PRACTICAL GUIDE TO

DIAGNOSING STRUCTURAL MOVEMENT IN BUILDINGS

Contents

Introduction

<u>List of Figures</u>

Acknowledgements

Part 1 First Principles

- 1.1 First Principles
- 1.2 Crack Patterns and Cracks
- 1.3 Rotational Movement
- 1.4 Contra Rotational Movement
- 1.5 Weak Routes
- 1.6 Load Distribution
- 1.7 Movement and Orientation
- 1.8 Summary of First Principles and Process

Part 2 Cracks in Buildings not Related to Foundations

- 2.1 Expansion Cracking
- 2.2 Cavity Wall Tie Corrosion
- 2.3 Corrosion of Metal Built into Walls
- 2.4 Vibration of Built in Fixings
- 2.5 Roof Spread
- 2.6 Springing from Deflected Beams
- 2.7 Lack of Lateral Stability
- 2.8 Lack of Lateral Stability in Modern Gable Walls
- 2.9 Overloaded Beams
- 2.10 Absence of Lintels (Beams) Over Openings in Cavity Walls
- 2.11 Overloaded Floors
- 2.12 Overloaded Walls

- 2.13 Differential Movement
- 2.14 Arch Thrust and Arch Flattening
- 2.15 Load Path Cracking
- 2.16 Bulging of Walls due to Decay of Bonding Timbers
- 2.17 Bulging and Separation in Solid Brick Walls
- 2.18 Separation of Rubble Filled Stone Walls
- 2.19 Floor Slab Settlement (Compaction)
- 2.20 Load Concentrations
- 2.21 Sulphate Attack
- 2.22 Concrete Block Shrinkage
- 2.23 Shrinkage of Calcium Silicate Bricks

Part 3 Cracks in Buildings Related to the Foundations and Ground Movement

3.1 Introduction

- 3.1.1 Design for Load
- 3.1.2 Design for Stability
- 3.1.3 Identifying Below Ground Defects
- 3.2 Foundation Movement caused by Clay Shrinkage
- 3.3 Clay Heave
- 3.4 Seasonal Expansion of Clay Subsoil
- 3.5 Eccentric Loading on Foundations
- 3.6 Uneven Loading
- 3.7 Load Concentrations on Foundations
- 3.8 Differential Foundation Movement
- 3.9 Initial Settlement after Construction or Alterations
- 3.10 Leaking Drains and Water Discharge Near to Buildings
- 3.11 Drains and Drain Trenches

Part 4 Repair Methods

- 4.1 Introduction
- 4.2 Re-pointing
- 4.3 Re-pointing with Epoxy Mortar
- 4.4 Stitching in Brickwork
- 4.5 Reinforcing Brick Mortar Joints
- 4.6 Tie Bars
- **4.7 Restraint Straps**
- 4.8 Buttresses/Piers
- 4.9 Preventing Roof Spread
- 4.10 Underpinning
- 4.11 Expanding Foam Underpinning
- 4.12 Grouting
- 4.13 Root Barriers

<u>Index</u>

PRACTICAL GUIDE TO DIAGNOSING STRUCTURAL MOVEMENT IN BUILDINGS

Malcolm Holland B.SC (Hons), MRICS

This edition first published 2012 © 2012 by John Wiley & Sons, Ltd

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered Office
John Wiley & Sons, Ltd, The Atrium, Southern Gate,
Chichester, West Sussex,
PO19 8SQ, UK

Editorial Offices

9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, Figurecopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is

designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Holland, Malcolm.

Practical guide to diagnosing structural movement in buildings / Malcolm Holland.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-65910-6 (pbk. : alk. paper)

1. Buildings-Defects. 2. Earth movements and building. 3. Structural analysis

(Engineering) 4. Building failures. 5. Buildings-Repair and reconstruction. I. Title.

TH441.H635 2012 690'.21-dc23

2011051077

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image courtesy of Shutterstock
Cover design by Edge Creative www.edgecreativestudio.com

Introduction

It is often the layman's first reaction when cracking is observed in a building, that it must be the foundations and that it is serious. This is not true.

In the vast majority of cases it is not subsidence or settlement of the foundations and in most cases cracks do not indicate a serious defect.

So when analysing cracks, it is essential to always keep an open mind. A good rule of thumb for the beginner is to try to find what has caused the crack other than foundation movement. Only when all other possibilities have been ruled out, consider then whether it is foundation movement. In my experience (teaching university students and graduate-surveyors) it is very difficult to instil this discipline. There is a great temptation to jump to a conclusion or to shortcut the process of analysis.

Many people, including surveyors, are nervous about diagnosing cracks. This is understandable. consequences of getting it wrong can be potentially onerous. It is a subject that is difficult to teach in the lecture theatre and there may be little or no time for field experience within an academic syllabus at university. Most text books on the subject are aimed more towards Engineers or Building surveyors, who specialize in this area. Necessarily such books are very technical in nature. This book is not aimed at the experienced engineer or surveyor. It is primarily intended for the relatively inexperienced surveyor, engineer, undergraduate or even competent layman. It is intended as a practical guide or as on site manual. The intention is to remain as un-technical as possible. It avoids references to regulations, digests and other technical sources. These can be found elsewhere in other books on the subject. The book is concerned with identification and diagnosis not the detailed specification of remedial work.

The intention is to know, with a reasonable level of confidence, when movement is potentially serious or not. To know when it is necessary to call in the more experienced or qualified professional to deal with it.

The purpose of this book is to show that by understanding one simple first principle and by following a simple methodology, the vast majority of cracks, probably as many as nine out of ten cracks, can be diagnosed in just a few minutes.

By looking at the cracks in a little more detail and by understanding the factors that distort crack patterns, this diagnosis rate can be raised even further.

Couple this with a reasonably good knowledge of building construction and the key features of the most common causes of cracking; and almost all cracks can be diagnosed relatively quickly and with a high degree of confidence. There will however always be some cracks that cannot be diagnosed from a single inspection. Inevitably, when movement first starts to develop, the evidence can be insufficient to reach a conclusion. In some cases movement will have to be monitored for a period of time. In other cases the only way to obtain enough evidence to make a diagnosis, might involve opening up the structure of a building or carrying out excavations to expose the foundations. Material or sub soil samples may need to be taken for testing. A building may need to be monitored for a period of time to make a diagnosis or to confirm apreliminary opinion. The number of cases where such action is necessary is likely to be small providing that the basic principles are understood and applied in an objective manner.

This may seem too easy and too good to be true but why should it not be true? Cracks are caused by a simple physical process and the physics always acts in the same way. It is a 'law' of physics; there is no hidden agenda, no politics; just a simple physical process. Tension in a material or structure will act to try to pull it apart.

When the tension is sufficiently large in relation to the strength of the material it will pull it apart and cause a crack. It is a simple physical process in the same way that adding heat to a liquid causes a physical process of temperature rise and when enough heat is added in relation to the boiling point of the liquid it will cause it to boil. It will always give the same result.

This book provides a methodology by which cracks and movement in buildings can be diagnosed.

The book is in four parts. The first part describes the first principles. The second part of the book contains 'swatches' which describe the key features of the most common forms of movement in buildings and the crack patterns associated with them. This part covers movement and cracks NOT caused by ground or foundation movement. The third part of the book contains similar 'swatches' giving the key features relating to movement caused by ground or foundation problems. Part four describes the techniques used to repair damage cause by movement and to arrest further movement.

By applying the FIRST PRINCIPLE and then referring to the 'swatches' there should be a high probability that the correct diagnosis can be reached.

The methodology contained within this book will not only help to derive the correct diagnosis but it will also demonstrate a process to show and record how the diagnosis was reached. When giving advice to a third party, the ability to demonstrate a proper methodology, a chain of thought and logical process is critically important should it ever become a negligence claim. When advising a third party it is also imperative to make clear that any diagnosis is an opinion, not a guarantee. In theory an opinion can turn out to be wrong without negligence automatically occurring provided that a correct methodology has been followed and that other reasonably competent persons would have arrived at the same opinion. In the light of previous case law some might argue this to be an over optimistic view for a professional working in this field to take; but objectively that should be the case.

So it is absolutely critical that one understands the FIRST PRINCIPLES before moving on to the second part of this book. It is straight forward and relatively simple but if on first reading you do not completely grasp it, read it again. Do not be tempted to short cut the process by simply looking at the examples or photographs in the book and finding one that looks similar.

And finally, good luck.

List of Figures

<u>Figure</u> 1.1.1	Diagonals of equal length.
<u>Figure</u> 1.1.2	Diagonal B-D stretched.
<u>Figure</u> 1.1.3	Crack at right angles to tension.
<u>Figure</u> 1.1.4	Imaginary arrows at right angles to tension.
<u>Figure</u> 1.1.5	Imaginary arrows of tension intersecting on a supporting beam.
<u>Figure</u> 1.1.6	Imaginary arrows of tension point to left hand pier
<u>Figure</u> 1.3.1	Rotational movement.
<u>Figure</u> 1.4.1	Contra rotational movement.
	Graph paper exercise of counter rotational movement.
<u>Figure</u> 1.5.1	Typical subsidence crack at about 45°
<u>Figure</u> 1.5.2	Angle reduced below 45° due to position of openings.
<u>Figure</u> 1.5.3	Angle steeper above 45° due to position of openings.
<u>Figure</u> 1.5.4	Typical subsidence crack.

<u>Figure</u> 1.5.5	Typical expansion crack.
<u>Figure</u> 1.5.6	Expansion crack distorted by openings.
<u>Figure</u> 1.5.7	Appearance of a typical subsidence crack.
<u>Figure</u> 1.5.8	Appearance of a typical expansion crack that has been distorted out of vertical by the position of window openings.
<u>Figure</u> 1.5.9	Subsidence plotted on graph.
<u>Figure</u> 1.5.10	Expansion plotted on graph.
<u>Figure</u> 1.6.1	Simple load path.
<u>Figure</u> 1.6.2	Load path around lintels and arches.
<u>Figure</u> 1.8.1	Arrows of tension point away from the tree.
<u>Figure</u> 2.1.1	Expansion cracking.
<u>Figure</u> 2.1.2	Expansion crack in a stepped elevation.
<u>Figure</u> 2.1.3	Expansion cracking related to a concrete roof.
<u>Figure</u> 2.1.4	typical example of an expansion crack, midpoint on a garage block elevation.
<u>Figure</u> 2.1.5	Vertical expansion crack.
<u>Figure</u>	Expansion crack between ground floor window and

<u>2.1.6</u>	first floor window.
<u>Figure</u> 2.1.7	Close up of expansion crack.
<u>Figure</u> 2.1.8	Typical gap formed at the end of a concrete lintel by expansion.
<u>Figure</u> 2.1.9	Typical vertical crack at a staggered return.
<u>Figure</u> 2.1.10	Close up of a vertical crack at a staggered return in a brickwork elevation.
<u>Figure</u> 2.1.11	Expansion of concrete roof deck.
<u>Figure</u> 2.1.12	Close up view of horizontal cracking, caused by expansion of the concrete flat roof deck.
<u>Figure</u> 2.2.1	First evidence of tie corrosion.
<u>Figure</u> 2.2.2	Progression of cavity wall tie corrosion.
<u>Figure</u> 2.2.3	Evidence of wall tie corrosion in the gable wall.
<u>Figure</u> 2.2.4	Progression of tie corrosion in the gable walls.
Figure 2.2.5	Internal cracking in the gable wall from tie corrosion.
<u>Figure</u> 2.2.6	First external signs of wall tie corrosion in a rendered gable wall of a 1930s house.
<u>Figure</u> 2.2.7	Horizontal crack and bowing of a gable wall inside the roof space of a 1930s house.
<u>Figure</u> 2.2.8	Cavity wall tie corrosion developing down the wall, in a house built circa 1900.

Horizontal crack and bowing gable wall in a 1908 Figure 2.2.9 house. Inward bowing to south west gable wall in a 1908 Figure 2.2.10 house. Figure Corrosion of metal built into walls. 2.3.1 Figure Corrosion of the iron airbrick in a 1930s house. 2.3.2 Close-up of the corner brick pushed out of the wall Figure by expansion from the corroding air brick. 2.3.3 Figure Vibration of door frame fixing. 2.4.1 Figure Re-pointed crack caused by vibration of the door 2.4.2 fixing. Roof spread. Figure 2.5.1 Triangulated roof structure. Figure 2.5.2 Roof spread. Figure 2.5.3 Non symmetrical roof spread. Figure 2.5.4 Figure Raised tie roof. 2.5.5 Figure Hip roof construction and binders. 2.5.6 Roof spread tipping blockwork into the cavity. <u>Figure</u> 2.5.7 Deflection of roof purlin. Figure 2.6.1

Figure Gable wall bows inwards. 2.6.2 Figure Gable wall bows outwards. 2.6.3 Lateral instability in a free standing wall. Figure 2.7.1 Figure Lateral stability by restraint straps in modern 2.7.2 construction. Figure Lateral instability in a typical terrace house. 2.7.3 Figure Lateral instability in a truss rafter roof and gable 2.8.1 wall. Figure Typical triangular crack pattern from beam/lintel deflection. 2.9.1 Figure Deflection of bressummer beam over bay window. 2.9.2 Figure There is deflection of the timber 'bressummer' beam over the bay window. 2.9.3 Deflection of a timber lintel (beam) over a window Figure opening. 2.9.4 <u>Figure</u> Load path through a cavity wall. 2.10.1 Figure Absence of lintel support over openings in cavity 2.10.2 walls. No lintel above the opening. Figure 2.10.3 Figure Overloaded floors. 2.11.1 Figure Overloaded walls.

2.12.1	
	Differential movement related to different ages.
	Differential movement related to different materials.
<u>Figure</u> 2.14.1	Load path around an arch.
<u>Figure</u> 2.14.2	Arch thrust.
Figure 2.14.3	Sash window opening construction.
<u>Figure</u> 2.14.4	Crack pattern above a dropped arch.
<u>Figure</u> 2.14.5	Arch thrust.
Figure 2.14.6	Dropped arch.
Figure 2.14.7	Buckling at sash jamb.
Figure 2.15.1	Load path cracking.
Figure 2.16.1	Bulging caused by decayed bonding timbers.
<u>Figure</u> 2.17.1	Bulging caused by poorly bonded brickwork.
<u>Figure</u> 2.18.1	Rubble filled stone wall construction.
	Ground bearing floor slab construction process stage 1.

<u>Figure</u> 2.19.2	Ground bearing floor slab construction process stage 2.
	Ground bearing floor slab construction process stage 3.
	Wall built off slab. Roof and ceiling not supported on internal walls.
<u>Figure</u> 2.19.5	Wall built off the slab. Roof and ceiling supported on internal walls.
<u>Figure</u> 2.19.6	Wall built with independent foundation.
<u>Figure</u> 2.21.1	Sulphate attack in render.
<u>Figure</u> 2.21.2	Sulphate attack in concrete floor.
<u>Figure</u> 2.22.1	Concrete blockwork shrinkage.
<u>Figure</u> 2.22.2	Blockwork shrinkage crack.
<u>Figure</u> 2.22.3	Close up of blockwork shrinkage crack.
<u>Figure</u> 3.2.1	Clay shrinkage crack pattern.
<u>Figure</u> 3.2.2	Severe well developed diagonal cracking caused clay shrinkage subsidence and the proximity of trees.
<u>Figure</u> 3.2.3	Close up of diagonal subsidence cracking.
<u>Figure</u> 3.3.1	Clay heave at side of building
<u>Figure</u>	Clay heave under building.

3.3.2	
<u>Figure</u> 3.4.1	Seasonal expansion of clay soil under a window or door opening.
<u>Figure</u> 3.5.1	Rotational caused by eccentric loading.
<u>Figure</u> 3.6.1	Uneven loading on foundations.
<u>Figure</u> 3.7.1	Concentrated load on foundations.
<u>Figure</u> 3.8.1	Differential foundation movement.
<u>Figure</u> 3.8.2	Porch on raft foundations. House on strip foundations.
<u>Figure</u> 3.8.3	Close up of cracking in between house and porch.
<u>Figure</u> 3.8.4	Differential movement where an extension joins to original.
<u>Figure</u> 3.9.1	Initial settlement after alterations and zone of compression.
<u>Figure</u> 3.10.1	Downpipe discharging by foundations and associated crack pattern.
<u>Figure</u> 3.10.2	Leaking underground drain by foundation and associated crack pattern.
<u>Figure</u> 3.11.1	Drain trench within zone of foundation influence.
<u>Figure</u> 4.5.1	Reinforcing brick mortar joints.
<u>Figure</u> 4.6.1	Position of tie bars through a building.

	Typical round capped tie bars at first floor and roof wall plate level.
<u>Figure</u> 4.6.3	Cross shaped tie bar cap.
<u>Figure</u> 4.7.1	Restraint straps.
<u>Figure</u> 4.8.1	Buttressing to external walls.
<u>Figure</u> 4.9.1	Explanation of roof ridge beam action.
<u>Figure</u> 4.10.1	Underpinning
<u>Figure</u> 4.10.2	Cantilever beam and piles.
<u>Figure</u> 4.10.3	Needled through and piles.
<u>Figure</u> 4.10.4	Piled raft and sockets.
<u>Figure</u> 4.11.1	Injected expanding foam underpinning.
<u>Figure</u> 4.12.1	Grouting a rubble filled solid stone wall.
Figure 4.13.1	Root barrier.

Acknowledgements

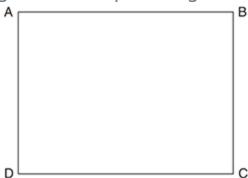
I would like to acknowledge my mother in law, Mrs Jill Porter, and my ex- boss, Martin Brown FRICS, for their help with editing and proof reading.

I would also like to acknowledge all those people who have freely passed on their knowledge and experience to me throughout my career. I hope that I can pass on their baton.

Part 1 First Principles

1.1

First Principles


Most traditional building materials are relatively weak in tension, when compared to their compressive strength. If a building is distorted, by whatever force, some parts of it will be stretched. Cracking is likely to occur at right angles to the force that caused the stretching. By imagining arrows at right angles to a crack, it is possible to determine the direction of movement. The direction of the movement is usually directly related to its cause. There are, however, always some cracks that cannot be diagnosed quickly by a simple visual inspection.

The over riding first principle that one must understand when diagnosing cracking is that the materials we are dealing with, bricks and concrete, are weak in tension.

STEP ONE

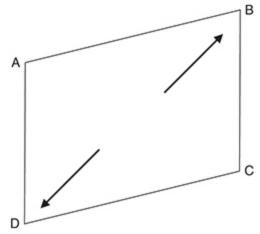
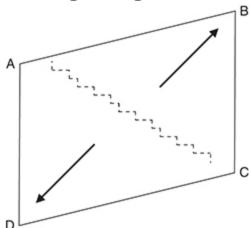

Brickwork and most materials crack when pulled apart in tension. Tension is caused by elongation (<u>Figure 1.1.1</u>).

Figure 1.1.1 Diagonals of equal length.

Imagine a square or rectangle of material – A, B, C, D. Think of this as the front elevation of a building or a panel of part of a building.

Figure 1.1.2 Diagonal B-D stretched.



Within normal tolerances buildings are built square and plumb.

In a square or rectangle the diagonals are the same length. Please measure them. A-C is the same length as B-D ($\underline{\text{Figure}}$ $\underline{1.1.2}$).

Please write the measurements down.

Figure 1.1.3 Crack at right angles to tension.

If the left hand side settles, the diagonal A-C is shortened. It is put into compression ($\underline{\text{Figure 1.1.3}}$).

The diagonal B-D is lengthened. It is put into tension.

Please measure B-D and write the measurements down. You will see that it is longer than it was. It is this stretching that is important as it creates tension.