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We must find a theory that will work; and that means something extremely difficult; for our
theory must mediate between all previous truths and certain new experiences. It must derange
common sense and previous belief as little as possible, and it must lead to some sensible ter-
minus or other that can be verified exactly.

– William James, Pragmatism, 1907 edition, p. 216



Preface

The Hill–Brown theory of the Moon’s motion was constructed in the years from 1877
to 1908, and adopted as the basis for the lunar ephemerides in the nautical almanacs
of the US, UK, Germany, France, and Spain beginning in 1923. At that time and for
some decades afterward, it was the most accurate lunar theory ever constructed. Its
accuracy was due, first, to a novel choice of “intermediary orbit” or first approxima-
tion, more nearly closing in on the Moon’s actual motion than any elliptical orbit ever
could, and secondly to the care and discernment and stick-to-it-ive-ness with which
the further approximations (“perturbations” to this initial orbit) had been computed
and assembled so as yield a final theory approximating the Moon’s path in real space
with an accuracy of a hundredth of an arc-second or better. The method by which
the Hill–Brown lunar theory was developed held the potentiality for still greater
accuracy.

The intermediary orbit of the Hill–Brown theory may be described as a periodic
solution of a simplified three-body problem, with numerical parameters carried to
15 decimal places. George William Hill, a young American mathematician working
for the U.S. Nautical Almanac Office, had proposed it, and computed the numerical
parameters to their 15 places. A self-effacing loner, he had in his privately pursued
studies come to see that the contemporary attempts at predicting the Moon’s motion
were guaranteed to fail in achieving a lunar ephemeris of the accuracy desired.

Of the two lunar theories vying for preeminence in the 1870s, one was the work
of Peter Andreas Hansen. Hansen’s theory had been adopted as the basis for the lunar
ephemerides in the national almanacs beginning with the year 1862, and it would
continue in that role through 1922. It was numerical rather than algebraic. This meant
that numerical constants were introduced at an early stage of the computation. A con-
sequence was that, beyond this stage, the course of the calculation was not traceable;
the algebraic structure of the theory was lost from sight. The only way to make
responsible corrections to the theory was to start over again from the beginning –
a daunting prospect, given that Hansen’s construction of the theory had occupied
20 years. Already in the 1870s Hansen’s theory was known to be seriously in need
of correction. Further corrections would be required for the theory to keep pace with
ongoing improvements in the precision of celestial observations.
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The second theory, that of Charles Delaunay, which had also required about
20 years for its construction, was entirely algebraic; its calculative paths were there-
fore clearly traceable. Its method, deriving ultimately from Lagrange, was elegant,
and Hill was initially charmed with it. But then came a disillusioning discovery.
In the higher-order approximations, the convergence slowed to a snail’s pace, and the
complexity of the computations increased staggeringly. For perturbations of higher
order than the 7th, Delaunay resorted to “complements,” guesses as to what the
(n + 1)th-order perturbation would be by extrapolation from already computed per-
turbations of the nth and (n − 1)th order. The complements were later found to be
quite unreliable. Delaunay’s resort to “complements,” Hill concluded, was an admis-
sion that his method had failed.

In Part I of the following study, I tell of the new method that Hill now envisaged
for developing the lunar theory, a method suggested by Euler’s lunar theory of 1772.
In the form in which E.W. Brown carried it to completion, it was semi-numerical:
the initial orbit (Hill called it the “variation curve”) was given by the dynamics of
a simplified three-body problem. The numerical input for this three-body problem
was a single number, the ratio of the mean motion of the Sun to the synodic motion
of the Moon. This number was as exactly known as any of the constants of astro-
nomy, and therefore unlikely to require revision. The remainder of the theory, con-
sisting of the thousands of terms necessary to “correct” the simplified model taken
as starting-point, was to be literal or algebraic throughout, and therefore straight-
forwardly correctable. Part II tells how Brown, recruited by George Howard Darwin
of Christ’s College Cambridge as Hill’s continuator, skillfully organized the long
series of computations required for the completion of the Hill–Brown theory.

Can our story appropriately be ended here? I say No. In the 1930s,
J. Leslie Comrie of the British Nautical Almanac Office hazarded the opinion that
the Hill–Brown theory would remain the basis of the lunar ephemerides to the year
2000. In fact, it would be replaced after some 50 years, and in the meantime the lunar
problem would be transformed out of recognition. Brown lived long enough (he died
in July, 1938) to have a role in early phases of the new development. I devote Part III
of my study to describing this transformation, really three revolutions wrapped
into one.

To begin with, even before Hill had conceived of the Hill–Brown theory, two
anomalies had been discovered in the Moon’s motion – variations in its motion
which gravitational theory could not account for; they would still be unresolved
when Brown completed his Tables in 1919. In 1853 John Couch Adams had shown
that Laplace’s theory of the Moon’s secular acceleration (published in 1787) could
account for only about half the observed secular acceleration, leaving the other
half unexplained. Secondly, Simon Newcomb in the 1860s discovered that, besides
its steady acceleration, the Moon’s motion was subject to additional variations,
involving accelerations both positive and negative, lasting sometimes for decades
and sometimes for shorter times. In 1939 it was at last shown conclusively that the
first of these anomalies was due to a deceleration in the Earth’s rotation, and that the
second was due to erratic variations in that same rotation. The assembling of the data
leading to this conclusion was the result of a cooperative effort on the part of many
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astronomers, including Brown. The final proof was worked out by H. Spencer Jones,
H.M. Astronomer at the Cape of Good Hope, and published in 1939.

Jones’s proof meant that astronomy was in need of a new clock. Since Antiquity
astronomers had depended on the diurnal motion of the stars to measure time.
They now knew that this motion, a reflection of the Earth’s rotation, was not strictly
uniform, but was slowing gradually and also varying erratically. A new method of
measuring time was necessary if astronomy was to be a self-consistent enterprise.

In an initial effort to restore logical consistency to their science, astronomers
invented the notion of Ephemeris Time. This was intended to be the time presupposed
in the ephemerides of the Moon, Sun, and planets, which time was in turn supposed to
be the time presupposed in dynamical theory – still, in the 1950s, largely Newtonian.
Unfortunately, the ephemerides were only approximately in accord with dynamical
theory, and were subject to repeated revision to bring them more exactly in accord
with the underlying dynamical theory. Moreover, intervals of Ephemeris Time could
be measured only for the past – a considerable inconvenience. Observations made in
the present had to be made in Universal Time, the varying time given by the apparent
diurnal motion of the stars. Time intervals in Universal Time were then corrected
later through comparisons with the ephemerides.

A more convenient option became available in 1955, with the invention of the
atomic clock. Its possibility had been suggested in 1945 by Isidore Rabi, the inventor
of the magnetic resonance method for studying the structure of atoms and molecules.
Quartz clocks could be calibrated against an atomic frequency, and thus brought to
new levels of precision and accuracy as timepieces. By 1970 atomic clocks had been
so improved as to be accurate to about 5 ns per day. An experiment carried out
in 1971 proved that these clocks obeyed the rules of relativity theory: their rate of
running was dependent on the gravitational fields and accelerated frames of reference
in which they were placed. Here were new complexities and newly available levels
of precision which practical astronomy needed to take into account.

The second revolution came about through the development of the electronic
computer and its application in the calculations of astronomy. During the 1920s,
J. Leslie Comrie of the British Nautical Almanac Office initiated the application of
available punched card technology to the computation of ephemerides. He demons-
trated these processes to E.W. Brown and his graduate student, Walter J. Eckert,
and Eckert took up with enthusiasm the project of adapting computer programs
to the needs of astronomy. By the late 1930s Eckert had succeeded in computeri-
zing the processes whereby Brown had originally computed the 3000 or so terms of
the Hill–Brown theory; the computerized computations showed that, with but few
exceptions, Brown’s results were extremely accurate. In 1948, with the cooperative
help of Thomas J. Watson of IBM, Eckert completed the design and construction of
the Selective Sequence Electronic Calculator. One of the intended uses of this instru-
ment was to compute an ephemeris of the Moon directly from Brown’s trigonometric
series, thus obviating use of Brown’s Tables, which had been found to introduce
systematic error.

Later, with further increments in computer speed and reliability, efforts were
made to re-do the development of the lunar theory by Delaunay’s method. The old
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difficulty of slow convergence re-appeared, and it was found better to start from
Hill’s “Variation Curve,” computed numerically; the theory as a whole, like Brown’s,
would thus be semi-numerical.

The third revolution concerned new types of data, above all, data giving the dis-
tances of celestial bodies. These types of data were introduced by radar-ranging,
space-craft ranging, and after 1969 in the case of the Moon, laser-ranging. Earlier,
the more accurate data had been angular, measuring the positions of celestial bodies
laterally with respect to the line of sight. The new astronomical data, measuring the
distances of celestial bodies, was more accurate by about four orders of magnitude.
These types of data were the work of Jet Propulsion Laboratory (JPL), which had
the task of sending spacecraft aloft and then astronauts to the Moon. The newer data
types required the development of numerical integration techniques and more com-
prehensive (and relativistic) physical models. Laser light, and spacecraft sent aloft,
achieved new wonders in determining the Moon’s position, increasing the preci-
sion of the measurement by four orders of magnitude. The transformation completed
itself in 1984, when responsibility for producing lunar ephemerides, and planetary
ephemerides as well, passed from the Nautical Almanac Office in Washington, DC
to Jet Propulsion Laboratory in Pasadena.

Without doubt, it was the end of an era.
But the mathematical and philosophical interest of an analytic solution to the

lunar problem, in the Hill–Brown-Eckert manner, remains high. Such a solution
reveals something of the nature and limitations of our knowledge of similar problems.

Annapolis, MD Curtis Wilson
January, 2010
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Part I

Hill Lays the Foundation (1877–1878)



1

George William Hill, Mathematician

George William Hill (1838–1914), a mathematician with the U.S. Nautical Almanac
Office from 1861 to 1892, in two papers of 1877 and 1878 laid the foundations
of a new lunar theory, departing from a basic pattern that had characterized earlier
algebraic theories of the Moon’s motions with one exception, to be mentioned below.
The first of Hill’s papers was printed privately, but very quickly a copy (probably
sent by Hill) reached the lunar theorist John Couch Adams of Cambridge University,
and Adams called attention to its seminal importance in the Royal Astronomical
Society’s Monthly Notices for November of that year.1 Wider recognition of its inno-
vative character came during the course of the next decade. In 1887 Hill was awarded
the Gold Medal of the Royal Astronomical Society. His sponsors for the award
included Adams, George Howard Darwin, and the new president of the society,
J.W.L. Glaisher, who devoted his presidential address to a précis and evaluation of
Hill’s two papers.

The starting-point for Hill’s theory was a particular solution of two second-order
differential equations expressing what Henri Poincaré would later call ‘the restricted
problem of three bodies’ (le problème restreint de trois corps). These equations idea-
lized the lunar problem, treating the Moon as of infinitesimal mass and as moving in
the ecliptic plane, the Sun as having zero parallax, and the Earth as moving uniformly
in a circle about the Sun. Hence, before this theory could yield the Moon’s actual
motions, it would need to be modified so as to allow for the inclusion of further
“inequalities.” In his paper of 1878 Hill proposed to treat the inequalities that are
proportional to the sine of the lunar inclination, the solar eccentricity, and the solar
parallax; but the memoir as published contains no further mention of these inequali-
ties. In the 1880s and 1890s Hill published a number of papers on lunar inequalities;
but by the 1890s, we learn, he had bequeathed the project of systematically develop-
ing his lunar theory to a younger man.

1 J.C. Adams, “On the Motion of the Moon’s Node in the Case When the Orbits of the
Sun and Moon are Supposed to Have No Eccentricities, and When Their Mutual Inclina-
tion is Supposed Indefinitely Small,” Monthly Notices of the Royal Astronomical Society,
(hereinafter MNRAS) 38 (Nov., 1877), 43–49.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 1,
c© Springer Science+Business Media, LLC 2010



4 1 George William Hill, Mathematician

This transfer was brought about by George Howard Darwin (1845–1912), son of
Charles Darwin and an applied mathematician of Christ’s College, Cambridge. Hill,
writing on 10 December 1889 to Darwin in reply to Darwin’s note of 22 November
(no longer extant, apparently), explained what had kept him from further developing
his lunar theory:

My energies at present are devoted to the evolving a theory and tables of
Jupiter and Saturn, and other projects have to be laid aside for this time.
Thus it has happened that I have done scarcely anything beyond what you
have seen in print, in reference to the Lunar Theory. It is very problematical
whether I ever have an opportunity of continuing these researches. I should
be glad to see Mr. Brown or any one else enter upon that field of labor. . . .2

The Mr. Brown here mentioned was Ernest W. Brown (1866–1938), a student and
protégé of Darwin’s at Christ’s College during the 1880s. In 1892 he was to migrate
to the United States, take a position at Haverford College, and set himself to work on
the elaboration of Hill’s theory.

Meanwhile, at the urging of Simon Newcomb, Hill had committed himself to
constructing a new theory of Jupiter and Saturn. In 1877, when Newcomb became
director of the Nautical Almanac Office, he had envisaged two ambitious projects for
his staff: the development of a set of planetary tables consistent in their assignment of
masses to the planets (the planetary tables recently published by Le Verrier in Paris
lacked such consistency), and the development of lunar tables more accurate than
those currently available. The theory of Jupiter and Saturn was the most difficult of
the planetary problems, and Newcomb asked Hill – whom he would later characterize
as “easily . . . the greatest master of mathematical astronomy during the last quarter
of the nineteenth century”3 – to take it on. This theory absorbed most of Hill’s efforts
from 1882 to 1892. He insisted on carrying out all the calculations himself, relying
on an assistant only for verifications.

F.R. Moulton on Hill’s death in 1914 wrote an appreciation of the man and his
achievement. Hill, he says, was “retiring and modest to the verge of timidity. . . .
He was absorbed in his own work but never inflicted it on others. In fact, he would
hardly discuss it when others desired him to do so.”4 Moulton reports a conversation
he had with Hill “after one of the meetings of the National Academy in Washington
a few years ago” (Moulton does not specify the year, which was presumably in the
twentieth century). It was a fine spring day; Hill had asked Moulton to join him in a
walk, and was unusually forthcoming about his own earlier work:

Hill told me that he thought the greatest piece of astronomical calculation
ever carried out by one man was Delaunay’s lunar theory, and that his work
on Jupiter and Saturn came second. Now the greater part of this work was
straight computation by methods which were largely due to Hansen, and

2 Hill to G.H. Darwin, 10 Dec. 1889, University of Cambridge Library manuscript collec-
tion (hereinafter UCL.MS), DAR.251:3533; quoted with permission.

3 S. Newcomb, The Reminiscenses of an Astronomer (Houghton: Mifflin, 1903), 218.
4 F.R. Moulton, “George William Hill,” Popular Astronomy, 22 (1914), 391–400, 391.



1 George William Hill, Mathematician 5

which could have been carried out under Hill’s direction by men who did
not have his great ability for original work. It seems probable that science
lost much because Newcomb caused Hill to spend about eight years of the
prime of life on this work. At any rate, this was the direct cause of his laying
aside, as he thought for a time only, his researches on the lunar theory.5

Hill recognized that the working out of his lunar theory would involve much
tedious calculation; he estimated it would require about 10 years, assuming a number
of assistants to do the routine calculations. From a letter of Hill to Darwin of July
1886, we gain some sense of the strain that Hill felt when engaged in “that field of
labor.” Darwin had written to invite Hill to contribute a paper to a certain journal
(unspecified in Hill’s letter); but Hill is begging off:

. . . I have made arrangements for going off in a few days to the wilds of
Canada to pass the vacation. The relaxation I get during the summer vacation
is a matter of great importance to me, as by it I gain sufficient strength to
keep in working trim for the following nine or ten months; and it is all the
more effective, if, during the time, I can be absolutely free from the worry
of scientific investigations.6

In 1892, at age 54, Hill retired from the Nautical Almanac Office, and returned to the
family farm in West Nyack, New York, where he had always preferred to be. He was
an amateur botanist, with considerable expertise in identifying wild plants, and he
loved taking solitary walks and botanizing. From Washington he brought with him
the still unfinished tables for Jupiter and Saturn, and completed them in West Nyack.

In tackling the problem of Jupiter and Saturn, Hill considered the possibility of
using Delaunay’s method – the method Delaunay had applied to the Moon7; it had
not previously been applied to planetary perturbations. He abandoned this idea, how-
ever, and adopted instead a modification of the method of Hansen’s Auseinanderset-
zung.8 Hansen had already applied an early version of his method to Jupiter and
Saturn, thus providing a model.9 Hill apparently judged that Hansen’s processes
would lead more swiftly to the result aimed at than the extensive transformations
required by Delaunay’s method.

In 1895 Hill was chosen president of the American Mathematical Society for
the 1895–1896 term. His presidential address, delivered on 27 December 1895, con-
cerned “the Progress of Celestial Mechanics since the Middle of the Century.”10

5 Ibid., 398.
6 CUL. MS. DAR.251: 2614, Hill to Darwin, 12 July 1886.
7 See Hill’s article, “Notes on the Theories of Jupiter and Saturn,” The Analyst, VIII (1881),

33–40, 89–93; The Collected Mathematical Works of George William Hill, I, 351–363.
8 P.A. Hansen, Auseinandersetzung einer zweckmässigen Methode zur Berechnung der

absoluten Störungen der kleinen Planeten, in Abhandlungen der Königlich Sächsischen
Gesellschaft der Wissenschaften, 5 (1859): 43–218; 6(1859), 3–147.

9 Untersuchung über die gegenseitigen Störungen des Jupiters und Saturns, Berlin, 1831.
10 Bulletin of the American Mathematical Society, second series, II (1896), 125–136; The

Collected Mathematical Works of George William Hill, IV, 99–110.



6 1 George William Hill, Mathematician

Nowhere in it does he mention his own lunar theory; he deals solely with the work
of Delaunay, Gyldén, and Poincaré. Brown, having gone to New York to hear it,
reported to Darwin that “it wasn’t particularly interesting.”11 Hill had mastered an
enormous amount of the detail of celestial mechanics, including the crucial details
that had led him to his new lunar theory. But he was not particularly successful at
transmitting to others a larger view. Frank Schlesinger’s account of Hill’s lecturing
on his specialty at Columbia University for a semester in 1899 tells us that the lec-
turer was tense and that the three graduate students who constituted his audience
were awed and uncomprehending.12 As Newcomb will remark later, Hill lacked the
teaching faculty.13

The archives of the Naval Observatory Library contain an undated, typed memo-
randum of three pages, giving Hill’s assessment of the status of the lunar prob-
lem and his estimate as to what the development of the new lunar theory he had
laid the foundations of would require (for the text, see the Appendix). A reference
there to a memoir by Radau – it dealt with the planetary perturbations of the Moon
and had appeared in the Bulletin astronomique in April and May, 1892 – is conso-
nant with the memorandum’s having been drawn up around the time of Hill’s re-
tirement. The addressee of the memorandum is not specified, but in it Hill refers
three times to “Prof. Newcomb,” in particular mentioning Newcomb’s corrections
of Hansen’s lunar tables. Hansen’s lunar tables had been adopted as the basis for
the lunar ephemerides in the British Nautical Almanac and the French Connaissance
des Temps beginning in 1862; with corrections introduced by Newcomb they were
adopted for the American lunar ephemerides beginning in 1883. Hill, while respect-
ful of Newcomb’s endeavors, is in effect criticizing Newcomb’s attempt to “make
do” with Hansen’s theory.

Hill allows that, from a purely practical point of view, Hansen’s tables, with
minor corrections, might be used for an indefinite time without serious error. But
the comparison Newcomb has made (in Astronomical Papers prepared for the use
of the American Ephemeris and Nautical Almanac, I, 1882, 57–107) between the
terms in Hansen’s theory and those in Delaunay’s shows discrepancies in the values
of the coefficients amounting in some cases to 0′′.5; some of these were probably
due to numerical mistakes made by Hansen. “It is not creditable to the advanced
science of the present day,” Hill remarks, “that we should be in any uncertainty in
this respect.” He goes on to urge that, “in treating this subject, we should start from
a foundation reasonably certain in its details, all known forces being taken correctly
into account.” Hansen’s theory, in his opinion, could not furnish such a foundation.
“To pass from Hansen to a theory absolutely unencumbered with empiricism is a
matter of difficulty. It is not even certain that the figures in [Hansen’s Tables de
la lune, 1857] are actually founded on the formulas of the introduction [to those
tables].”

11 Brown to Darwin, 12 January 1896, CUL. MS. DAR.251: 477.
12 F. Schlesinger, “Recollections of George William Hill”, Publications of the Astronomical

Society of the Pacific, 49, 5–12.
13 S. Newcomb, The Reminiscenses of an Astronomer, 218.



1 George William Hill, Mathematician 7

Hill is endorsing the further development of his own lunar theory, urging that
Ernest W. Brown be encouraged in the computations he has commenced.

Aid should be given in order that we may have the results sooner. . . . I esti-
mate that on this plan new tables could be prepared and ready for use in ten
years. Of course, sufficient computing force must be given to the undertaker
of this project, perhaps three persons might suffice.

Hill’s confidence in his theory was not misplaced. Brown in the course of his
work demonstrated the superior accuracy of the new theory compared to earlier
theories, including Hansen’s and Delaunay’s.

Hill does not imagine that the new tables will resolve all difficulties. Unknown
causes are acting, producing unsolved puzzles that are unlikely to be cleared up in a
mere decade.

The comparison of [the new] theory with observation will give residuals
which are the combined effects of the necessary changes in the values of
the arbitrary constants and the action of the unknown causes. The latter
undoubtedly exist, and I am afraid the period of observation is too short
to show their real law.

Here Hill may have in mind Newcomb’s earlier discovery that Hansen’s tables were
well fitted to lunar observations from 1750 to 1850, but deviated from observations
made before and after that period. As Newcomb discovered, Hansen had altered
numerically the theoretical value of the perturbations of the Moon due to Venus,
attempting in this way to accommodate these earlier and later observations, while
claiming that this was the sole piece of sheer empiricism in his tables. Newcomb
at the date Hill writes is still tinkering with this term – a mistaken effort in Hill’s
view. Hill’s own guess is that the discrepancies are due to the attractions of meteors,
a guess that will prove equally illusory.

The Moon’s motion, it was found, departed from Hansen’s tables in two ways
that Newtonian theory could not account for. First, the Moon was accelerating
over the centuries. Part of this acceleration was derivable from planetary perturbation
of the Earth, but the rest was not. Delaunay suggested that the excess acceleration
might be due to a deceleration in the Earth’s rotation caused by tidal friction. The
second effect was a fluctuation in the Moon’s motion; its speed, besides accelerating,
was altering in seemingly random ways. Like the excess acceleration, the fluctuations
might be attributable to alterations in the Earth’s rotation. But demonstrating these
conjectures would take some doing, and would not be accomplished till 1939. The
introduction of the atomic clock in 1955 will put the assignment of these effects to
changes in the Earth’s rotation beyond possible doubt. Both the tidal deceleration and
the fluctuations remain subjects of ongoing research today. In Part III of our study
we shall enter into more detail concerning this topic, insofar as it is relevant to lunar
astronomy.

Hill’s innovations in the lunar theory led to two later developments in mathe-
matics that we shall touch on in passing. In computing the motion of the Moon’s
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perigee he found himself confronted with an infinite determinant, which he succeeded
in solving. This feat sparked the interest and admiration of Henri Poincaré, and
Poincaré’s ensuing investigation of infinite determinants then led to a considerable
mathematical development in later decades.14 Secondly, Hill’s detailed working out
of a periodic solution of the three-body problem brought such periodic solutions to
the attention of mathematicians, including, again, Poincaré. Such periodic solutions
became for Poincaré the point of departure for explorations of the phase space of the
three-body problem – researches which cast new light on the theory of differential
equations as well as on the nature of classical mechanics.15 In the present study we
focus on the lunar theory itself: Hill’s promising beginnings, and Brown’s elabora-
tion of them into a complete lunar theory.

14 See M. Bernkopf, “A History of Infinite Matrices,” Archive for History of Exact Sciences,
4 (1967–1968), 308–358, especially 313ff.

15 See J. Barrow-Green, Poincaré and the Three Body Problem (Providence, RI: American
Mathematical Society; London: London Mathematical Society, 1997).
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Lunar Theory from the 1740s to the 1870s – A Sketch

The attempt to cope with Newton’s three-body problem not geometrically as Newton
had done but algebraically, using the calculus in the form elaborated by Leibniz,
got under way in the 1740s. That this attempt had not been made earlier appears
to have been due to lack of an appreciation, among Continental mathematicians,
of the importance of trigonometric functions for the solution of certain differential
equations; they failed to develop systematically the differential and integral calculus
of these functions. Newton had used derivatives and anti-derivatives of sines and
cosines, but had not explained these operations to his readers. Roger Cotes, in his
posthumous Harmonia mensurarum of 1722, articulated some of the rules of this
application of the calculus. But Euler, in 1739, was the first to provide a systematic
account of it. In the process he introduced the modern notation for the trigonomet-
ric functions, and made evident their role qua functions. Thus sines and cosines
having as argument a linear function of the time, t , could now be differentiated
and integrated by means of the chain rule. Differential equations giving the gravi-
tational forces acting on a body could be formulated and solved – though only by
approximation.

Euler was the first to exploit these possibilities in computing the perturbations of
the Moon. The tables resulting from his calculation were published in 1746, without
explanation of the procedures whereby they had been derived.

In March of 1746 the prize commission of the Paris Academy of Sciences, meet-
ing to select a prize problem for the Academy’s contest of 1748, chose the mutual
perturbations of Jupiter and Saturn. Since Kepler’s time, Jupiter had been accelerat-
ing and Saturn slowing down, and in other ways deviating from the Keplerian rules.
Newton assumed the deviations to be due to the mutual attraction of the two planets,
and proposed coping with the deviations in Saturn by referring Saturn’s motion to
the center of gravity of Jupiter and the Sun, and assuming an oscillation in Saturn’s
apsidal line. These proposals do not appear to have led to helpful results. The contest
of 1748 was the first academic contest of the eighteenth century in which a case of
the three-body problem was posed for solution.

The winning essay was Euler’s; it was published in 1749. It was not success-
ful in accounting for the anomalies in the motions of Saturn and Jupiter, but its

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 2,
c© Springer Science+Business Media, LLC 2010
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technical innovations proved to be crucially important in later celestial mechanics.
One of them was the invention of trigonometric series – a series in which the
arguments of the successive sinusoidal terms are successive integral multiples of
an angular variable. Euler’s angle in the case of Jupiter and Saturn was the difference
in mean heliocentric longitude between the two planets, which runs through 360◦ in
the course of about 20 years. As it does this, the distance between the two planets
varies by a factor of about 3.4, and hence the forces they exert on each other vary
by a factor of about (3.4)2 = 11.6. The expression of the perturbing force by means
of a trigonometric series enabled Euler to solve the differential equations of motion
to a first-order approximation. Trigonometric series later found other applications in
celestial mechanics, for instance in expressing the coordinates of the Moon in terms
of the mean anomaly, and the relations between mean anomaly, eccentric anomaly,
and true anomaly.

A second seminal innovation in Euler’s essay was his use of multiple observa-
tions in refining the values of certain coefficients. It was the first explicit appeal in
mathematical astronomy to a statistical procedure. The method of least squares had
not yet been invented. Euler’s procedure involved forming the differential corrections
for the coefficients in question, then selecting observations in which a given coeffi-
cient could be expected to be large, and solving the resulting equations approxi-
mately by neglecting terms that were relatively small. Tobias Mayer soon put this
procedure to use in the lunar theory.

The lunar problem differs significantly from the planetary problem. The distance
from the Moon of the chief perturbing body, the Sun, changes by only about 1/390th
of its value during the course of a month, and the resulting perturbation is so minimal
that it can be ignored in the first approximation. What primarily causes the lunar
perturbations is the difference between the forces that the Sun exerts on the Moon and
on the Earth. Were the Moon entirely unperturbed by the Sun, it would move about
the Earth in an ellipse, one focus of which would be occupied by the Earth’s center
of mass; a limiting case being a circle concentric to the Earth. But as Newton showed
in Corollaries 2–5 of Proposition I.66 of his Principia, if the Moon’s pristine orbit
about the Earth were a concentric circle, the effect of the Sun’s extra force, over and
above the force it exerts on the Earth, would be to flatten the circle in the direction
of the line connecting the Earth with the Sun (the line of syzygies), decreasing its
curvature there, while increasing it in the quadratures (where the angle between the
Sun and Moon is 90◦). Also, the Moon’s angular speed about the Earth would be
greater in the line of syzygies than in the quadratures. The variation in angular speed
had been discovered by Tycho in the 1590s, and was named by him the “Variation.”
Newton derived a quantitative measure of the Variation in Propositions III.26–29 of
the Principia, showing (on the assumption again of the Moon’s having pristinely
a circular orbit) that the Moon’s displacement from its mean place would reach a
maximum of 35′10′′ in the octants of the syzygies, and the oval into which the circle
is stretched would have its major axis about one-seventieth longer than its minor
axis.

Astronomers had found the eccentricity of the Moon’s orbit to be, on average,
about one-twentieth of the semi-major axis; were the Sun not perturbing the Moon,
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such an eccentricity would imply an elliptical orbit with the major axis exceeding
the minor by only about 1/800th. Thus eccentricity by itself distorts the shape of
the Moon’s orbit less than solar perturbation. On the other hand, it causes a greater
departure of the Moon from its mean motion, rising to a maximum displacement of
nearly 6◦ approximately midway between perigee and apogee. (This departure from
the mean motion is what led astronomers to assume an eccentric lunar orbit in the
first place.) The true orbit of the Moon, Newton implies, is a kind of blend of the
Variation oval and the eccentric ellipse – “an oval of another kind.”16

When Newton undertook to derive a quantitative measure of the Moon’s apsidal
motion, probably in 1686, he attempted to meld the effects of these two orbits; his
procedure was bold but unjustifiable. From this leap in the dark he later retreated,
apparently recognizing its illegitimacy.17

The first published lunar theory giving explicit derivation of the inequalities by
means of the Leibnizian calculus was Alexis-Claude Clairaut’s Théorie de la lune
(1752). Clairaut and Jean le Rond d’Alembert, both members of the prize com-
mission for the Paris Academy’s contest of 1748, had been occupied with the lu-
nar theory since the commission met in the spring of 1746. Both of them discov-
ered, early on, that their calculations yielded in the first approximation only about
half the motion of the Moon’s apse. With respect to the other known inequalities
of the Moon, their calculations had yielded reasonably good approximations. Nei-
ther Clairaut nor d’Alembert supposed that the second-order approximation would
be able to remove the large discrepancy in the apsidal motion. In September 1747
Clairaut learned that Euler in his lunar calculations had found the same discrepancy.
The three mathematicians were calculating along rather different routes; hence the
apsidal discrepancy did not appear to be an artifact of a particular procedure. Clairaut
presented this discovery to the Paris Academy in November 1747, proposing that a
term be added to Newton’s inverse-square gravitational law, with the additional force
varying inversely as the fourth power of the distance; the coefficient of this second
term was to be adjusted so as to yield the missing apsidal motion. The proposal met
with vigorous protest from Buffon, who regarded a two-term law as metaphysically
repugnant.

Clairaut’s proposal to modify the gravitational law was in accord with an idea
suggested earlier by John Keill – that the inverse-square law holding for interplane-
tary distances might take on a modified form at smaller distances, so as to account
for the forces involved in, for instance, capillary and chemical actions. Euler, by
contrast, thought the gravitational law would fail at very large distances, for he attri-
buted all forces to the impact of bodies, and gravitational force to the pressure of
an aether; but the aether responsible for the “attraction” toward a particular celestial
body would presumably extend only a finite distance from the body. D’Alembert,
differing from both Clairaut and Euler, regarded the inverse-square law of gravitation

16 See D.T. Whiteside, The Mathematical Papers of Isaac Newton, VI, (Cambridge:
Cambridge University Press, 1974) 519.

17 See my “Newton on the Moon’s Variation and Apsidal Motion,” in Isaac Newton’s Natural
Philosophy (eds. Jed Z. Buchwald and I. Bernard Cohen: Cambridge, MA: The MIT Press,
2001), 155–168.
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as sufficiently confirmed by the empirical evidence Newton had supplied; the cause
of the discrepancy in apsidal motion, he advised, should be sought in the action of a
separate force, such as magnetism, reaching from the Earth to the Moon.

The issue was resolved in the spring of 1749, when Clairaut proceeded to a
second-order approximation. In the new calculation, certain terms deriving from the
transverse component of the perturbing force proved after integration to have very
small divisors; the re-calculated coefficients were thus extremely large. These revi-
sions led in turn to a value for the apsidal motion nearly equal to the observed value.
The inverse-square law, it appeared, required no alteration.18 On the other hand, the
slow convergence revealed in the initial analytic assault on the lunar theory was to
prove a persistent difficulty.

Euler published a detailed lunar theory in 1753. Its primary purpose was to
confirm or disconfirm Clairaut’s new result by an entirely different route. Euler
eliminated the radius vector from his calculations, since it did not admit of precise
measurement by the means then available (namely, micrometer measurements of the
Moon’s diameter). He took his value for the apsidal motion from observation, but
in his equations assumed that the inverse-square law required modification by the
addition of a term which he symbolized by μ. The end-result of his calculation was
that μ was negligible and could be set equal to zero.

D’Alembert had registered his early writings on the lunar theory with the Paris
Academy’s secretary, but learning of Clairaut’s new result, stipulated that they should
not be published. In 1754 he published a lunar theory re-worked from the earlier ver-
sions, but now incorporating a multi-stage derivation of the apsidal motion. He gave
four successive approximations, with algebraic formulas for the first two. Whether
further approximations would continue to converge toward the observational value,
he pointed out, remained a question. Neither he nor Clairaut searched for the deeper
cause of the slow convergence they had encountered.

The predictive accuracy achieved in the lunar theories of our three mathemati-
cians was between 3 and 5 arc-minutes – not particularly better than the accuracy
of a Newtonian-style lunar theory, such as Le Monnier published in his Institutions
astronomiques of 1746.

The first lunar tables accurate enough to give the position of the Moon to
two arc-minutes, and hence to give navigators the geographical longitude to 1◦,
were those of Tobias Mayer (1723–1762)), published initially in 1753. They were
later refined and submitted to the British Admiralty. In 1760 James Bradley, the
Astronomer Royal, compared them with 1100 observations made at Greenwich, and
found 1′.25 as the upper bound of the errors. The Admiralty Board at length adopted
Mayer’s tables as the basis for the lunar ephemerides in the Nautical Almanac, which
appeared annually beginning in 1767. Whence the superior accuracy of Mayer’s
tables?

We are unable at the present time to answer this question definitively, but it
appears that empirical comparisons had much to do with the accuracy achieved.

18 A somewhat fuller account is given in “Newton on the Moon’s Variation and Apsidal
Motion,” as cited in the preceding note, 173ff.
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Mayer began with a Newtonian-style theory.19 At some date he carried out an analy-
tical development of the lunar theory, following, with some variations, the pattern
laid out in Euler’s theory of Jupiter and Saturn of 1749; he carried the analysis so far
as to exhaust, as he said, “nearly all my patience.” Many of the inequalities, he found,
could not be deduced theoretically with the desired accuracy unless the calculation
were carried still farther. From Euler’s prize essay on Saturn’s inequalities he had
learned how the constants of a theory could be differentially corrected by compari-
son with large numbers of equations of condition based on observations; and he had
applied such a process in determining the Moon’s librations (slight variations in the
face that the Moon presents to an Earth-bound observer, due primarily to variations
in the Moon’s orbital speed combined with the Moon’s almost exactly uniform axial
rotation). But of the processes he used in determining the Moon’s motions in longi-
tude, he gives us no description. We know that he assembled a large store of lunar
observations, many of them his own, including extremely accurate ones based on the
Moon’s occultations of stars. Presumably he once more constructed Eulerian-style
equations of condition, solved them approximately, and thus refined the coefficients
of his theoretically derived terms to achieve a superior predictive accuracy.

Mayer’s tables, being semi-empirical, did not answer the theoretical question
as to whether the Newtonian law could account for all lunar inequalities. But they
met the navigator’s practical need, supplying a method for determining longitude
at sea – at first the only method generally available. In later years, as marine
chronometers became more affordable and reliable, the chronometric method was
understandably preferred. The chronometer gave the time at Greenwich, and this,
subtracted from local time as determined from the Sun, gave the difference in longi-
tude from Greenwich. The method of lunar distances, by contrast, required a much
more extended calculation. The latter method was long retained, however, as supply-
ing both an economical substitute for the chronometrical method and an important
check on it.

In 1778 Charles Mason revised Mayer’s tables, relying on 1137 observations
due to Bradley, and using, we assume, a similar deployment of equations of condi-
tion. It was in the same way, apparently, that Tobias Bürg revised Mason’s tables
early in the 1800s; he used 3000 of the Greenwich lunar observations made by
Maskelyne between 1760 and 1793. From Mayer’s theoretical derivation (published
by the Admiralty in 1767), Mason deduced eight new terms, and Bürg added six
more, to be included in the tables. But the accuracy of the tables depended crucially
on the empirical refining of constants.

When Laplace undertook to deduce the lunar motions from the gravitational
law, he saw these semi-empirical tables as setting a standard of accuracy difficult
to surpass (Mécanique Céleste, Book VII, Introduction). Laplace’s theory was con-
siderably more accurate than the earlier analytical theories of Clairaut, Euler, and
d’Alembert. This was principally because of Laplace’s discovery of new inequali-
ties by deduction from the gravitational law. Among these new inequalities were

19 Private communication from Steven Wepster of the Mathematics Department, University
of Utrecht.
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two arising from the Earth’s oblateness (the decreasing curvature of its surface
from equator to poles). Moreover, Laplace for the first time supplied a gravitational
explanation for the Moon’s secular acceleration, as arising indirectly from the secu-
lar diminution of the eccentricity of the Earth’s orbit; his deduced value for it was in
good agreement with observations. (In the 1850s it would be found to be theoretically
in error, so that a drastic reinterpretation was required – a topic that we shall return
to in Part III.) The greatest difference between the predictions of Laplace’s theory
and Bürg’s tables was 8.3 arc-seconds; thus the theoretical deduction fell little short
of the accuracy attainable by comparisons with observations. The day was coming,
Laplace confidently predicted, when lunar tables could be based on universal gravi-
tation alone, borrowing from observation solely the data required to determine the
arbitrary constants of integration.

Bürg’s tables were published by the French Bureau des Longitudes in 1806.
In 1811 J.K. Burckhardt presented new lunar tables to the Bureau; they were
based on 4000 observations as well as on the terms newly discovered by Laplace.
A commission compared Bürg’s and Burckhardt’s tables with observations of the
Moon’s longitudes and latitudes from around the orbit, using the method of least
squares to assess the goodness of fit (this appears to have been the first published
use of MLS). In 167 observations of the Moon’s longitude, the root mean square
error of Bürg’s tables was 6′′.5, compared with 5′′.2 for Burckhardt’s tables; in 137
observations of the Moon’s latitudes, the corresponding numbers were 6′′.0 and 5′′.5.
Consequently Burckhardt’s tables were adopted as the basis of the lunar ephemerides
in the French Connaissance des Temps and in the British Nautical Almanac. They
would continue in that role, with some later corrections, through 1861.

For its prize contest of 1820, the Paris Academy of Sciences, at Laplace’s urging,
proposed the problem of forming tables of the Moon’s motion as accurate as the
best current tables [i.e., Burckhardt’s] on the basis of universal gravitation alone.
Two memoirs were submitted, one by the Baron de Damoiseau (1768–1846), direc-
tor of the observatory of the École Militaire in Paris, the other by Giovanni Plana
(1781–1864) and Francesco Carlini (1783–1862), directors, respectively, of the
observatories in Turin and Milan. Both memoirs were Laplacian in method. Damoi-
seau proceeded more systematically than had Laplace. From the start he put the re-
ciprocal radius vector (u) equal to u0 + δu, and the tangent of the latitude (s) equal
to s0 + δs, where u0 and s0 are the elliptic values of u and s, and δu and δs are the
modifications produced by perturbation. He developed the expressions for u and s
to the sixth order inclusive in the lunar and solar eccentricities and inclination of the
lunar orbit, whereas Laplace had stopped at the fourth order. He put δu, and also δs,
equal to a set of sinusoidal terms, with the coefficient of each such term containing
an undetermined factor; there were 85 such factors in the expression for δu and 37
in the expression for δs. Substituting the expressions for u and s into the differen-
tial equations, replacing the arbitrary constants by their empirical values, and set-
ting the coefficient of each sine and cosine term equal to zero, Damoiseau obtained
207 equations of condition, which he solved by successive approximations for the
undetermined factors. Because he substituted numerical values of the arbitrary con-
stants from the start, his theory is called a numerical theory; it is to be contrasted
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with a literal theory in which the coefficients are expressed as algebraic functions of
the arbitrary constants. Comparing Damoiseau’s tables with 120 observations, and
finding them to be of the same order of accuracy as Burckhardt’s tables, the prize
commission deemed them worthy of the prize.

Plana and Carlini in their memoir undertook to achieve a strictly literal solution
of the differential equations. The coefficients of the sinusoidal terms of the theory
are functions of certain constants of the theory – the orbital eccentricities of the
Moon and the Sun, the tangent of the Moon’s orbital inclination to the ecliptic, the
ratio of the Sun’s and Moon’s mean motions, the ratio of the mean Moon-Earth and
Sun-Earth distances. But these functions are far too complicated to be represented
analytically, except in the form of infinite series in the powers and products of the
constants involved. Our authors accordingly introduced such series into the repre-
sentation of the theory – an important innovation, revealing the causal provenance
of each term, and permitting the effect of any revision of a constant to be immedi-
ately calculated. The numerical factor that multiplies any term in such a series can
be determined not merely approximately but exactly, as a numerical fraction, and the
approximate character of the coefficient is due only to the series having to be broken
off after a finite number of terms rather than being summed as a whole.20 Unfortu-
nately, for some of the series the rate of convergence was excruciatingly slow. Where
denominators were produced by the integrations, Plana and Carlini developed their
reciprocals as series and multiplied them into the numerators, often with a decrease in
rate of convergence. At the time of the contest deadline they had not yet constructed
tables, but they showed that their coefficients for the inequalities in longitude were in
close agreement with Burckhardt’s. In view of the immense labor that their memoir
embodied, and the value of the resulting analytic expressions, the Academy decreed
that they, like Damoiseau, should receive the full value of the prize as originally
announced.

Plana went on to achieve a more complete development of the Plana-Carlini
theory in three large volumes published in 1832. Here the dependent variables u
and s emerge in successive approximations. Volume II gives the results accurate to
the fifth order of small quantities, while Volume III gives the developments required
to proceed to still higher orders.

The lunar theories of Clairaut, d’Alembert, Laplace, Damoiseau, and Plana all
took as independent variable the true anomaly ν, expressing the true longitude of the
Moon from the lunar apse. Hence the variables u and s were obtained as functions of
ν, and so also was the mean anomaly ([nt + ε] in Laplace’s notation, where n is the
mean rate of motion, t is the time, and ε the mean longitude at epoch). The result-
ing series, Laplace stated, converged more rapidly than the series obtained when the
independent variable was the mean anomaly. The choice of ν as independent vari-
able meant that, to obtain u, s, and ν as functions of t , it was necessary to obtain
ν as a function of the mean anomaly by reversion of the series for nt + ε in terms

20 A number of the points made here are due to J.C. Adams, “Address on presenting the Gold
Medal of the Royal Astronomical Society to M. Charles Delaunay,” The Scientific Papers
of John Couch Adams, I, 328–340.
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of ν. This operation becomes increasingly laborious as higher-order approximations
are undertaken, and in 1833 Siméon-Denis Poisson (1781–1840) proposed that it be
avoided by taking t as independent variable from the start. His former student Count
Philippe G.D. de Pontécoulant was the first to carry through a complete develop-
ment of the lunar theory on this plan. It was published in 1846 as Volume IV of
Pontécoulant’s Théorie du système du monde.

After completing the analytic development, Pontécoulant substituted empirical
values for the constants in his formulas, and compared the resulting coefficients
of terms in the longitude with those given by Damoiseau, Plana, and Burckhardt.
His and Plana’s coefficients agreed closely, despite the difference in their methods.
Of Pontécoulant’s 95 longitudinal terms, Plana gave 92. In eleven cases of discre-
pancy Pontécoulant traced the difference to errors in Plana’s derivations – errors
later verified and acknowledged by Plana. The differences between Pontécoulant’s
and Burckhardt’s coefficients were generally small; in two cases they exceeded 2′′,
and in 16 they exceeded 1′′. Pontécoulant believed the fault lay with the observations
on which Burckhardt’s tables were based.

In 1848 G.B. Airy published a reduction of the Greenwich lunar observations for
the period 1750–1830. To compare the sequence of resulting positions of the Moon
with theory, he turned to Damoiseau’s tables of 1824, but with the coefficients modi-
fied to agree with Plana’s theory, including all corrections so far found necessary.
From Plana’s theory and the observations, Airy then obtained corrected orbital ele-
ments for the Moon. Airy’s lunar elements were the basis on which Benjamin Peirce
of Harvard founded his Tables of the Moon (1853, 1865), from which were derived
the lunar ephemerides published in the American Ephemeris and Nautical Almanac
from its inception in 1855 through 1882.

For accuracy, however, lunar theories and tables from Damoiseau’s to
Pontécoulant’s were outdistanced by the Tables de la lune of Peter Andreas Hansen
(1795–1874), published in 1857. Deriving perturbations from gravitation alone,
Hansen achieved an accuracy superior to Burckhardt’s. His tables were adopted
for the British and French national ephemerides beginning with the year 1862, and
for the American Nautical Almanac beginning with the year 1883; they would remain
in that role till 1922.

Hansen’s method differed from that of any earlier theory. He had devised his way
of computing perturbations in the course of preparing a memoir for submission in the
Berlin Academy’s contest of 1830. The problem posed by the Academy concerned
Laplace’s and Plana’s conflicting results for second-order perturbations of Saturn due
to Jupiter. Contestants were asked to clarify the issues involved.

The difficulty in deriving analytically the motion of the Moon’s apse in the
1740s had led to the recognition that perturbations must necessarily be computed by
successive approximations. Often the first approximation would prove sufficiently
precise, but if greater precision were needed, the approximations could be arranged
in a series with respect to powers of the perturbing force. For instance, to compute
Saturn’s perturbations of the first order with respect to Jupiter’s perturbing force, you
started from assumed approximate motions for the two planets (motions, say, fol-
lowing Kepler’s “laws”), and on this basis calculated the attractions whereby Jupiter
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perturbs Saturn. To obtain the second-order perturbations of Saturn, the first-order
perturbations of Jupiter due to Saturn, as well as the first-order perturbations of Sat-
urn due to Jupiter, had to be taken into account. Thus the approximations initially
assumed were to be progressively refined. When the corrections became smaller than
the currently attainable observational precision, the result could be accepted as suf-
ficiently precise.

Laplace gave no systematic procedure for perturbations beyond those of first-
order. Second-order perturbations, he believed, would need to be calculated only in
special cases – where, for instance, the first-order perturbations were large. He failed
to recognize the need for a systematic way of obtaining higher-order perturbations.
It would later become evident that he had omitted second-order perturbations as large
as those he calculated. Nor did Plana, though questioning Laplace’s second-order
results, supply a systematic procedure.

A systematic and rigorous procedure for first- and higher-order perturbations,
however, was already at hand. It utilized formulas in the second edition of Lagrange’s
Mécanique analytique (1814). These formulas expressed the time-rates of change
of the orbital elements as functions of these same elements and of the partial deri-
vatives of the disturbing function with respect to them. (The disturbing function,
a Lagrangian innovation, is a potential function from which the force in any direc-
tion can be derived by partial differentiation.) These formulas were rigorous, and
remarkable in their independence of the time. Lagrange was imagining the planet
or satellite as moving at each instant in an ellipse characterized by its six orbital
elements, with the elements changing from instant to instant due to perturbation.
Second- and higher-order perturbations were derivable by applying the well known
“Taylor’s theorem”.

This procedure, however, was time-consuming. The perturbations of all six orbi-
tal elements had to be computed, whereas it was only the perturbations of the
coordinates, three in number, that were required practically. The perturbations of the
elements were often larger than those of the coordinates, so that a smaller quantity
would have to be determined from the difference of two larger ones, giving a result
of uncertain precision. Hansen therefore set out to transform Lagrange’s formulas,
so as to obtain a more direct route from disturbing function to the perturbations of
the coordinates.

Two simultaneous processes had to be taken into account: the continuous change
in shape and orientation of the instantaneous elliptical orbit in which the perturbed
body was conceived to be traveling, and the body’s motion along this protean orbit.
The first of these processes was expressible through the Lagrangian formulas giving
the rates of change of the orbital elements. The second process was governed by
well-known elliptical formulas: the true anomaly of the body (its longitude from
perihelion) was given, through an auxiliary variable, in terms of the mean anomaly;
and the radius vector was given in terms of the true anomaly.

The main focus of Hansen’s method was on the perturbations affecting the orbital
motion in the instantaneous plane (he treated the perturbations in the position of
the instantaneous plane separately). Here two processes needed to be kept distinct:
change in shape and size of the ellipse and motion of the body along it. For this
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purpose Hansen introduced two variables for the time: t for the time in which changes
in orbital elements are registered, τ for the time in which the motion along the orbit
occurs. Eventually the two times would be identified as one, the single time of the
ongoing, twofold process.

To have a single variable that would incorporate both aspects of this double pro-
cess, Hansen introduced ζ as a function of both t and τ . To define it quantitatively,
he stipulated that the true anomaly λ should be a function of ζ , and through ζ of t
and τ . Hence

∂λ

∂t
= ∂λ

∂ζ
× ∂ζ

∂t
,

∂λ

∂τ
= ∂λ

∂ζ
× ∂ζ

∂τ
. (Ha.1)

The quotient of the first of these equations by the second is

∂ζ/∂t

∂ζ/∂τ
= ∂λ/∂t

∂λ/∂τ
. (Ha.2)

Now ∂λ/∂t is given in terms of the Lagrangian formulas for rates of change of
the orbital elements; and ∂λ/∂τ in terms of known elliptical formulas. Hence the
quotient on the right side of (Ha.2) is expressible in terms of explicitly defined
quantities.

To obtain an expression for ζ , Hansen proceeded by successive approximations.
In the first approximation, he set ∂ζ/∂τ equal to 1, so that ζ = τ . Equation (Ha.2)
then simplifies to an expression for ∂ζ/∂t which can be integrated with respect to t ,
yielding a first-order expression for ζ . Differentiating this expression with respect
to τ , Hansen obtained an improved value of ∂ζ/∂τ , which he substituted back into
(Ha.2). The resulting expression when integrated with respect to t gave the second-
order approximation to ζ . Higher-order approximations were obtained by repeating
this process. At the end of each stage of approximation, Hansen replaced τ by t ,
and ζ by z. Thus in descriptions of Hansen’s method the variable z is sometimes
referred to as “the perturbed time”, and nz as “the perturbed mean anomaly.”

The foregoing sketch omits crucial detail, such as the steps required to determine
the arbitrary constants introduced by the integrations, the processes for determining
the radius vector as a function of ζ , and the procedure for finding the instantaneous
plane in which the instantaneous ellipse is located. Among features distinguishing
Hansen’s development of the theory were his use of harmonic analysis (or “special
values”), as advocated by Gauss, in determining the disturbing function, and his
application of Bessel functions in the expansions. Like Damoiseau before him, he
insisted on a numerical rather than a literal form for his theory, and introduced
approximate numerical values for the orbital elements at an early stage, so as to
avoid the problems of slow convergence of series encountered by Plana, and to make
sure that all terms greater than an agreed-upon minimum would be included.

After completing his memoir on the mutual perturbations of Jupiter and Saturn
(Untersuchung über die gegenseitigen Störungen des Jupiters und Saturns, Berlin,
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1831), Hansen set out to apply his new method to the lunar problem. He described
this application in his Fundamenta nova investigationis orbitae verae quam luna per-
lustrat (Gotha, 1838). Is the method really suitable to the lunar problem? Brouwer
and Clemence in their Methods of Celestial Mechanics suggest that it is not. They
give high marks to Hansen’s method in its application to planetary perturbations,
but they describe his adaptation of it to the lunar problem as a tour de force.21 The
method as set forth in the Fundamenta presents new complications, not easily sus-
ceptible of schematic description. We mention here only certain major new features.
A full account is given by Ernest W. Brown in his Introductory Treatise on the Lunar
Theory, Chapter X.

Hansen’s earlier treatment of the latitudes had lacked rigor, while the lunar
latitudes require an especially careful development. In the Fundamenta Hansen
succeeded in deriving them as accurately as could be wished, taking account of the
motions of the ecliptic as well as those of the instantaneous plane of the lunar orbit
with respect to a fixed plane. Comparing the different derivations of the perturbations
in latitude put forward by the celestial mechanicians of his day, the mathematician
Richard Cayley found Hansen’s alone to be strictly rigorous.22

A special difficulty in the lunar theory comes from the relatively large motions
of the Moon’s perigee and node in each lunar month, much larger proportionately
than the motions of the perihelion and node of any planet during its sidereal period.
In his theory of Jupiter and Saturn, Hansen had permitted terms proportional to the
time (t) and its square (t2) to be present, but in the lunar case such terms would
quickly become embarrassingly large. To avoid them Hansen introduced a factor y,
such that the mean rate of the perigee’s advance is ny, where n is the mean rate of
advance in longitude, and y is constant so long as only the perturbations due to the
Sun are considered. He likewise used y in defining the mean rate of recession of the
lunar node.

Another new feature in the Fundamenta was the introduction of a function W
which, integrated twice, gave the perturbations in the instantaneous plane of the orbit.
Initial values for the mean anomaly and radius vector were taken from an auxiliary
ellipse of fixed eccentricity and unvarying transverse axis, the mean motion on it
having a fixed rate n0, and the perigee progressing at the steady rate n0 y. The per-
turbed mean anomaly, nz, was obtained by the integration of W , and then substituted
into the standard elliptical formulas to yield the true anomaly. To find the perturbed
radius vector r , Hansen stipulated that r = r0(1 + ν), where r0 is the radius vector
in the auxiliary ellipse, and ν is a small fraction which represents the perturbations
and is obtained from the integration of W .

Hansen’s lunar theory, Brown tells us, was “much the most difficult to understand
of any of those given up to the present time [1896].” Presumably Hill, at an early
stage in his studies, became acquainted with it, but there are no references to it in his
writings of the 1870s. To Hansen’s work on Jupiter and Saturn, on the contrary, Hill

21 D. Brouwer and G.M. Clemence, Methods of Celestial Mechanics (New York: Academic,
1961), 335, 416.

22 See R. Cayley, “A Memoir on the Problem of Disturbed Elliptic Motion,” Memoirs of the
Royal Astronomical Society, 27 (1859), 1.


