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Preface

Nice toy or reliable toolbox? There is no precise opinion about Computational Fluid
Dynamic (CFD) results. Today, Computational Fluid Dynamics (CFD) calculations
are standard inmany applications with the exception of the conservative subject area
of safety engineering. This was the focus of discussions between experts in the fields
of safety engineering and CFD at a symposium in 2011 entitled ‘‘CFD - the future in
safety technology?’’ (50th Tutzing symposium, 2011). When human lives or compar-
able commodities are at risk, then typically only conventional calculation methods
are employed. As demonstrated by the eruption of the Eyjafjallajökull volcano on
Iceland in 2010, it did not make sense to simulate the trajectory of the ash cloud with
CFD tools when the effects of the ash particles on the jet engines of an airplane could
not be satisfactorily modeled. On the other hand, CFD is already being used
successfully in many areas of safety engineering, for example, for the investigation
of an incident in Hemel Hempstead, England, during which an explosion led to a
devastating fire at the Buncefield oil-products storage depot (the fifth largest of its
type in the United Kingdom). So, when should CFD simulations be used in safety
engineering?

The possible applications and limitations of CFD modeling in the area of safety
engineering are discussed in this book, which covers a variety of topics, including
the simulation of flow-through fittings, the consequences of fire and the dispersion
of gas clouds, pressure relief of reactors, and the forensic analysis of incidents.

The contributions to this book propose the establishment of CFD programs as
reliable standard tools in safety engineering. In order to accomplish this goal in the
future, experts from the fields of safety engineering and CFD simulation must
regularly exchange their knowledge and especially their different methodologies for
dealing with certain topics. Hopefully this book will act as a catalyst for the devel-
opment of deeper synergy between the two groups.

Jürgen Schmidt2011

XIX





List of Contributors

XXI

G.T. Atkinson
Health & Safety Laboratory
Mathematical Sciences Unit
Fluid Dynamics Team
Harpur Hill
Buxton SK17 9JN
UK

Henning Bockhorn
Karlsruhe Institute of Technology
Engler-Bunte-Institute Division of
Combustion Technology (EBI/VBT)
Engler-Bunte-Ring 1
76131 Karlsruhe
Germany

Andreas Dudlik
Fraunhofer-Institut für Umwelt-,
Sicherheits- und Energietechnik
(Fraunhofer UMSICHT)
Osterfelder Straße 3
46047 Oberhausen
Germany

Robert Fröhlich
Fraunhofer-Institut für Umwelt-,
Sicherheits- und Energietechnik
(Fraunhofer UMSICHT)
Osterfelder Straße 3
46047 Oberhausen
Germany

Simon E. Gant
Health & Safety Laboratory
Mathematical Sciences Unit
Fluid Dynamics Team
Harpur Hill
Buxton SK17 9JN
UK

Ulrich Hauptmanns
Otto-von-Guericke-Universität
Magdeburg
Fakultät für Verfahrens- und
Systemtechnik
Institut für Apparate- und
Umwelttechnik (IAUT)
Abteilung Anlagentechnik und
Anlagensicherheit
Universitätsplatz 2
39106 Magdeburg
Germany

Frank Helmsen
Braunschweiger Flammenfilter GmbH
Industriestr. 11
38110 Braunschweig
Germany

W. Henk
Linde AG
Dr.-Carl-von-Linde-Str. 6–14
82049 Pullach
Germany



Tobias Kirchner
Braunschweiger Flammenfilter GmbH
Industriestr. 11
38110 Braunschweig
Germany

Rupert Klein
Freie Universität Berlin
FB Mathematik und Informatik
Institut für Mathematik
Arnimallee 6
14195 Berlin-Dahlem
Germany

Arno Klomfass
Fraunhofer Institute for High Speed
Dynamics,
Ernst-Mach-Institute
Freiburg
Germany

Christian Knaust
BAM Bundesanstalt für
Materialforschung und -prüfung
Division 7.3 ‘Fire Engineering’
Unter den Eichen 87
12205 Berlin
Germany

M. Koch
Linde AG
Dr.-Carl-von-Linde-Str. 6–14
82049 Pullach
Germany

Ulrich Krause
BAM Bundesanstalt für
Materialforschung und -prüfung
Division 7.3 ‘Fire Engineering’
Unter den Eichen 87
12205 Berlin
Germany

Andy Jones
Evonik Degussa Corporation
Process Technology and Engineering
4301 Degussa Rd.
Theodore, AL 36590-0606
USA

B. Jörgensen
LESER GmbH & Co. KG
Wendenstrasse 133–135
20537 Hamburg
Germany

Bernd Leitl
University of Hamburg
Meteorological Institute
KlimaCampus
Bundesstr. 55
20146 Hamburg
Germany

Tina Mattes
Technische Universität München
Institute of Automation and
Information Systems
Automation Group
Boltzmannstr. 15
85748 Garching
Germany

D. Moncalvo
LESER GmbH & Co. KG
Wendenstrasse 133–135
20537 Hamburg
Germany

Aristides Morillo
BASF SE
Carl-Bosch-Straße 38
67063 Ludwigshafen
Germany

XXII List of Contributors



Matthais Münch
Freie Universität Berlin
FB Mathematik und Informatik
Institut für Mathematik
Arnimallee 6
14195 Berlin-Dahlem
Germany

Karl Niesser
Linde AG
Dr.-Carl-von-Linde-Str. 6–14
82049 Pullach
Germany

Wolfgang Peschel
BASF SE
Carl-Bosch-Straße 38
67063 Ludwigshafen
Germany

Norbert Pfeil
BAM Federal Institute for Materials
Research and Testing
ProcessNet Safety Engineering Section
12200 Berlin
Germany

Horst-Michael Prasser
ETH Zürich
Institut für Energietechnik
ML K 13
Sonneggstr. 3
8092 Zürich
Switzerland

Frederik Rabe
BAM Bundesanstalt für
Materialforschung und -prüfung
Division 7.3 ‘Fire Engineering’
Unter den Eichen 87
12205 Berlin
Germany

Wolfgang Rodi
Karlsruhe Institute of Technology
Institute for Hydromechanics
Kaiserstr.12
76128 Karlsruhe
Germany

Stefan Schälike
University of Duisburg-Essen
Institute of Chemical Engineering I
Universitätsstr. 5–7
45141 Essen
Germany

and

BAM Federal Institute for Material
Research and Testing
Division 2.2
‘Reactive Substances and Systems’
Unter den Eichen 87
12205 Berlin
Germany

Michael Schatzmann
University of Hamburg
Meteorological Institute
KlimaCampus
Bundesstr. 55
20146 Hamburg
Germany

Frank Schiller
Technische Universität München
Institute of Automation and
Information Systems
Automation Group
Boltzmannstr. 15
85748 Garching
Germany

List of Contributors XXIII



Jürgen Schmidt
juergen.schmidt@onlinehome.de
Karlsruhe Institute of Technology
Faculty of Chemical and Process
Engineering
Engler Bunte Institute
Engler Bunte Ring 1
76131 Karlsruhe
Germany

and

BASF SE
Safety an Fluid Flow Technology
67056 Ludwigshafen
Germany

Benjamin Scholz
Germanischer Lloyd SE
Department of Environmental Research
Brooktorkai 18
20457 Hamburg
Germany

Axel Schönbucher
University of Duisburg-Essen
Institute of Chemical Engineering I
Universitätsstr. 5–7
45141 Essen
Germany

Daniel Staak
Technische Universität Berlin
Berlin Institute of Technology
Sekretariat KWT 9
Straße des 17. Juni 135
10623 Berlin
Germany

Klaus Thoma
Fraunhofer Institute for High Speed
Dynamics, Ernst-Mach-Institute
Freiburg
Germany

Iris Vela
University of Duisburg-Essen
Institute of Chemical Engineering I
Universitätsstr. 5–7
45141 Essen
Germany

Klaus-Dieter Wehrstedt
BAM Federal Institute for Material
Research and Testing
Division 2.2 ‘Reactive Substances and
Systems’
Unter den Eichen 87
12205 Berlin
Germany

Anton Wellenhofer
Linde AG
Process & Environmental Safety – TS
Dr.-Carl-von-Linde-Str. 6–14
82049 Pullach
Germany

Günter Wozny
Technische Universität Berlin
Berlin Institute of Technology
Sekretariat KWT 9
Straße des 17. Juni 135
10623 Berlin
Germany

Gerd-Michael Wuersig
Germanischer Lloyd SE
Department of Environmental Research
Brooktorkai 18
20457 Hamburg
Germany

XXIV List of Contributors



1
Computational Fluid Dynamics: the future in safety technology!
J€urgen Schmidt

Safety engineering is based on reliable and conservative calculations. With Compu-
tational Fluid Dynamics (CFD) tools, the knowledge of certain physical processes is
deepened significantly.However, such programs are currently not standard. In safety
engineering more stringent demands for accuracy must be set, for example, as
compared to methods for the optimization of plants. The methods must, among
other things, be sufficiently validated by experiences or experimental data and fully
documented (method transparency). In addition, they must be comprehensible,
reproducible, and economical to apply. The necessary demands on precision can
usually only be met by model developers, program suppliers, and users of the CFD
codes (common sense application).

Thedevelopersofmodelsmust document theirmodels, and the assumptionsunder
which the models were derived must be fully understandable. Only if the application
range is carefully described can a responsible transfer to other fluids and parameter
rages take place at some later time.Unlike simple empirical correlations, CFDmodels,
with theirmany sub-models, oftenappear complex andnot transparent. Thevalidation
is usually done only on certain individual data points or by measuring global
parameters such as pressures and mass flows. This makes it difficult to assess
whether a method is more generally applicable in practice. Margins of error cannot
be estimated, or only very roughly. There are relatively formodel validations for typical
questions in the field of safety engineering. However, even there only models and
methods with sufficiently well-known uncertainties should be applied.

It is still not enough if only the model application ranges are transparent. In addition
it should be possible to review the CFD program codes. Most codes are not currently
open source. Moreover, frequent version changes and changes in the program codes
complicate any review. Generally accepted example calculations which can be used for
revalidation (safety-relevant test cases) are usually lacking. There are often demands for
open-source programs among the safety experts. This certainly facilitates the testing of
models. On the other hand, in practice it is then only barely comprehensible what
changes were made in a program in any particular case.

CFD calculations are reasonably possible in safety technology only with a good
education and disciplined documentation of the results.

Process and Plant Safety: Applying Computational Fluid Dynamics, First Edition. Edited by J. Schmidt.
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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A university education should provide any students with:

. A fundamental knowledge of numericalmodeling, including anunderstanding of
the mathematical solution procedures, their use and application boundaries, and
the influence of initial and boundary conditions.

. Experience in the application of safety-related models and methods.

. Analytical skills to be able to evaluate safety-related calculation results for
abnormal operation conditions on the basis of experimental studies performed
with other fluids and under normal conditions.

. A training in how to assess the self-evident plausibility of calculation results with
the help of shortcut methods.

. A technical safety mindset and approach in dealing with computational methods
and the evaluation of results.

These requirementsarecurrentlybeing taught in their entirety inhardlyanyof themajor
universities. Students often lack the mathematical skills of numerical modeling, a deeper
understanding of turbulence models, or simply the experimental experience to assess
calculation results. At some institutions, CFD codes are used as black boxes. Student
training needs to be adjusted. A major effort to teach these necessary skills is essential.

Particularly in safety engineering, CFD programs are currently (still) used by a relatively
small circle of experts. Careful documentation of results in this area is particularly
important. In addition to input and output data, the initial and boundary values as well
as the chosen solutionmethod andmodel combinationsmust be recorded. These data are
often very extensive. It may therefore be useful to keep all programs and necessary files
long-term on appropriate computers. Again, it would be helpful if certain practices were
well established and documented as standard – this is lacking in safety engineering.

In addition to the required computational results, sensitivity analysis of individual
parameters is desirable. With CFD programs a deeper understanding of the physical
processes can arise from that analysis. Alternatively it may turn out that the chosen
combination of models is not suitable to solve a specific problem. Even with
sensitivity analysis, the user has the duty to responsibly perform and document
them as an additional part of the actual calculations.

For a third party, the CFD calculation results can in principle only be evaluated and
understood from a safety point of view with much more effort. Even the inspection
authorities must have sufficient expertise. For the industrial application of CFD
programs in the field of safety technology, the exchange between learners and experts,
and training specifically with experts from both safety engineering and CFD, are
necessary. At the symposium in Tutzing, a �CFD�s license� was proposed. The ensuing
discussion revealed the followingapplications forCFDcalculations in safety engineering:

1) To gain additional in-depth knowledge and understanding of physical processes.
This is especially true if the effect of individual parameters to be investigated or
detailed information about the spatial and temporal distribution of individual
parameters is required.

2) To visualize process operational work flows.
3) To use as the sole source of information in areas where no experiments are

possible (hazardous materials, very high pressures).
4) To examine boundary conditions as specified for conventional models.
5) To interpolate experimental results.
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6) To question conventional methods and standards. This includes the improve-
ment of these methods and the reduction of safety margins due to higher
accuracy of the models.

CFD programs are already used in the field of safety technology for the optimi-
zation of valve operations, the investigation of fires and explosions, the examination
of single-phase fluid flows, the propagation of liquid pools from leaks, and generally
for the investigation of incidents. In contrast, there are also some areas where the
CFD computer codes should not be used, namely:

. when simple models are adequate,

. if they are the only source of information to design safety devices,

. for unknown or fluctuating initial and boundary conditions,

. for extrapolations beyond a range with experimentally validated data,

. if only insufficient property data are available, or

. to solve very complex problems with many parameters.

Typically, established and conventionalmethods are applied to design safetymeasures
and to size safety devices. With increasing risk, these standards aremore important. For
most of the safety experts it is currently not viable to size safety devices solely on the basis
of CFD simulations. It is however expected that this will change in the future.

According to the informationof the participants, 48%of theparticipants of theTutzing
symposium in 2011with a safety-related background and68%of the numerically trained
participants trust in CFD simulations applied for safety engineering tasks. Training and
experience, experimental validation of models, and the definition of standards (Best
Practice) are the relevant criteria in order to further increase confidence.

In summary, the discussion in the Tutzing symposium has shown that CFD
computer codes are used in safety technology with different intensity according to
specific tasks. CFD has arrived in safety technology! The advantages of these tools
show up in all areas of technology. But the dangers in the application of safety
technology have also been impressively demonstrated, for example:

1) The extrapolation of validated results from highly non-linear CFD models can
lead to extreme errors.

2) In safety technology, initial andboundary valueproblemsoften cannot bedefinedwith
the necessary accuracy. This may result in large errors or large uncertainties in the
results of a CFD simulation. In many cases these uncertainties cannot be quantified.

3) The most often used eddy viscosity turbulence models dampen smaller fluctua-
tions and inprincipledonot allow for the adequate resolutionof a problemin some
cases. In contrast, Large Eddy Simulation (LES) or Direct Numerical Simulation
(DNS) are typically more precise but increase the computation time enormously.

BASF SE, Ludwigshafen
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Only with sufficient training and experience in dealing with the CFD models and
their solution methods can questions in the field of safety technology be answered
responsibly. Any �black box� CFD application mentality in which results are firstly
obtained by systematic variation of models and adaptation of internal model para-
meters to very few experimental data and secondly presented as validated results and
subsequently used for extrapolationsmust be strictly avoided. Of course, this applies
to any type of modeling in safety technology. An extended study program at German
and international universities is needed to inculcate the necessary safety skills and
mindset in the next generation of students. At the same time, interdisciplinary
numerical, experimental, and safety skills must be taught – just a new kind of
computational Safety Engineering. For practical application in industry the idea of a
CFD license or quality labels should be pursued.
The CFD computer codes should be supplemented as a standard tool by best

practice guidelines in the field of safety technology and by many test cases from the
professional safety community. The research and development work on the way to
such standard tools (and common sense) can only enhance the training of safety
engineers in the field of CFD, the acceptability of the methods, and ultimately the
current state of safety technology.
WithCFDtools, thedemandfornecessarysafetymeasuresandeconomicoperation

of plants can be merged. The knowledge so gained is considerable, and the trend
towardmaking increasinguseof these tools is already equally considerable.As long as
theresultsarephysicallybasedonameaningful theoryandareresponsiblyweightedby
safety considerations, this is the right way into the future of safety technology.
The 50th Tutzing Symposium 2011, organized by the community of safety

technology of the Dechemás ProcessNet initiative, has brought experts from the
fields of safety engineering and numerical modeling together for a first major
exchange of views. Only when these two disciplines grow closer together will CFD
be able to establish itself as a standard tool in all areas of safety technology.

Members of the safety community in Germany who participated in

the 50th Tutzing Symposium in 2011.
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