Improving Crop Resistance to Abiotic Stress

Edited by Narendra Tuteja, Sarvajeet Singh Gill, Antonio F. Tiburcio, and Renu Tuteja

Stress Factors

1H

2H

3H

Edited by Narendra Tuteja, Sarvajeet Singh Gill, Antonio F. Tiburcio, and Renu Tuteja

Improving Crop Resistance to Abiotic Stress

Related Titles

Meksem, K., Kahl, G. (eds.)

The Handbook of Plant Mutation Screening Mining of Natural and Induced Alleles 2010 ISBN: 978-3-527-32604-4

Hirt, H. (ed.)

Plant Stress Biology From Genomics to Systems Biology 2010 ISBN: 978-3-527-32290-9

Hayat, S., Mori, M., Pichtel, J., Ahmad, A. (eds.)

Nitric Oxide in Plant Physiology 2010 ISBN: 978-3-527-32519-1 Jenks, M. A., Wood, A. J. (eds.)

Genes for Plant Abiotic Stress 2009 ISBN: 978-0-8138-1502-2

Yoshioka, K., Shinozaki, K. (eds.)

Signal Crosstalk in Plant Stress Responses 2009 ISBN: 978-0-8138-1963-1

Kahl, G., Meksem, K. (eds.)

The Handbook of Plant Functional Genomics

Concepts and Protocols 2008 ISBN: 978-3-527-31885-8 Edited by Narendra Tuteja, Sarvajeet Singh Gill, Antonio F. Tiburcio, and Renu Tuteja

Improving Crop Resistance to Abiotic Stress

WILEY-BLACKWELL

The Editors

Dr. Narendra Tuteja

International Center for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg. New Delhi 110 067 India

Dr. Sarvajeet Singh Gill

International Center for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg New Delhi 110 067 India

Prof. Antonio F. Tiburcio

Universitat de Barcelona Facultat de Farmacia Av. Joan XXIII, S/N 08028 Barcelona Spain

Dr. Renu Tuteja

International Center for Genetic Engineering and Biotechnology (ICGEB) Aruna Asaf Ali Marg New Delhi 110 067 India

Picture Credits for Cover

Wheat Field Detail, PhotoDisc, Inc. Cotton Plant, PhotoDisc, Inc./Getty Images Woman working in rice paddy, China, Corbis Digital Stock Ear of corn, Corbis Digital Stock Sunflowers, Corbis Digital Stock Tea Harvest in China, PhotoDisc, Inc./Getty Images Potato Sacks, PhotoDisc, Inc./Getty Images Canola, @ LianeM - Fotolia.com Abiotic stress tolerance QTLs mapped on the barley genome, excerpt, for further information see Fig 34.1. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty can be created or extended by sales representatives or written sales materials. The Advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2012 Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical, and Medical business with Blackwell Publishing.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 Composition
 Thomson Digital, Noida, India

 Printing and Binding
 Strauss GmbH, Mörlenbach

 Cover Design
 Adam Design, Weinheim

Printed in the Federal Republic of Germany Printed on acid-free paper

 Print ISBN:
 978-3-527-32840-6

 ePDF ISBN:
 978-3-527-63294-7

 oBook ISBN:
 978-3-527-63293-0

Foreword I

We are guests of green plants on this planet. Plants are a source of food, fiber, and materials for shelter. Ornamental plants contribute to our esthetic environment. Numerous plants are sources of pharmaceuticals. Our civilization developed progressively after the domestication of plants about 10 000 years ago. Since then plants were constantly improved through conscious and unconscious selection by ancient farmers for more than 9000 years. During the last century, crop improvement became a scientific endeavor after the rediscovery of Mendel's laws of inheritance. The science of genetics provided many additions to plant breeder's tool kit and major advances in food production were made. Green Revolution is a shining example of these advances. It has been possible to feed 6 billion of Earth's inhabitants.

v

Human population continues to increase unabated. It is estimated that there will be 9 billion people on this planet in 2050 and this will require doubling of food production. To meet this challenge, we must increase the yield potential of our food crops and close the yield gap. The average yield of most crops is about half their potential yield. For example, yield potential of rice is 10 ton ha^{-1} , but farmers on average harvest about 5 ton ha^{-1} . This yield gap is due to losses caused by biotic and abiotic stresses. Abiotic stresses include drought, submergence, salinity, and unfavorable temperatures.

Very little progress has been made in developing crops with tolerance to abiotic stresses through conventional breeding approaches. Breakthroughs in molecular biology and biotechnology have provided new tools such as molecular marker-aided selection (MAS) and genetic engineering. These technologies have opened new avenues for developing crops with tolerance to abiotic stresses.

Editors of this volume have done an admirable job of assembling a wealth of information on these new approaches for crop improvement. They have sought contributions from knowledgeable authors from all over the world. The number of crops included in the volume is comprehensive. These include grain, oil, fruits, vegetable, and ornamental crops and sugarcane, tea, tobacco, and cassava. Several chapters provide overview of latest advances in molecular biology such as genomics, transcriptomics, proteomics, and metabolomics, collectively called "omics." There is

VI Foreword I

an excellent chapter on the role of plant transporters in abiotic stress tolerance. The chapter on improving crop productivity under changing environment is a welcome addition in view of concerns about the impact of climate change on crop productivity. This comprehensive volume should prove useful for basic researchers, plant scientists, and students interested in crop improvement, as well as teachers.

I would like to congratulate the editors for their labor of love for preparing this valuable scientific resource.

University of California Davis, California, USA Gurdev S. Khush, FRS

Foreword II

Together with other photosynthetic organisms, plants are the primary producers and the foundation of the global biogeochemical cycles that sustain terrestrial life. As such, plants are also the main biological resource for humans by providing food, feed, and various biomaterials such as oils, fibers, and wood. Taking into account population growth, urbanization, climate change, and the limitation of natural resources, global food security has become a strategic challenge just half a century after the "Green Revolution." There is a need for higher stability of yield to ensure global food security and repartitioning and lowering the prices of plant products. Moreover, the need to cut CO_2 emissions and the foreseeable end of the oil era makes the transition from conventional fossil fuels to alternative and renewable resources a priority, resulting in a growing demand for plant biomass for alternative energies and green chemistry.

VII

Agriculture is also challenged by increasing urbanization and industrial pollution, resulting in the overexploitation of fossil resources, water, and arable land. Seventy percent of freshwater is used for irrigation, making water one of the most critical parameters in plant production. The predictions in climate change for this century are estimated to further negatively affect water supplies and agricultural productivity leading to the potential amplification of catastrophic incidents. Forty percent of the Earth's land surface is now used for agriculture. However, this area cannot be enlarged and instead, we foresee a reduction in arable land due to urbanization, pollution, and climate change in the next decades. If this was not enough, the world population will reach 9.2 billion by 2050, revealing that food production will have to double and farm productivity to increase by 1.75% each year.

In the face of these challenges, there is an urgent need to develop new crop lines that can perform better but under conditions of less water, less nutrient inputs, and by better withstanding abiotic and biotic stresses. This book, edited by Drs. Narendra Tuteja, Sarvajeet Singh Gill, Antonio F. Tiburcio, and Renu Tuteja, comes at the right time to tackle the problems plants face under abiotic stress conditions and will clearly be of major value for researchers and breeders. The editors have achieved to assemble a number of experts that share their knowledge in a very complementary

VIII Foreword II

way. The volume thereby provides both an excellent overview and a detailed account of the field of plant abiotic stress response mechanisms. Importantly, the contributions range from established concepts in model plants to applied questions in specific crops. The book thereby will enlighten readers of various disciplines and at various levels, bridging text book knowledge to application.

Paris

Heribert Hirt

Contents

Foreword I V Foreword II VII Preface XXXV List of Contributors XXXIX

Introduction to Plant Abiotic Strees Response 1 Part I

1	Understanding the "Commoneome" Operative in Plants in Response to Various Abiotic Stresses 3 Hemant R. Kushwaha, Sneh L. Singla-Pareek, Sudhir K. Sopory, and Ashwani Pareek
1.1	Introduction 3
1.2	Genomics-Based Studies in the Model Dicot Plants 5
1.2.1	Arabidopsis 5
1.2.2	Common Ice Plant 7
1.2.3	Tomato 7
1.3	Genomics-Based Studies in the Model Monocot Plants 8
1.3.1	Rice 8
1.3.2	Maize 8
1.3.3	Sorghum 9
1.4	Salt Stress-Related Transcriptome Changes Across Diverse
	Genera 9
1.5	Investigating the Salinity Stress-Related "Fingerprints" 10
1.5.1	Stress Perception and Signaling 10
1.5.2	Gene Regulation 11
1.6	Proteins Related to General Metabolism 12
1.7	Stress-Induced Proteins with Some Protective Functions 12
1.8	Proteins Related to Maintenance of Osmotic Homeostasis 13
1.9	Protein with Unknown Function 13
1.10	Analysis of Stress Transcriptome from other Plant Species 14

к

X Contents

1.11	Conclusions 19
	References 21
2	Abiotic Stress Tolerance in Plants: An Industry Perspective 27 Shoba Sivasankar, Robert W. Williams, and Thomas W. Greene
2.1	Introduction 27
2.2	Gene Discovery and Genomics in the Plant Biotechnology Industry 30
2.2.1	Forward Genetic Screens Using Model Species 30
2.2.2	Functional Gene Classes and Families 32
2.2.3	Knowledge-Based Gene Discovery 34
2.2.4	Directed Molecular Evolution 35
2.2.5	Global Profiling 35
2.2.6	Comparative Genomics 37
2.2.7	Computational Biology 38
2.3	High-Throughput Phenotyping and Phenomics 38
2.4	Recent Breakthroughs in Abiotic Stress Tolerance in the Plant
	Biotechnology Industry 43
2.5	Conclusions and Future Perspectives 45
	References 45
3	Generation and Scavenging of Reactive Oxygen Species
	in Plants under Stress 49
	Sarvajeet Singh Gill, Lamabam Peter Singh, Ritu Gill, and Narendra Tuteja
3.1	Introduction 49
3.2	ROS Production 51
3.3	ROS Scavenging 54
3.3.1	Enzymatic Antioxidants 54
3.3.2	Nonenzymatic Antioxidants 57
3.4	Transgenic Approach in ROS Toxicity in Plants 58
3.5	Conclusions 61
	References 62
4	Salinity Stress: A Major Constraint in Crop Production 71
	Narendra Tuteja, Lamabam Peter Singh, Sarvajeet Singh Gill, Ritu Gill,
	and Renu Tuteja
4.1	Introduction 71
4.2	Effects on Plant Growth and Development 73
4.3	Ionic Stress 74
4.3.1	Ion Selectivity 75
4.3.2	Na^+ Exclusion 75
4.3.3	Na ⁺ Sequestration 75
4.4	Osmotic Stress 76
4.4.1	Osmotic Adjustment 76
4.5	Salt Stress-Induced Proteins 81
4.6	Oxidative Stress 82

Contents XI

98

4.6.1 Reactive Oxygen Species 82 Oxidative Stress Management 82 4.6.2 Calcium Signaling and SOS Pathwavs 4.7 83 4.8 ABA-Mediated Signaling 85 4.9 Conclusions 87 References 87 5 Cold and Abiotic Stress Signaling in Plants 97 Wengiong Joan Chen 5.1 Introduction 97 5.2 Gene Expression and Regulation during Plant Cold Stress Response The CBF/DREB-Dependent and Independent Pathways 99 5.2.1 5.2.2 Regulation of ICE1-CBF/DREB Gene Expression 101 5.3 Signaling Molecules Involved in the Early Events of Cold Stress Response 106 5.3.1 Phospholipids 106 5.3.2 Reactive Oxygen Species as Secondary Messenger 107 Calcium Binding Proteins and Signal Decoding 109 5.3.3 Mitogen-Activated Protein Kinase Proteins: Essential Roles 5.3.4 in Plant Stress Responses 112 Do Ca²⁺-Mediated Signaling Pathways Crosstalk with 5.3.5 the MAPK-Mediated Pathways? 114 5.4 Other Signaling Molecules Involved in Cold Signaling Pathways 114 5.4.1 MAPK-Specific Phosphatases and Other Protein Phosphatases 114 5.4.2 Two-Component Systems 115 5.4.3 Heterotrimeric G-Protein-Mediated Signaling in Plant Abiotic Stress Responses 116 Receptor-Like Protein Kinases 5.4.4 118 5.5 Conclusions and Prospects 119 References 122 6 Mechanism of Sulfur Dioxide Toxicity and Tolerance in Crop Plants 133 Lamabam Peter Singh, Sarvajeet Singh Gill, Ritu Gill, and Narendra Tuteja 6.1 Introduction 134 6.2 Emission Sources 134 Natural Sources 134 6.2.1 Anthropogenic Sources 134 6.2.2 6.3 Effects on Plants 136 6.3.1 Visible Foliar Injury 136 6.3.2 Sulfur Uptake and Plant Sulfur Content 138 6.3.3 Photosynthesis 140 6.3.4 Stomatal Conductance and Transpiration 141 6.3.5 Leaf Pigments 143 6.3.6 Growth and Yield 144 6.3.7 Pollen and Fertilization 148

XII Contents

6.3.8	Proteins and Antioxidant Enzymes 149
6.3.9	Genotoxicity 154
6.3.10	Sulfur Deficiency 155
6.4	Conclusions 157
6.4	
	References 158
7	Excess Soil Phosphorus: Accelerated P Transfer, Water Quality
	Deterioration, and Sustainable Remediation Strategies 165
	Nilesh C. Sharma and Shivendra V. Sahi
7.1	Phosphorus Conundrum 166
7.1.1	P Deficiency 166
7.1.2	P Abundance 166
7.1.3	Pathways of P Loss 168
7.1.4	Soil P Dynamics 168
7.2	Consequences of P Overloading 171
7.2	
7.3.1	Chemical Amendments of Animal Waste or Manure 173
7.3.2	Chemical Amendments of Soil 174
7.3.3	Animal Diet Modification with Phytase 175
7.3.4	Phytoremediation 177
7.4	Conclusions 187
	References 189
Part II	Methods to Improve Plant Abiotic Stress Response 193
Part II	Methods to Improve Plant Abiotic Stress Response 193 Section IIA Introductory Methods 193
Part II	
Part II 8	Section IIA Introductory Methods 193
	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195
8	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff
8 8.1	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195
8 8.1 8.2	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196
8 8.1 8.2 8.3	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197
8 8.1 8.2 8.3 8.4	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198
8 8.1 8.2 8.3 8.4 8.5	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198
8 8.1 8.2 8.3 8.4 8.5 8.6	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200
8 8.1 8.2 8.3 8.4 8.5 8.6	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203 Translational Biology Approaches to Improve Abiotic Stress Tolerance in Crops 207
 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9 	Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203 Translational Biology Approaches to Improve Abiotic Stress Tolerance in Crops 207 Rina Iannacone, Francesco Cellini, Giorgio Morelli, and Ida Ruberti
 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9 9.1 	 Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203 Translational Biology Approaches to Improve Abiotic Stress Tolerance in Crops 207 Rina Iannacone, Francesco Cellini, Giorgio Morelli, and Ida Ruberti Introduction 207
 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9 9.1 9.2 	 Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203 Translational Biology Approaches to Improve Abiotic Stress Tolerance in Crops 207 Rina lannacone, Francesco Cellini, Giorgio Morelli, and Ida Ruberti Introduction 207 Arabidopsis as a Model System 208
 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9 9.1 	 Section IIA Introductory Methods 193 Genetic Modification of Crops: Past, Present, and Future 195 Nina V. Fedoroff Introduction 195 Crop Domestication 196 Modern Crop Improvement 197 Mechanization of Agriculture 198 The Green Revolution 198 Molecular Genetic Modification of Crops 199 Adoption of GM Crops 200 Future Challenges in Agriculture 201 References 203 Translational Biology Approaches to Improve Abiotic Stress Tolerance in Crops 207 Rina Iannacone, Francesco Cellini, Giorgio Morelli, and Ida Ruberti Introduction 207

- 9.3 Abiotic Stress Tolerance in Crops 212
- 9.3.1 Proline 213
- 9.3.2 Glycine Betaine 214
- 9.3.3 Transcription Factors 215
- 9.4 From Arabidopsis to Crop 217
- 9.5 The Genomic Revolution 220
- 9.6 Plant Phenomics: Bridging the Gap between Genomics and Phenotype 223
- 9.7 Conclusions 225 References 226

Section IIB Omics 241

- 10 Functional Genomics of Drought Tolerance in Crops: Engineering Transcriptional Regulators and Pathways 243 Bala Rathinasabapathi
- 10.1 Introduction 243
- 10.2 Transcriptional Regulation of Stress Signaling Networks 244
- 10.2.1 ABA-Inducible Transcription Factors 244
- 10.3 ABA-Independent Signaling Networks 247
- 10.3.1 NAC Transcription Factors 247
- 10.3.2 DREB/CBF Transcription Factors 248
- 10.4 Pathways for Osmoprotectant Synthesis 249
- 10.5 Transporters 249
- 10.6 Combination of Drought and High-Temperature Stress and Oxidative Stress 250
- 10.7 Conclusions 250 References 251
- 11 Transcriptomic and Metabolomic Approaches to the Analysis of Plant Freezing Tolerance and Cold Acclimation 255
 - Dirk K. Hincha, Carmen Espinoza, and Ellen Zuther
- 11.1 Introduction 255
- 11.2 Transcriptomic Studies of Plant Cold Acclimation 260
- 11.2.1 Cold-Responsive Genes Identify Cold-Regulated Pathways in Arabidopsis 260
- 11.2.2 Transcriptomic Responses to Low Temperature in Nonmodel Species 263
- 11.2.3 Influence of Deacclimation on Plant Gene Expression 266
- 11.2.4 Profiling Gene Expression during Cold Acclimation Using SAGE Technology 266
- 11.2.5 Effects of Low Temperature on Circadian Clock-Regulated Gene Expression 267
- 11.2.6 Using Natural Genetic Variation to Identify Genes Important for Cold Acclimation and Freezing Tolerance 268

XIV Contents

11.3	Metabolomic Studies of Plant Cold Acclimation 269
11.3.1	Primary Metabolism 271
11.3.2	Secondary Metabolism 272
11.3.3	Lipid Metabolism 273
11.3.4	Sulfur and Nitrogen Metabolism 274
11.4	Both Transcriptional and Posttranscriptional Regulation
	of Metabolism are Important During Cold Acclimation 274
	References 277
12	Omics Techniques in Crop Research: An Overview 289
	Bashasab Fakrudin, Roberto Tuberosa, and Rajeev K. Varshney
12.1	Introduction 289
12.2	Transcriptomics 290
12.2.1	Closed Omics Technologies 290
12.2.2	Open Omics Technologies 291
12.3	Metabolomics 293
12.4	Proteomics 294
12.5	Interactomics 295
12.6	Genomics (or High-Throughput Genotyping) and Phenomics 296
12.7	Integrated Omics Technology Approach 298
	References 298
13	The Use of "Omics" Approaches in Arabidopsis for the Improvement of
13	The Use of "Omics" Approaches in <i>Arabidopsis</i> for the Improvement of Abiotic Stress Tolerance 301
13	
13.1	Abiotic Stress Tolerance 301
	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah
13.1	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301
13.1 13.2	Abiotic Stress Tolerance301Aleksandra Skirycz and Matthew A. HannahIntroduction301"Omics" Approaches302
13.1 13.2 13.2.1	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302
13.1 13.2 13.2.1 13.2.2	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303
13.1 13.2 13.2.1 13.2.2 13.2.3	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4	Abiotic Stress Tolerance301Aleksandra Skirycz and Matthew A. HannahIntroduction301"Omics" Approaches302Genomics303Proteomics304Metabolomics305
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4 13.4.1 13.4.1	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4 13.4.1 13.4.2 13.4.3	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311 The Use of Genetic Variation 311 The Use of Tissue and Cell-Specific Analysis 312
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4.1 13.4.2 13.4.3 13.4.4	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311 The Use of Genetic Variation 311 The Use of Tissue and Cell-Specific Analysis 312 The Use of Stress Combinations 313
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4 13.4.1 13.4.2 13.4.3	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311 The Use of Genetic Variation 311 The Use of Tissue and Cell-Specific Analysis 312 The Use of Stress Combinations 313 Applications of "Omics" Data in the Improvement of
13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4.1 13.4.2 13.4.3 13.4.4	Abiotic Stress Tolerance 301 Aleksandra Skirycz and Matthew A. Hannah Introduction 301 "Omics" Approaches 302 Genomics 302 Transcriptomics 303 Proteomics 304 Metabolomics 305 Other "Omics" Approaches 305 Data Analysis 306 Data Preprocessing 307 Differential Abundance 308 Correlation and Network Analysis 308 Visualization and Comparative Analysis 309 Characterization of Environmental Responses 310 The Use of Temporal Resolution 311 The Use of Genetic Variation 311 The Use of Tissue and Cell-Specific Analysis 312 The Use of Stress Combinations 313

- 13.5.2 Promoter Discovery 315
- 13.5.3 Mode-of-Action Characterization 316
- 13.6 Conclusions and Prospects 316 References 317
- 14Functional Genomics and Computational Biology Tools for Gene
Discovery for Abiotic Stress Tolerance
Xailash C. Bansal, Amit Katiyar, Shuchi Smita, and

Viswanathan Chinnusamy

- 14.1 Introduction 321
- 14.2 Gene Discovery in Model Organism 323
- 14.3 High-Throughput Gene Expression Analysis 324
- 14.4 Computational Resources: Databases and Software 326
- 14.5 Case Study: Development of QlicRice: a Web Interface for Abiotic Stress-Responsive QTL and Loci Interaction Channel in Rice 329
- 14.6 Conclusions and Prospects 331 References 332
- 15 Understanding Stress-Responsive Mechanisms in Plants: An Overview of Transcriptomics and Proteomics Approaches 337
 - Naser A. Anjum, Sarvajeet Singh Gill, Iqbal Ahmad, Narendra Tuteja, Praveen Soni, Ashwani Pareek, Shahid Umar, Muhammad Iqbal, Mário Pacheco, Armando C. Duarte, and Eduarda Pereira
- 15.1 Introduction 337
- 15.2 Transcriptomic Approaches and Plant Stress Responses 338
- 15.2.1 Hybridization-Based Approaches 338
- 15.2.2 Sequencing-Based Approaches 342
- 15.3 Proteomic Approaches in Plant Stress Responses 344
- 15.3.1 Gel-Based Approaches 345
- 15.3.2 Nongel-Based Approaches 348
- 15.3.3 Labeled or Nonlabeled Approaches 351
- 15.3.4 Data Mining Tools 353
- 15.4 Conclusions and Prospects 353 References 354
- 16Plant Tissue Culture and Genetic Transformation for Crop
Improvement357
 - Satbir S. Gosal and Manjit S. Kang
- 16.1 Introduction 357
- 16.2 Micropropagation 358
- 16.2.1 Advantages of Micropropagation 368
- 16.2.2 Steps in Micropropagation 369
- 16.2.3 Significance of Micropropagation 369
- 16.3 Meristem Culture 371
- 16.4 Somatic Embryogenesis 371

XVI Contents

16.5	Somaclonal Variation 372
16.5.1	Induction of Somaclonal Variation 372
16.5.2	Causes of Somaclonal Variation 373
16.5.3	Nature of Somaclonal Variation 375
16.5.4	Significance of Somaclonal Variation in Crop Improvement 375
16.6	In Vitro Production of Haploids 376
16.6.1	Methods of Haploid Production 376
16.7	Embryo/Ovule/Ovary Culture for Wide Hybridization 381
16.8	Protoplast Culture and Somatic Hybridization 382
16.9	Significance in Crop Improvement 384
16.10	In Vitro Production of Secondary Metabolites 384
16.11	Cryopreservation and In Vitro Germplasm Storage 385
16.12	Genetic Transformation 386
16.12.1	Significance of Plant Genetic Transformation 386
	References 387
17	A Systems-Based Molecular Biology Analysis of Resurrection Plants
	for Crop and Forage Improvement in Arid Environments 399
	John P. Moore and Jill M. Farrant
17.1	Introduction 399
17.2	Mechanisms to Alleviate Desiccation-Induced Stress 401
17.2.1	Countering Oxidative and Metabolic Stresses by Modifying
	Photosynthesis and Sugar/Protein Metabolism 402
17.2.2	Modulating Antioxidants and Associated Metabolism 403
17.2.3	Mechanical Stress and Adaptations of Resurrection Plant
	Cell Walls 405
17.3	Molecular Biology and Systems Biology of Desiccation Tolerance 407
17.3.1	Transcription Factors: the Magic Bullet for Plant Desiccation
	Tolerance? 407
17.3.2	A Role for Small RNAs as Regulators 410
17.3.3	Functional Genes Encoding for LEA Proteins 411
17.3.4	Functional Genes Encoding for Antioxidant Enzymes 412
17.3.5	Functional Proteomic Studies of Desiccation Tolerance 412
17.4	Applications for Engineering Drought Tolerance in
	Crops and Forages 414
17.5	Concluding Remarks and Future Directions 415
	References 416
	Section IIC Other Approaches 419
18	Molecular Breeding for Enhancing Abiotic Stress Tolerance
	Using Halophytes 421
	Ajay Parida, Suja George, and K. Kavita
18.1	Introduction 421
18.1.1	Halophytes and their Adaptations to Salinity 422

Contents XVII

- 18.1.2 Halophytes as a Source for Gene Mining 422
- 18.2 Genes for Reestablishing Ionic Homeostasis/Preventing Damage 423
- 18.2.1 Vacuolar Na⁺/H⁺ Antiporter 424
- 18.2.2 Plasma Membrane Na⁺/H⁺ Antiporter 424
- 18.2.3 Vacuolar Pyrophosphatase 425
- 18.2.4 Potassium Transporters 425
- 18.2.5 ROS Scavengers 426
- 18.2.6 Genes with an Osmotic/Protective Function 427
- 18.2.7 Amines 427
- 18.2.8 Proline 428
- 18.2.9 Polyols 429
- 18.3 Genes for Signal Transduction 429
- 18.4 Conclusions 430
 - References 430
- 19Helicases in Improving Abiotic Stress Tolerance in Crop
Plants 435
 - Narendra Tuteja, Sarvajeet Singh Gill, and Renu Tuteja
- 19.1 Introduction 435
- 19.2 Stress-Regulated Helicases 438
- 19.3Expression Profiling of Arabidopsis Helicase Genes under
Abiotic Stress439
- 19.3.1 Arabidopsis FL25A4 Helicase 440
- 19.3.2 Arabidopsis LOS4 Helicase (AtRH38) 440
- 19.3.3 Sorghum HVD1 Helicase 442
- 19.3.4 Pea DNA Helicase 45 442
- 19.3.5 Pea DNA Helicase 47 (PDH47) 443
- 19.3.6 Arabidopsis STRS1 and STRS2 443
- 19.3.7 Dogbane AvDH1 Helicase 443
- 19.3.8 Alfalfa MH1 Helicase 444
- 19.3.9 Arabidopsis AtRH9 and AtRH25 444
- 19.3.10 Soybean GmRH 444
- 19.3.11 Pea MCM6 Single-Subunit DNA Helicase 444
- 19.4 Possible Mechanisms of Helicase Action During Stress 445 References 447
- 20 Transcription Factors: Improving Abiotic Stress Tolerance in Plants 451
 - Pil Joon Seo, Jae-Hoon Jung, and Chung-Mo Park
- 20.1 Introduction 451
- 20.2 Abiotic Stress Responses 452
- 20.3 Transcription Factors in Stress Adaptation 455
- 20.3.1 Drought Stress 455
- 20.3.2 Salt Stress 457
- 20.3.3 Cold Stress 458

XVIII Contents

20.3.4	Heat Stress 460
20.4	Regulation of Transcription Factor Activities 462
20.4.1	Transcriptional Control 462
20.4.2	Posttranscriptional Modification 463
20.4.3	Posttranslational Modification 465
20.4.4	Protein–Protein Interactions 469
20.4.5	Epigenetic Regulation 471
20.5	Conclusions and Prospects 472
20.5	References 474
21	Make Your Best – MYB Transcription Factors for Improving Abiotic
	Stress Tolerance in Crops 481
	Andrea Pitzschke
21.1	Introduction 482
21.1.1	Abiotic Stress 482
21.1.2	Abscisic Acid – A Stress Signaling Hormone 482
21.1.3	(Dis)Similarities of Stress Responses 482
21.2	Signal Transduction and Amplification 483
21.2.1	Principle of Signaling Pathways 483
21.2.2	Protein Signaling Cascades 483
21.2.3	Transcription Factors 484
21.3	MYB Proteins in the Model – Abiotic Stress Signaling in
	Arabidopsis 489
21.3.1	AtMYB2: the Pioneer and Its Partner 489
21.3.2	Arabidopsis MYB Proteins as Stomatal Regulators 489
21.4	Desiccation, Cold, and Osmotic Stress in Crops 490
21.4.1	Wheat 490
21.4.2	Rice 491
21.4.3	Soybean 492
21.5	Colorful MYB Proteins and Their Merits 495
21.5.1	MYB Proteins for the Human Health 496
21.5.2	Anthocyanin Production in Grapevine 496
21.5.3	A Red and Rich Sweet Potato 496
21.5.4	Negative Control of Anthocyanin Production 497
21.5.5	Anthocyanins, UV Protection, and the Crosstalk with Other Stressors 497
21.6	Regulating the Regulators 498
21.6.1	Transcriptional Regulation of MYB Genes 498
21.6.2	miRNAs 498
21.6.3	Posttranslational Regulation of MYB Proteins 498
21.7	Databases and Transcriptome Studies – Resources for
	MYB Research 500
21.7.1	Transcriptomic Profiling of Abiotic Stress Responses
	in Crops 500
21.7.2	Transcription Factor Databases 502

21.8	Genetic Engineering, Limitations, Optimizations, Practical
	Considerations 502
21.9	Outlook 503

- References 504
- **22** Transporters and Abiotic Stress Tolerance in Plants 507
- Vandna Rai, Narendra Tuteja, and Teruhiro Takabe
- 22.1 Introduction 507
- 22.2 Basic Description of Transporters 508
- 22.3 Role of Transporters for Salt Tolerance in Plants 510
- 22.3.1 Na⁺ Transporter 510
- 22.3.2 K⁺ Transporter 511
- 22.3.3 Cl⁻ Transporters 512
- 22.4 Amino Acid Transporters 514
- 22.5 Sucrose Transporters 515
- 22.6 Transporters in Rice and Arabidopsis 516
- 22.7 Conclusions 520 References 520

23 Potassium and Sodium Transporters: Improving Salinity Tolerance in Plants 523

Toshio Yamaguchi, Nobuyuki Uozumi, and Tomoaki Horie

- 23.1 Introduction 523
- 23.2 NHX Transporters 524
- 23.2.1 Overview 524
- 23.2.2 Physiological Roles of NHXs 527
- 23.2.3 Transgenic Approaches to Increasing Salinity Tolerance Using NHX Genes 528
- 23.3 HKT Transporters 529
- 23.3.1 Overview 529
- 23.3.2 Physiological Roles of HKTs 531
- 23.3.3 Transgenic Approaches to Increasing Salinity Tolerance Using Class I HKT Genes 533
- 23.4 SOS1 Transporters 534
- 23.4.1 Overview 534
- 23.4.2 Physiological Roles of SOS1 536
- 23.4.3 Transgenic Approaches to Increasing Salinity Tolerance Using SOS1 Genes 537
- 23.5 Other Molecules that are Potentially Useful for Improving Salt Tolerance 537
- 23.5.1 HAK/KUP/KT Transporters 537
- 23.5.2 ENA1/PMR2A 538
- 23.6 Conclusions 538 References 539

XX Contents

24	Piriformospora indica, A Root Endophytic Fungus, Enhances
	Abiotic Stress Tolerance of the Host Plant 543
	Manoj Kumar, Ruby Sharma, Abhimanyu Jogawat, Pratap Singh,
	Meenakshi Dua, Sarvajeet Singh Gill, Dipesh Kumar Trivedi,
	Narendra Tuteja, Ajit Kumar Verma, Ralf Oelmuller, and Atul Kumar Johri
24.1	Introduction 543
24.2	Role of <i>P. indica</i> in Salt Tolerance 546
24.3	Role of <i>P. indica</i> in Drought Tolerance 549
24.4	Conclusions 552
21.1	References 554
	Kerences 55+
25	The Micromics Revolution: MicroRNA-Mediated Approaches
	to Develop Stress-Resistant Crops 559
	Camilo López and Álvaro L. Pérez-Quintero
25.1	Introduction: Silent Molecules Scream Out Loud 559
25.2	The Silence within: Plant miRNA Pathway 561
25.3	The Next-Generation Microscope: New Tools for miRNA Studies 562
25.4	Small Weapons for the Arms Race: Plant miRNAs and
23.4	Biotic Stress 563
25.4.1	Suppress and Conquer: Viruses versus Plant miRNAs 565
25.4.2	Being Effective: Bacteria versus Plant miRNAs 566
25.4.3	To be Determined: Other Plant Pathogens and miRNAs 568
25.5	A Versatile Response to a Changing Environment: miRNAs
23.3	and Abiotic Stress 568
25.5.1	Elementary: Soil Elements' Uptake and miRNAs 569
25.5.2	The Silent Treatment: Cold and miRNAs 571
25.5.3	Out of Breath: Hypoxia and miRNAs 572
25.5.4	In Deep Water: Water Balance Stresses (Drought and Salinity)
23.3.1	and miRNAs 572
25.6	The Strange Case of miR398: Crosstalk between
25.0	miRNA-Mediated Responses to Biotic and Abiotic Stresses 573
25.7	Viva la Revolución: Using miRNA-Mediated Strategies to
23.7	Develop Stress-Resistant Crops 577
25.7.1	Imitation of Silence: Artificial miRNAs in Plants' Genetic
201711	Transformation 577
25.7.2	Biotic Stress Resistance 580
25.7.3	Abiotic Stress Resistance 581
25.8	Conclusions and Perspectives 582
23.0	References 583
26	Transcription Factors: Improving Abiotic Stress Tolerance in Plants 591
	Tetsuya Ishida, Yuriko Osakabe, and Shuichi Yanagisawa
26.1	Introduction 591
26.2	Transcription Factors Involved in the Drought Stress Response 592
26.2.1	DREB2 Transcription Factors 593

606

26.2.2	Transcription Factors that Interact with the ABA-Responsive
26.2.3	Element in Drought Stress-Responsive Promoters 595 Additional Transcription Factors Involved in the Drought Stress Response 596
26.3	Transcription Factors that Mediate the Response to Cold Stress 597
26.4	Transcription Factors Mediating the Response to Heat Stress 598
26.5	Transcription Factors Involved in Nutrient Deficiency 599
26.5.1	Transcription Factors Involved in the Nitrogen Response 600
26.5.2	Phosphate Starvation-Responsive Transcription Factors 602
26.5.3	Transcription Factors Associated with the Sulfur Starvation Response 60
26.5.4	Iron Response-Related Transcription Factors 607
26.5.5	Zinc Deficiency-Responsive Transcription Factors 608
26.6	Transcription Factors Involved in Responses to Excess Metals in the Soil 609
26.6.1	Transcription Factors Mediating Al Tolerance 609
26.6.2	The HsfA4a Transcription Factor that Confers Cd Tolerance 609
26.7	Conclusions and Prospects 610
	References 611
27	Polyamines in Developing Stress-Resistant Crops 623
	Francisco Marco, Rubén Alcázar, Teresa Altabella, Pedro Carrasco,
	Sarvajeet Singh Gill, Narendra Tuteja, and Antonio F. Tiburcio
27.1	Introduction 623
27.1.1	PA Biosynthesis and Catabolism in Plants 623
27.2	PAs and Stress 625
27.3	Transgenic Modifications of PA Biosynthetic Route and
	Improvement of Stress Tolerance 626
27.4	Possible Mechanisms of PA Action in Stress Responses 629
	References 631
Part III	Species-Specific Case Studies 637
	Section IIIA Graminoids 637
28	Wheat: Functional Genomics of Abiotic Stress Tolerance 639
20	Paramjit Khurana, Harsh Chauhan, and Neetika Khurana
28.1	Introduction 639
28.1	
28.2	Functional Genomics Approaches 640 Proteomics 640
28.2.1	Metabolomics 641
28.2.3 28.2.4	RNA Interference-Based Gene Silencing 641 TILLING 642
28.2.5	Transcriptomics 642
28.2.6 28.3	Transgenics 643 Wheat Genomic Resources 644
28.3.1 28.3.2	ESTs 644 Full-Length cDNA Resource 644

XXII Contents

28.3.3	Wheat Mutants 645
28.3.4	Introgression Lines 645
28.4	Wheat Functional Genomics for Various Stresses 646
28.4.1	Drought Stress 646
28.4.2	Salinity Stress 647
28.4.3	Low-Temperature Stress 647
28.4.4	High-Temperature Stress 648
28.4.5	Signaling Network 649
28.5	Wheat Functional Genomics for Plant Growth and Development 651
28.6	Comparative Genomics 652
28.7	Conclusions 653
	References 653
29	Wheat: Mechanisms and Genetic Means for Improving
	Heat Tolerance 657
	Kuldeep Singh, Vishal Chugh, Gurpreet K. Sahi, and Parveen Chhuneja
29.1	Introduction 658
29.2	Environmental and Physiological Nature of Heat Stress 659
29.3	Heat Stress Threshold 660
29.4	High-Temperature Impact and Plant Responses to Heat Stress 661
29.4.1	Morphological Responses 661
29.4.2	Anatomical Responses 662
29.4.3	Phenological Responses 663
29.4.4	Physiological Responses 663
29.4.5	Water Relations 664
29.4.6	Osmotic Alterations 664
29.4.7	Photosynthesis 665
29.4.8	Assimilate Partitioning 666
29.4.9	Membrane Thermostability 667
29.4.10	Hormonal Modulations, Secondary Metabolites, and Antioxidant
	Adjustments 667
29.5	Heat-Induced Protein Synthesis 669
29.5.1	Heat Shock Proteins 670
29.5.2	Other Heat Stress Proteins 671
29.6	Mechanisms of Heat Tolerance 672
29.6.1	Signal Transduction under Heat Stress 674
29.6.2	Genetic Approaches to Combat Heat Stress 674
29.6.3	Conventional Breeding 675
29.6.4	Molecular Approaches 676
29.6.5	Transgenic Approach 677
29.6.6	Functional Genomics of Heat Stress 680
29.7	Energy Crises during Heat Stress 683
29.8	Conclusions and Outlook 684
	References 685

30	Wheat and Rice Crops: "Omics" Approaches for Abiotic Stress
	Tolerance 695
	Suja George, Ajay Parida, and Monkombu S. Swaminathan
30.1	Introduction 695
30.2	Genomics 697
30.3	Transcriptomics 700
30.4	Evaluation of the Role of MicroRNAs in Abiotic Stress 705
30.5	Generation of Transgenic Wheat and Rice Plants Tolerant to Abiotic Stress 706
30.6	Proteomics 707
30.7	Metabolomics 709
30.8	Conclusions and Perspectives 710 References 711
31	Rice: Genomics-Assisted Breeding for Drought Tolerance 715
	Prashant Vikram, Arvind Kumar, Alok Singh, and Nagendra K. Singh
31.1	Introduction 715
31.2	Morphophysiological Basis and Breeding for Drought
	Tolerance in Rice 717
31.3	Mapping of QTL for Drought Tolerance in Rice 718
31.4	Meta-Analysis of Drought Tolerance QTL in Rice 720
31.5	Marker-Assisted Selection and Pyramiding of Drought Tolerance
	QTL in Elite Rice Cultivars 721
31.6	Comparative Genomics for Drought Tolerance 722
31.7	Transcriptomics and Proteomics for the Identification of Drought Tolerance Genes in Rice 723
31.8	Conclusions 724
	References 725
32	Rice: Improving Cold Stress Tolerance 733 Kodiveri Muthukalianan Gothandam
32.1	Introduction 733
32.2	Effect of Cold Stress on Rice 734
32.3	Effect of Cold on Plant Physiology 736
32.4	Transcription Factors in Rice Cold Stress 737
32.5	Improving Cold Stress Tolerance in Rice 738
32.5.1	Overexpression of Transcription Factors and Cold Stress-Responsive Genes 738
32.5.2	Increasing the Production of Osmolytes 742
32.5.3	Overexpression of Cold Stress Signal Transduction
	Cascade Genes 743
32.6	Conclusions and Perspective 744
	References 744

XXIV Contents

33	Maize: Physiological and Molecular Approaches for Improving
	Drought Tolerance 751
	Ishwar Singh, Thirunavukkarasu Nepolean, Rajyalakshmi Ambika Rajendran,
	and Mariko Shono
33.1	Introduction 751
33.2	Basic Concept of Drought Tolerance and its Significance 752
33.3	Impact of Drought on Phonological Phases of Maize 752
33.3.1	Physiological, Morphological, and Metabolic Changes Induced
	by Drought 753
33.3.2	Physiological Changes 754
33.3.3	Morphological Changes 755
33.3.4	Metabolic Changes 756
33.4	Role of ABA in Drought Tolerance 758
33.4.1	ABA-Dependent Signaling 758
33.4.2	ABA-Independent Signaling 758
33.5	Developing Drought-Tolerant Maize 761
33.6	Modern Tools to Improve Drought Tolerance in Maize 763
33.7	Functional Genomics of Drought Tolerance 765
33.8	Genetic Engineering Approaches for Improving Drought
	Tolerance 770
33.9	Conclusions 773
	References 774
24	Baulaur Ousies Annuasches fan Abietis Stusse Telenange 770
34	Barley: Omics Approaches for Abiotic Stress Tolerance 779
	Nicola Pecchioni, Justyna Anna Milc, Marianna Pasquariello, and Enrico Francia
24.1	
34.1	Abiotic Stresses Relevant for Barley 779
34.2	Genomics Approaches for Abiotic Stress Tolerance in Barley 782
34.2.1	Genomics for the Exploitation of Barley Germplasm Resources 783
34.2.2	Barley Structural Genomics Resources 785
34.2.3	Role of Model Species 789
34.2.4	Barley Functional Genomics Approaches for Abiotic Stress Tolerance 790
34.2.5	Quantitative Genetics and Genetical Genomics of Abiotic Stress
24.2	Tolerance 808
34.3	The Contribution of other Omics Approaches 821
34.3.1	Proteomics 821
34.3.2	Epigenomics 828
34.3.3	Metabolomics 835
34.3.4	Ionomics 837
34.3.5	Phenomics 839
34.4	From Omics to Improved Abiotic Stress Tolerance: Present and
24.4.1	Future Strategies 841
34.4.1	From Omics to Systems Biology of Abiotic Stress Tolerance
	in Barley 846

- 34.4.2 Integration of Omics with Crop Science 852
- 34.4.3 Integration of Omics with Future Barley Breeding for Abiotic Stress Tolerance 855 References 859
- 35 Sugarcane: Physiological and Molecular Approaches for Improving Abiotic Stress Tolerance and Sustaining Crop Productivity 885 Ashok K. Shrivastava and Sangeeta Srivastava
- 35.1 Introduction 886
- 35.2 Physiological Approaches to Improve Tolerance of Sugarcane to Abiotic Stresses 888
- 35.2.1 Criteria for Selection of Varieties Possessing Tolerance to Abiotic Stress 888
- 35.2.2 Imparting Tolerance to a Commercial Variety to a Particular Abiotic Stress 890
- 35.3 Breeding Varieties Tolerant to Abiotic Stresses 900
- 35.3.1 Tolerance/Resistance to Abiotic Stresses in *Saccharum* Spp. and Related Genera 900
- 35.3.2 Varieties Developed/Identified Tolerant to Abiotic Stresses in India 904
- 35.4 Molecular Approaches 907
- 35.4.1 Drought 908
- 35.4.2 Waterlogging 910
- 35.4.3 Salinity 911
- 35.4.4 High-Temperature Stress 911
- 35.4.5Low-Temperature Stress912
- 35.4.6 Nutrient Stress 913
- 35.4.7 Heavy Metal Stress 913
- 35.5 Abiotic Stresses could also be Beneficial 914
- 35.6 Concluding Remarks 914
 - References 915

36 Sorghum: Improvement of Abiotic Stress Tolerance 923

Monika Dalal, Karthikeyan Mayandi, and Viswanathan Chinnusamy

- 36.1 Introduction 924
- 36.2 Abiotic Stress Tolerance 925
- 36.2.1 Drought Tolerance 926
- 36.2.2 Cold Tolerance 933
- 36.2.3 Salt Tolerance 933
- 36.2.4 Aluminum Tolerance 934
- 36.3 Genetic and Genomics Resources of Sorghum 935
- 36.3.1 Germplasm Resources and Genetic Diversity 935
- 36.3.2 Genetic Maps and QTL Mapping 936
- 36.3.3 Association Genetics 937
- 36.3.4 Transcriptomics and Reverse Genetics 938

XXVI Contents

36.3.5	Comparativ	e Genomics	938
36.4	Prospects	939	
	References	940	

Section IIIB Fruit and Vegetable Crops 951

37	Vegetable Crops (Chili Pepper and Onion): Approaches to Improve
	Crop Productivity and Abiotic Stress Tolerance 953
	Nandkumar Kunchge, Kiran Kumar, and Prashant Firke
37.1	Introduction 953
37.2	Effect of Salinity 954
37.3	Effect of High Temperature on Abiotic Stress 955
37.4	Abiotic Stress in Drought Conditions 956
37.5	Abiotic Stress due to Freezing Temperature 956
37.6	Abiotic Stress-Tolerant Variety Development in Vegetables 957
37.7	Role of Transcription Factors in Plant Stress Tolerance 958
37.8	Utilizing Heat Stress Transcription Factors to Increase
	Heat Stress Tolerance 960
37.9	Other TFs Used to Increase Stress Tolerance 961
37.10	A Review of Abiotic Stress Tolerance in Chili Pepper 963
37.11	Transgenic Chili Pepper for Abiotic Stress Tolerance 966
37.12	Abiotic Stress Tolerance in Onion (Allium cepa L.) 967
37.13	Role of Fructans in Freezing and Drought Tolerance 968
37.14	Role of Polyamine and Abscisic Acid Interaction during Stress
	Tolerance 970
37.15	Role of Antioxidants in Salt Stress in Onion 970
37.16	Genetic Transformation in Onion 972
37.17	Conclusions and Prospects 972
	References 973
38	Vegetable Crops: Improvement of Tolerance to Adverse Chemical
	Soil Conditions by Grafting 979
	Giuseppe Colla, Youssef Rouphael, and Mariateresa Cardarelli
38.1	Introduction 979
38.2	Salinity 982
38.2.1	Effects on Grafted Plants 982
38.2.2	Mechanisms of Salt Tolerance in Grafted Plants 985
38.3	Alkalinity 987
38.3.1	Effects on Grafted Plants 987
38.3.2	Mechanisms of Alkalinity Tolerance in Grafted Plants 988
38.4	Heavy Metals and Excessive Amount of Trace Elements 989
38.4.1	Effects on Grafted Plants 989
38.4.2	Mechanisms of Tolerance in Grafted Plants 990
38.5	Concluding Remarks and Future Perspectives 991
	References 992

39	Grain Legumes (Soybean, Chickpea, and Peanut): Omics Approaches
	to Enhance Abiotic Stress Tolerance 995
	D. Srinivas Reddy, Pooja Bhatnagar-Mathur, Vincent Vadez,
	and Kiran K. Sharma
39.1	Introduction 995
39.2	"OMICS" in Legumes and Abiotic Stress 997
39.3	Transcript "OMICS" 998
39.3.1	Soybean 1000
39.3.2	Chickpea 1000
39.3.3	Peanut 1001
39.4	Prote"omics" 1002
39.4.1	Soybean 1003
39.4.2	Chickpea 1004
39.4.3	Peanut 1004
39.5	Metabol"omics" 1005
39.6	Gen"omics" 1005
39.6.1	Soybean 1006
39.6.2	Chickpea 1007
39.6.3	Peanut 1007
39.7	Functional Genomics 1007
39.7.1	Gene Silencing Approaches 1008
39.7.2	TILLING 1008
39.8	Transgenomics 1009
39.8.1	Soybean 1012
39.8.2	Chickpea 1012
39.8.3	Peanut 1013
39.8.4	Candidate Genes from Legumes 1014
39.9	Phen"omics" 1017
39.9.1	Relevant Protocols to Assess Plant Response to Stress:
	Drought as a Case 1018
39.9.2	Relevant Protocols Used to Extract "Omics" Products
	in Grain Legumes 1018
39.9.3	Adaptive versus Constitutive Genes 1019
39.9.4	Physiology Integration in a Novel Context of Environment-Specific
	Breeding 1020
39.9.5	Addressing Complexity of Plant Response to Abiotic Stress 1021
39.10	Conclusions 1021
	References 1022
40	Fruit Crops: Omic Approaches toward Elucidation of Abiotic Stress
	Tolerance 1033
	Pravendra Nath, Vidhu A. Sane, Mehar Hasan Asif, Aniruddha P. Sane,
	and Prabodh K. Trivedi
40.1	Introduction 1033
40.2	Genomics and Transcriptomics of Fruit Crops 1036

	ontents
--	---------

10.2	
40.3	Proteomics of Fruit Crops 1038
40.4	Metabolomics of Fruit Crops 1041
40.5	Stress-Related Fruit Transgenics 1044
40.6	Conclusions 1046
	References 1046
41	Cassava Genetic Improvement: Omics Approaches for Facing Global Challenges 1049
	Yoshimi Umemura, Rane Jagadish, Motoaki Seki, Yoshinori Utsumi,
	Jarunya Narangajavana, and Manabu Ishitani
41.1	Introduction 1049
41.2	What Makes the Cassava More Tolerant to Drought? 1050
41.3	Phenomics for Trait Discovery 1052
41.4	How Cassava Genomics Tool will help Develop Drought-Tolerant Variety 1053
41.5	Gene Discovery for Drought Tolerance in Cassava 1055
41.6	Proteomics and Metabolomics Approach in Cassava 1058
41.7	Future Perspectives 1059
	References 1060
	Section IIIC Vegetable Crops: Solanaceae 1067
42	Tomato: Grafting to Improve Salt Tolerance 1069
	Paloma Sanchez-Bel, Isabel Egea, Francisco B. Flores, and Maria C. Bolarin
42.1	Introduction 1069
42.2	Formation of the Rootstock–Scion Union 1071
42.3	The Use of Grafting in Tomato 1073
42.4	Physiological Processes Involved in Salt Tolerance of Grafted Tomato Plants 1074
42.5	The Rootstock Improves Salinity Tolerance at
	Agronomical Level 1077
42.6	Agronomical Level 1077 Genetic Basis of Salinity-Tolerant Rootstocks 1078
42.6 42.7	
	Genetic Basis of Salinity-Tolerant Rootstocks 1078
	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079
42.7	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080
42.7	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085
42.7	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez,
42.7	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos,
42.7	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos, Trinidad Angosto, Belén Morales, Juan Capel, Vicente Moreno,
42.7 43	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos, Trinidad Angosto, Belén Morales, Juan Capel, Vicente Moreno, Rafael Lozano, Mari Carmen Bolarín, and Alejandro Atarés
42.7 43 43.1	 Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos, Trinidad Angosto, Belén Morales, Juan Capel, Vicente Moreno, Rafael Lozano, Mari Carmen Bolarín, and Alejandro Atarés Introduction 1085
42.7 43	Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos, Trinidad Angosto, Belén Morales, Juan Capel, Vicente Moreno, Rafael Lozano, Mari Carmen Bolarín, and Alejandro Atarés Introduction 1085 Tolerance Mechanisms to Drought and Salinity in Tomato and
42.7 43 43.1	 Genetic Basis of Salinity-Tolerant Rootstocks 1078 Conclusions and Future Perspectives 1079 References 1080 Tomato: Genomic Approaches for Salt and Drought Stress Tolerance 1085 Benito Pineda, José Osvaldo García-Abellán, Teresa Antón, Fernando Pérez, Elena Moyano, Begoña García Sogo, Juan francisco Campos, Trinidad Angosto, Belén Morales, Juan Capel, Vicente Moreno, Rafael Lozano, Mari Carmen Bolarín, and Alejandro Atarés Introduction 1085