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Preface

Flow cytometry was invented in the late 1960s, and since then the flow cytometer
has become an indispensable tool in modern research and clinical laboratories
[1–7]. Beyond the routine usage, new trends can be observed in the development
of flow cytometric techniques. The main technological improvements include
high-speed sorting, phase-sensitive flow cytometry, multicolor flow cytometry,
high-throughput multiplex bead assays, and spectral detection, and it provides the
basis for extensive data collection.

Classical flow cytometry (FC) uses an instrument system for making, processing,
and displaying one or more measurements on individual cells in flowing cell
suspension [1–7]. Cells may be stained with one or more fluorescent dyes specific
to cell components of interest, for example, DNA, and fluorescence of each
cell is measured as cells one by one rapidly transverse the excitation beam
(laser or mercury arc lamp). Fluorescence provides a quantitative measure of
various biochemical and biophysical properties of the cell. Other measurable
optical parameters, which are applicable to the measurement of cell size, shape,
density, granularity, and stain uptake, include light absorption, light scattering,
and polarization degree.

Numerous clinical and research applications, especially in anatomic pathology
for detection and study of malignant lesions, use the so-called image cytometry. This
technique encompasses morphometry and densitometry as measuring techniques,
and neural networks and expert systems for processing of collected data.

Another cytometric technique is the microscope-based laser scanning cytometry,
which allows one to make fluorescence measurements and topographic analysis
on individual cells. Laser-induced fluorescence of labeled cellular specimens is
detected using multiple discrete wavelengths, and the spatially resolved data
are processed to quantify cell proliferation, apoptosis, gene expression, protein
transport, and other cellular processes. For instance, confocal microscopy and
two-photon imaging techniques are able to detect fluorescently labeled cells not
only in vitro but also in vivo [8].

Improvements in image cytometric techniques speeded up in the last two
decades, applying more and more sensitive detectors and introducing nonlinear
optics (two photon excitation) for lifetime measurements (fluorescence lifetime
imaging microscopy, FLIM). The latest developments were able to break the
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diffraction limit as in the scanning near-field optical microscopy (SNOM), total
internal reflection microscopy (TIRFM), fluorescence resonance energy trans-
fer (FRET), stimulated emission depletion (STED), and 4Pi and multiobjective
microscopy.

Conventional FC is currently the method of choice for rapid quantification
of cells, but it requires invasive extraction of cells from a living organism and
associated procedures (e.g., fluorescence labeling and sorting), which may lead
to unpredictable artifacts, and prevents long-term cell monitoring in the native
biological environment. Among in vivo techniques, both nonoptical (e.g., PET
and MRI) and optical (e.g., scattering, fluorescence, confocal, and multiphoton)
techniques can be used for visualizing only single static or slowly migrating cells
[8–10]. To detect fast moving cells in blood and lymph flows, a number of methods
providing in vivo FC have been developed [11–21]. In particular, the principle of FC
has been adapted to the in vivo monitoring of labeled cells in ear blood vessels, and
a few modifications of in vivo flow cytometers that are capable of real-time confocal
detection of fluorescently labeled cells in both the arterial and venous circulation
of small animals, have been built [12–14].

The alternative photothermal (PT) and photoacoustic (PA) techniques for in vivo
blood FC, which do not require cell labeling and are not sensitive to light scattering
and autofluorescence background, have also been recently suggested [15–17].
These techniques have potential application in the study of normal and abnormal
cells in their native condition in blood or lymph flows in vivo, including molecular
imaging, studying the metabolism and pathogenesis of diseases at a cellular
level, and monitoring and quantifying metastatic and apoptotic cells and/or their
responses to therapeutic interventions (e.g., drug or radiation).

Video microscopy and particle tracking methods adapted and integrated with an
ultrahigh-speed imaging camera were used to measure lymph velocities throughout
the entire lymphatic contraction cycle in the rat mesentery [18–23]. In vivo,
label-free, high-speed (up to 10 000 with the potential for 40 000 fps), high-resolution
(up to 300 nm) optical imaging of circulating individual erythrocytes, leukocytes,
and platelets in fast blood flow has been developed [22]. Different potential
applications of in vivo digital video microscopy include visualization of circulating
cells and their deformability in lymph and blood flows and the study of the kinetics
of platelets and leukocyte rolling, with high sensitivity and resolution.

Multiphoton fluorescence flow cytometry and its confocal and fiber-optic mod-
ifications hold a great promise for in vivo monitoring of multiple circulating cell
populations in blood and lymph flows by exciting and detecting the emission from
multiple fluorophores, such as fluorescent proteins and exogenous chromophores,
important for multilabeling of cells of interest [24, 25].

There are many books on cytometry published since the 1980s (see, for example,
the list on the web site [1]). They could be classified as books on general flow
cytometry and cell sorting, clinical cytometry, and microscopic and imaging cytom-
etry. The most recent and comprehensive are Refs [2, 3, 5, 8–10, 26–30]. The book
by Shapiro [5] is the fourth edition on classic flow cytometry. This is one of the
best textbooks, and covers well the field of practical flow cytometry prior to 2003
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well. Recently, two books on flow cytometry and cellular diagnostics have been
published in German and French [26, 27]. Both books were written and edited by
well-known experts in the field. Karger has published the English translation of
the German book edited by Ulrich Sack, Attila Tárnok, and Gregor Rothe, which
is a bestseller in German [28]. Practical cytometry protocols have been given in the
third edition of the book edited by Michael G. Ormerod [29]. The recent second
edition of the book by Wojciech Gorczyca is more clinically and practically oriented
[30]. Michael G. Ormerod has also designed an introductory book ‘‘to give that
knowledge, aiming at people coming to flow cytometry for the first time,’’ in which
all the major applications in mammalian biology are covered [31].

While the above-mentioned books describe clinical diagnostic methods and
receipts of their applications, the current book is more research oriented and
opens new perspectives in the development of flow cytometry for in vivo studies.
It contains novel results of basic research on light scattering by different types of
cells, which are very important for the improvement of already existing technolo-
gies and for designing new technologies in optical cytometry. The recently invented
and fast-moving-to-practice methods of in vivo flow cytometry, based on ultrafast
video and phase intra-vital microscopy and light scattering, diffraction, speckle,
fluorescence, multiphoton, Raman, photothermal, and photoacoustic phenomena,
are presented in the book.

In Chapter 1, Perspectives in Cytometry by Anja Mittag and Attila Tárnok, in
addition to definitions, historical aspects, and the importance of cytometry in the
development of biology and medicine, its prospective application as a science and
diagnostic tool are discussed – in particular, for comprehensive analyses, on the
basis of the simultaneous detection of several parameters, of up to millions of
individual cells in one sample.

Chapter 2 by Herbert Schneckenburger et al., Novel Concepts and Requirements
in Cytometry, presents slide-based cytometry techniques and the concepts of high
content screening (HCS) where detailed information is accumulated from a single
cell or examination of multicellular spheroids where 3D detection methods are re-
quired. These techniques include microscopic setups, fluorescence reader systems,
and microfluidic devices with micromanipulation, for example, cell sorting.

In Chapter 3 by Stoyan Tanev et al., Optical Imaging of Cells with Gold Nanoparticle
Clusters as Light Scattering Contrast Agents: A Finite-Difference Time-Domain Approach
to the Modeling of Flow Cytometry Configurations, a brief summary of different
formulations of the finite-difference time-domain (FDTD) approach is presented
in the framework of its strengths, for cytometry in general and for potential
applications in in vivo flow cytometry based on light scattering, including nanoscale
targets. This chapter focuses on comparison of light scattering by a single biological
cell alone under controlled refractive index matching conditions and by cells labeled
using gold nanoparticle clusters. The optical phase contrast microscopy (OPCM) is
analyzed as a prospective modality for in vivo flow cytometry.

In Chapter 4 by Valeri P. Maltsev et al., Optics of White Blood Cells: Optical Models,
Simulations, Experiments, a state-of-the-art summary of analytical and numerical
simulating methods and experimental approaches for precise description and
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detection of elastic light scattering from white blood cells (WBCs) are presented.
The discussion of the instrumental tools for measurement of light scattering
lays emphasis on scanning flow cytometry. This chapter gives some basis for
understanding the methods, techniques, and experimental results presented in the
following chapters, as it presents solutions for the inverse light-scattering problem
to obtain cellular characteristics from light scattering data.

The optical properties of blood are discussed in Chapter 5 by Martina Meinke
et al., Optical Properties of Flowing Blood Cells. Authors use the transport theory
accounting for the multiplicity of light scattering events, where the optical properties
of blood are described by the absorption and scattering coefficients and the
anisotropy factor. The double integrating sphere measurement technique combined
with inverse Monte Carlo simulation is applied for extraction of the optical
parameters of undiluted blood. It is shown that the influence of the shear rate and
osmolarity have to be taken into account when the blood is prepared ex vivo and
the physiological environment cannot be ensured.

In Chapter 6, Laser Diffraction on RBC and Deformability Measurement by
Alexander V. Priezzhev et al., RBC shape variability and deformability as in-
trinsic properties, their strong relation to RBC aggregation and blood rheology,
and the determination of the general hemorheologic status of human organism
are considered. It is shown that laser diffraction can be efficiently applied to quan-
titatively assess the deformability properties of RBC in the blood of a particular
individual. The theoretical basis of diffractometry and implementation of particular
experimental techniques to experimental and clinical measurements, as well as
potentialities and pitfalls of the technique are discussed.

The principles and fundamentals of flicker spectroscopy as a quantitative tool to
measure static and dynamic mechanical properties of composite cell membrane
are presented in Chapter 7, Characterization of Red Blood Cells Rheological and
Physiological State Using Optical Flicker Spectroscopy by Vadim L. Kononenko. These
mechanical properties are associated with cell membrane and cytoplasm molecular
organization and composition and cell metabolic activity and could be character-
istic not only for RBC, but for other blood cell types as well. Microscope-based
flicker spectroscopy technique in combination with quantitative phase imaging
and fluorescence microscopy can be easy integrated into the slide-based cytometry
arrangement. As the author states, the approximate models developed are good, but
not enough to reconstruct precisely the details of erythrocyte cell membrane me-
chanical properties; thus a more advanced theory of flicker spectroscopy is needed.

Chapter 8, Digital Holographic Microscopy for Quantitative Live Cell Imaging and
Cytometry, by Björn Kemper and Jürgen Schnekenburger, demonstrates the prin-
ciples and applications of quantitative cell imaging using digital holographic
microscopy (DHM). The quantitative phase contrast imaging, cell thickness deter-
mination, multifocus imaging, and 2D cell tracking provided by DHM show that it
is a suitable method for the label-free characterization of dynamic live cell processes
involving morphological alterations and migration and for the analysis of cells in
3D environments. Examples and illustrations of applicability of the technique in
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tumor cell biology and for the development of improved systems for drug and
toxicity testing are presented.

Chapter 9 by József Bocsi et al., Comparison of Immunophenotyping and Rare Cell
Detection by Slide-Based Imaging Cytometry and by Flow Cytometry, allows one to
get answers on the following questions: are flow cytometry (FC) and slide-based
cytometry (SBC) comparable? What is the type of cytometer and analysis technique
that should be chosen for the given biological problem to be solved? Answers are
illustrated by applying scanning fluorescence microscope (SFM) to determine of
CD4/CD8 T cell ratio, laser scanning cytometer (LSC) to multiparametric leuko-
cyte phenotyping and apoptosis analysis on the basis of DNA content measure-
ments, and SFM and LSC to rare and frequent tumor cell detection.

A brief overview and discussion of recent progress in microfluidic flow cytometry,
including the main components of full scale flow cytometers, containing systems for
fluidic control, optical detection and cell sorting, each of which are being developed
into on-chip microfluidic platforms, are given by Shawn O. Meade et al. in Chapter
10, Microfluidic Flow Cytometry: Advancements Toward Compact, Integrated Systems.

In Chapter 11 by Xin-Hua Hu and Jun Q. Lu, Label-Free Cell Classification
with a Diffraction Imaging Flow Cytometer, aiming at the accurate modeling of light
scattering from biological cells with realistic cell structures and the development of a
high contrast diffraction imaging flow cytometer for experimental study, the authors
are focused on the application of the FDTD method for modeling of coherent light
scattering from cells. Numerical and experimental results are presented and their
implications to future improvement of the flow cytometry are discussed.

In Chapter 12 by Rabindra Tirouvanziam et al., An Integrative Approach for
Immune Monitoring of Human Health and Disease by Advanced Flow Cytometry
Methods, the authors show key steps to move past the current limitations and truly
enable the use of advanced flow cytometry tools for human research, promoting
simplified, low-cost, and better standardized methods for sample collection,
highlighting the enormous opportunities for research on reagents available for
advanced flow cytometry analysis of human samples, and novel insights into
relations of human immunity with age, gender, ethnicity, environmental exposure,
health conditions, and therapies.

R. Dasgupta and P.K. Gupta, in Chapter 13, Optical Tweezers and Cytometry, give a
brief introduction to optical tweezers and an overview of their use in cytometric ap-
plications, including measurements of viscoelastic properties of cells, in particular
RBC, and Raman spectroscopic studies at single cell level. A few examples illustrat-
ing the potential of this approach for cytometric applications are also presented.

Chapter 14 by Valery V. Tuchin et al., In vivo Image Flow Cytometry, presents
one of the novel approaches in flow cytometry – in vivo video imaging digital
flow cytometry. The fundamentals and instrumentation of video imaging flow
cytometry, as well as spatial and temporal resolution of the method, are discussed.
Experimental animal models, data on imaging and detection of individual cells
in lymph and blood flows, and cell velocity measurements in lymph and blood
vessels are presented and discussed. Intravessel RBC deformability measurement,
monitoring of intralymphatic cell aggregation, and many other cell interaction
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phenomena are demonstrated and quantified. Perspectives of the technique for
disease diagnostics and monitoring and cell flow response on drugs, pollutions,
and toxins are shown.

Chapter 15 by Stephen P. Morgan and Ian M. Stockford, Instrumentation for
In Vivo Flow Cytometry: A Sickle Cell Anemia Case Study, discusses label-free
monitoring of the properties of circulating blood cells for the in vivo monitoring of
sickle cell anemia. For discriminating sickled RBCs in a background of normal cells,
absorption measurements associated with sickle cell lower oxygen saturation and
polarization measurements to identify their polymerization ability via cell adhesion
to the vascular walls and, thus, more slow flow, are used. Illumination methods
overcoming surface reflections, such as orthogonal polarization spectral imaging,
dark field epi-illumination, and sidestream dark field illumination, are analyzed.
In humans blood cell imaging has been performed either on the lower lip or
under the tongue where the superficial mucosal tissue above the microcirculation
is thinner than at other sites on the body. All steps of clinical instrumentation
design, starting from discussion of the clinical needs for the measurements, the
illumination and detection requirements, image processing methods for correction
of image distortions, and a Monte Carlo model of the image formation process,
up to engineering of the clinical prototype and presentation of clinical results are
highlighted by the authors.

Accounting for the clinical importance of detection and quantification of circu-
lating tumor cells (CTCs) for cancer diagnosis, staging, and treatment, in Chapter
16, Advances in Fluorescence-Based In Vivo Flow Cytometry for Cancer Applications,
Cherry Greiner and Irene Georgakoudi, review the principles and instrumentation
designs of fluorescence-based in vivo flow cytometry (IVFC) and present data on
the in vivo quantification of CTCs. The confocal and multiphoton microscopic
techniques and systems adapted for the detection of fluorescently labeled CTCs
in blood vessels are described. The noninvasive nature of IVFC systems and their
capability to provide sensitive, continuous and dynamic monitoring of CTCs in
blood flow are proved.

Chapter 17, In Vivo Photothermal and Photoacoustic Flow Cytometry by Valery V.
Tuchin et al., is devoted to presentation of the prospective approaches of IVFC that
use laser-induced photothermal (PT) and photoacoustic (PA) effects. The authors
analyze in detail integrated IVFC techniques combining a few different methods,
such as PT imaging conjugated with thermo-lens and PA imaging, transmittance
digital microscopy, and phase-sensitive and fluorescence imaging. The unique
capabilities of the PT/PAFC (photoacoustic flow cytometry) technique for IVFC
are illustrated in many examples of in vivo and ex vivo studies within lymph and
blood vessels of animal models. Data on cell velocity measurements, detection, and
real-time monitoring of circulating blood and lymph cells, bacteria, CTCs, contrast
agents, and nanoparticles, and on quantification of cell interactions are presented.
Perspectives of PT/PAFC technique for early diagnostics of cancer are discussed.

Martin J. Leahy and Jim O’Doherty, in Chapter 18, Optical Instrumentation for the
Measurement of Blood Perfusion, Concentration, and Oxygenation in Living Microcircu-
lation, compare the operation of an established microcirculation imaging technique,
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such as laser Doppler perfusion imaging (LDPI), which, for example, has been
shown to accurately assess burn depth, with laser speckle perfusion imaging (LSPI)
and tissue viability imaging (TiVi) in human skin tissue using the occlusion and
reactive hyperaemia response. On the basis of the presented experimental data they
conclude that LSPI and TiVi are both welcome tools in the study of the microcircu-
lation, but care must be taken in the interpretation of the images since blood flow
velocity and blood concentration in tissue are essentially different parameters.

In Chapter 19, Blood Flow Cytometry and Cell Aggregation Study with Laser Speckle
by Qingming Luo et al., the fundamentals and instrumentation of laser speckle
contrast imaging (LSCI) are analyzed with a discussion of important imaging
parameters for the optimal imaging conditions. Some recent advancements, such
as spatio-temporal algorithm for laser speckle contrast analysis and fast blood
flow visualization using GPU (Graphics Processing Unit), are overviewed. The
application of LSCI for investigation of RBC aggregation is discussed.

Chapter 20, Modifications of Blood Optical Properties during Photodynamic Reactions
In Vitro and In Vivo, by Alexandre Douplik et al., describes photodynamic reactions
where blood cells are involved. Change in blood properties on light delivery and
modification of photosensitizer (PS) optical properties on interaction with blood
at photodynamic therapy (PDT) are considered. The blood cell uptake of PSs and
modification of blood optical properties caused by PDT reactions in vitro and in vivo
are analyzed. The authors of the chapter believe that IVFC can be applied to study
PDT-induced processes related to blood and blood cells.

As it follows from the above, this book is focused on state-of-the-art research in
a novel field, noninvasive in vivo cytometry, and its applications, with particular
emphasis on the novel biophotonic methods, disease diagnosis, and monitoring of
disease treatment at single cell level in stationary and flow conditions. However,
discussions of advanced methods and techniques of classical flow cytometry are also
presented. The use of photonic technologies in medicine is a rapidly emerging and
potentially powerful approach for disease detection and treatment. This book seeks
to advance scholarly research that spans from fundamental interactions between
light, cells, vascular tissue, and cell labeling particles, to strategies and opportunities
for preclinical and clinical research. General topics include light scattering by
cells, fast video microscopy, polarization, laser scanning, fluorescence, Raman,
multiphoton, photothermal, and photoacoustic methods for cellular diagnostics and
monitoring of disease treatment in living organisms. Specific topics include optics
of erythrocytes, leukocytes, platelets, and lymphocytes; novel photonic cytometry
techniques; in vivo studies using animal models; in vivo cytometry techniques used
in humans (mucosal, nail bed, and skin); detection of metastatic cancer cells and
labeling of nanoparticles in blood and lymph microvessels; immune monitoring of
human health; cytomics in regenerative/predictive medicine; comparison of laser
scanning slide-based and flow cytometry, and so on.

The book is for research workers, practitioners, and professionals in the field of
cytometry. Advanced students (MS and Ph.D.) as well as undergraduate students
specialized in biomedical physics and engineering, biomedical optics and biopho-
tonics, and medical science may use this book as a comprehensive tutorial helpful in
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the preparation of their research work and diploma. Scientists or professionals and
students in other disciplines, such as laser and optical engineering and technology,
spectroscopy, tomography, developmental and other directions of biology, tissue
engineering, and different specialties in medicine, are also potential readership.

This book represents a valuable contribution by well-known experts in the field of
photonic cytometry with their particular interest in a variety of advanced cytometry
problems, including in vivo flow cytometry. The contributors are drawn from
Canada, China, Denmark, Germany, India, Ireland, Russia, The Netherlands, UK,
and the USA. I greatly appreciate the cooperation and contributions of all authors
in the book, who have done great work in the preparation of their chapters.

It should be mentioned that this book presents results of international collab-
orations and exchanges of ideas among many research groups participating in
the book project. This book project was supported by many international grants,
which are credited in the particular chapters. Here, I would like to mention only a
few, PHOTONICS 4 LIFE, which is a consortium of a well-balanced pan-European
dimension. The inclusion of the members of this consortium in this book is of
great significance, encompassing five chapters. My own work on the book was
supported by grants 2.1.1/4989 and 2.2.1.1/2950 of RF Program on the Develop-
ment of High School Potential and RF Governmental contracts 02.740.11.0484,
02.740.11.0770, and 02.740.11.0879 of The Program ‘‘Scientific and Pedagogical
Personnel of Innovative Russia.’’

I am grateful to Valerie Moliere for her suggestion to publish this book and help
on project activation and to Ulrike Werner for the technical editing of the book and
communication with the contributors.

I would like to thank all those authors and publishers who freely granted
permissions to reproduce their copyrighted works.

I greatly appreciate the cooperation, contributions, and support of all my
colleagues from the Optics and Biophotonics Chair and Research-Educational
Institute of Optics and Biophotonics of the Physics Department of Saratov State
University and the Institute of Precise Mechanics and Control of the Russian
Academy of Science.

I express my gratitude to my family, especially to my wife Natalia and grand-
children Dasha, Zhenya, Stepa, and Serafim for their indispensable support,
understanding, and patience during my writing and editing of this book.
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