places where events occur. The on-network relation
is obvious. Events occur exactly on a network, such as traffic accidents. The
alongside-network relation includes fairly broad spatial relations. It implies that the
physical unit of an event (e.g., a store located at a site) has an access point on
a network (the entrance of the store indicated by the black circle in Figure 1.6a) or
the physical unit (the lot of the store) shares a common boundary line segmentwith a
network (the bold line segment in Figure 1.6b). In addition, the alongside-network
relation includes relations in which the physical unit of an event may intersect a
network, for instance, a river intersects a road (Figure 1.6c) or a network goes
through a forest area (Figure 1.6d). Computational treatments of these alongside-
network relations are developed in Chapter 3 in detail.
The second assumption, AN2, specifies distance variables included in spatial

methods. Consider, for instance, the analysis of boutique clusters in a downtown
area using cluster analysis (for details, see Chapter 8). Because boutiques in clusters
in a downtown area are located side-by-side alongside streets and customers access
boutiques from entrances facing streets, it is natural to measure the closeness in
terms of the shortest-path distance along streets. If a river separates two boutiques,
it is not natural to assume that the boutiques belong to the same cluster even if the
Euclidean distance between them is short. Underlying activities that result in
boutique clusters are trips through streets, for example, window-shopping on
sidewalks. In addition, many kinds of activities in a city are achieved through a
street network, and so the configuration of activities may be influenced by trip

(d)(a) (c)(b)

Figure 1.6 Alongside-network relations: (a) an access point (the black circle) of
a polygon to a network (the horizontal line segment), (b) a boundary line segment of a
polygon sharedwith a network (the bold line segment) (c) an intersection point of two
networks (theblackcircles), (d) anetwork intersectinganarea (thebold line segment).
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behavior constrained by a street network. Consequently, network events may be
best analyzed in terms of the shortest-path distance.
It should be noted, however, that there may be cases in which the shortest-path

distance is not appropriate even if events occur on a network. For instance, consider
the service area of a cell phone antenna. Although cell phone antennas stand on the
edge of a street, their service areas are determined by Euclidean distance, because
electric waves go straight through the air. The reader who wants to use a network
spatial method should confirm whether or not the network spatial method is
appropriate even when events are network events.
We notice from the above definition of network spatial analysis that it has salient

features distinct from those of planar spatial analysis. First, by definition, network
spatial analysis can properly analyze events occurring on and alongside a network.
As a result, we can avoid the misleading conclusion illustrated by Figure 1.4. It is
apparent from that figure that the selected points inevitably form clusters on a plane,
because the points can exist only on a network. In fact, Yamada and Thill (2004)
claimed that a planar spatial method (theK functionmethod) overestimates clusters
of traffic accidents in Buffalo (for details, see Chapter 6). Lu and Chen (2007) gave
similar warning when analyzing urban crime distributed along streets. Such an
overestimation is likely to happen not only for on-network events but also for
alongside-network events. Therefore, clusters of stores in a city examined by planar
spatial methods should be reexamined by network spatial methods.
Second, network spatial analysis can easily take account of directions, such as

directions of current in a river and traffic flow regulation on a street network. In
cities, particularly in downtown areas, many streets are one-way. In fact, about one
third of streets in the downtown area ofKyoto are one-way (Okabe et al., 2008). This
implies that we cannot precisely estimate the delivery service areas of retail stores
(e.g., pizza delivery stores) with Euclidean distances. Alternatively, we estimate the
service areas in terms of the shortest-path distance on a directed network, and this
estimation is investigated in detail in Chapter 4 (deterministic service areas) and
Chapter 11 (probabilistic service areas).
Third, network spatial analysis can treat detailed networks using a common data

structure. In a simple case, we represent a street by a line segment, but the streetmay
consist of several components. For example, a street consists of vehicular roads
(with two-way lanes), sidewalks, and crossings (Figure 1.7a). We can represent
these details by a set of networks, as shown in Figure 1.7b, that share the same data
structure (see Chapters 2 and 3).
Fourth, network spatial analysis can easily treat networks in three-dimensional

space, such as underpaths and crossover bridges. This easy treatment is powerful
when we analyze, for example, the incidence of pickpockets in a department store,
egg-laying sites in an ant nest or blood clots in a vascular network. Figure 1.8
illustrateswalkways, stairs, up/down escalators, and elevators in a department store,
which are represented by a directed network.
Fifth, as will be shown in Section 2.3, network spatial analysis can treat

nonuniform activities on a network more easily than planar spatial analysis can.
While traditional spatial analysis methods are mostly designed to test the null
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hypothesis that events are uniformly distributed over a plane or network, this
assumption is often violated in real-world phenomena. Consider, for example,
traffic accidents on a road network. Obviously, traffic accidents do not occur
uniformly across the network. Traffic accidents result from many factors, one of
which is traffic volume (see Section 1.2.2). It is likely that the density of traffic
accidents is proportional to traffic volume which naturally varies over a road
network. Therefore, we cannot directly apply the traditional methods that assume
uniform traffic volume to the distribution of traffic accidents resulting from
nonuniform traffic volume. It is difficult to incorporate such nonuniformity in
planar spatial analysis. Fortunately, however, we have good ‘magic’ that transforms
a nonuniform density of an activity to a uniform density of the activity (to be shown
in Section 2.4 in Chapter 2), to which we can apply traditional spatial methods
assuming a uniform density. Through this transformation, we can easily analyze
nonuniform activities on networks.

Figure 1.8 Walkways, stairs, up/down escalators, and elevators in a department
store in Tokyo, where the circles indicate toilets (provided by T. Satoh). The
subnetworks in different gray colors indicate the Voronoi cells of the three-
dimensional network Voronoi diagram generated by the toilets (for definition, see
Chapter 4).

(b)(a)

Figure 1.7 Entities represented by networks: (a) sidewalks, vehicular roads and
crossing (entities), (b) the networks representing those entities.
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Sixth, network spatial analysis gains analytical tractability because a network
consists of one-dimensional line segments. Mathematical derivations on a one-
dimensional space are more tractable than those on a two-dimensional space. For
instance, to derive indexes or statistics, we often do integral computation, and
single-integral computation is easier than double-integral computation. Therefore,
we may obtain exact statistics for a network that could not be obtained for a plane.
Last, we should note the shortcomings of network spatial methods. On a plane,

once the coordinates of points are given, we can easily compute the Euclidean
distance between them. On a network, however, computation of the shortest path
is not so simple and requires several steps. First, we must construct a database for
managing a network. In practice, point data and network data are obtained from
different sources and points that are supposed to be on a network are likely to be
off the network rather than exactly on the network. Therefore, second, we must
assign the points to the network. Third, wemust use an algorithm for computing the
shortest path on a network. In addition, wemust performmany kinds of geometrical
computation inherent in network spatial analysis. As a result, it is not straightfor-
ward in practice to extend statistical methods for planar spatial analysis to those for
network spatial analysis. Network spatial analysis becomes practical only when its
computation is possible. That is why the subtitle of this book is Statistical and
Computational Methods. The computational methods in each chapter show how
to solve difficult geometric computations encountered in network spatial methods
in practice.

1.2 Review of studies of network events

As the above salient features indicate, network spatial analysis provides a suitable
and powerful approach to the analysis of events occurring on and alongside
networks. In fact, we can find many empirical studies of network events in various
fields, although they do not always call their analyses network spatial analysis. In
this subsection, we review these studies, but note that our review is not exhaustive
and that our intent is merely to provide illustrative examples to be discussed in the
following chapters.

1.2.1 Snow’s study of cholera around Broad Street

Primitive qualitative network spatial analysis might date back many centuries ago
when, for instance, a Roman ruler considered the location of colony settlements
along Roman roads (Hodder and Orton, 1976). As far as we know, scientific
quantitative network spatial analysis originated from John Snow’s study in themid-
nineteenth century (Snow, 1855, 1936). John Snow’s cholera map (Figure 1.9),
which he called a diagram of the topography of the outbreak (Snow, 1855),
illustrated one of the worst outbreaks of cholera that occurred around Broad Street
and Golden Square in London in the mid-nineteenth century. The black bars along
streets in Figure 1.9 indicate the number of victims. To find the source of the
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