

Table of Contents

Chapter 1: iOS Security Basics

iOS Hardware/Device Types

How Apple Protects the App Store

Understanding Security Threats

Understanding the iOS Security Architecture

A Brief History of iOS Attacks

Summary

Chapter 2: iOS in the Enterprise

iOS Configuration Management

Mobile Device Management

Summary

Chapter 3: Encryption

Data Protection

Attacking Data Protection

Summary

Chapter 4: Code Signing and Memory

Protections

Understanding Mandatory Access Control

How Provisioning Works

Understanding Application Signing

Inside Entitlements

How Code Signing Enforcement Works

Discovering Dynamic Code Signing

Breaking Code Signing

Summary

Chapter 5: Sandboxing

Understanding the Sandbox

Sandboxing Your Apps

Understanding the Sandbox Implementation

Summary

Chapter 6: Fuzzing iOS Applications

How Fuzzing Works

The Recipe for Fuzzing

Fuzzing Safari

Adventures in PDF Fuzzing

Quick Look Fuzzing

Fuzzing with the Simulator

Fuzzing MobileSafari

PPT Fuzzing Fun

SMS Fuzzing

Summary

Chapter 7: Exploitation

Exploiting Bug Classes

Understanding the iOS System Allocator

Taming the iOS Allocator

Understanding TCMalloc

Taming TCMalloc

ASLR Challenges

Case Study: Pwn2Own 2010

Testing Infrastructure

Summary

Chapter 8: Return-Oriented Programming

ARM Basics

ROP Introduction

What Can You Do with ROP on iOS?

Examples of ROP Shellcode on iOS

Summary

Chapter 9: Kernel Debugging and

Exploitation

Kernel Structure

Kernel Debugging

Kernel Extensions and IOKit Drivers

Kernel Exploitation

Summary

Chapter 10: Jailbreaking

Why Jailbreak?

Jailbreak Types

Understanding the Jailbreaking Process

Executing Kernel Payloads and Patches

Summary

Chapter 11: Baseband Attacks

GSM Basics

Setting up OpenBTS

RTOSes Underneath the Stacks

Vulnerability Analysis

Exploiting the Baseband

Summary

Appendix: Resources

Introduction

Chapter 1

iOS Security Basics

If you're like us, every time you get your hands on a new

device you wonder how secure it is. The iPhone was no

exception. Here was a device that had jumped across the

threshold from being a phone that might have a small web

browser to a device that was more like your computer than

your old phone. Surely there were going to be similar

security issues in these (and future) devices to the issues

that were already occurring on desktop computers. What

precautions and security mechanisms had Apple built into

these devices to prevent compromises? Here was a chance

to start a whole new branch of computing, from the

beginning. How important was security going to be for these

emerging smart devices?

This chapter answers these questions for iOS devices. It

begins by looking at the hardware seen for various iOS

devices and then quickly moves into describing the security

architecture of iOS 5. This includes highlighting the many

layers of defense built into current devices to make attacks

by malware and exploitation by attackers difficult. It then

illustrates how these defenses have held up (or not) in the

real world by showing some attacks that have occurred

against iOS devices. This section on iOS attacks takes a

historical approach starting from attacks against the very

first iPhone and ending with attacks against iOS 5 devices.

Along the way you will notice how much the security of iOS

devices has improved. Whereas the very first versions of iOS

had almost no security, the most recent versions of iOS 5

have quite a strong and robust security posture.

iOS Hardware/Device

Types
As iOS evolved during the years, so did the hardware inside

the various Apple devices. When smartphones and tablets

became widespread among users, people started to feel the

need to have powerful devices at their disposal. In a way,

the expectation was to have a computer in their pocket.

The first step in that direction was the creation of the iPad.

The original iPad had an ARM Cortex-A8 CPU, which,

compared to the CPU present on the original iPhone, was

roughly twice as fast.

Another big step forward was the iPad 2 and the iPhone

4S. They both feature ARM Cortex-A9 dual-core processors,

which are 20 percent faster compared to the A8 in terms of

CPU operations. Even more astonishing is the fact that the

GPU of the A9 is nine times faster compared to the A8.

From a security perspective, the biggest hardware

differences came with the iPhone 3GS and the iPad 2. The

iPhone 3GS was the first one to support the Thumb2

instruction set. The new instruction set changed the way

ROP payloads needed to be created. Most code sequences

present in previous versions of the device were suddenly

different on the 3GS.

The iPad 2, on the other hand, introduced dual-core

processors, which in turn enabled the iOS allocator to work

in full swing. This has had a huge impact on exploit

development because exploits become much less reliable in

a multi-processor environment.

Another relevant hardware component from a security

point of view is the baseband. In fact, in most countries the

iDevices are bound to a carrier (locked).

To unlock iPhones, most exploits use bugs in the baseband

component inside the phone. Both devices have historically

used Infineon baseband firmwares. Only recently with the

iPhone 4 CDMA and iPhone 4S has Apple moved to

Qualcomm.

A number of exploits have been published on the various

Infineon firmwares, but none yet on the Qualcomm ones.

How Apple Protects the

App Store
One of the things that makes iOS devices so great is the

number of applications, or apps, that are available to run on

them. These apps can be found in Apple's App Store. There

have been more than 18 billion downloads from the App

Store, and at least 500,000 different apps are available (see

Figure 1.1).

Figure 1.1 A users' view of the App Store.

Apps are developed using Xcode and the iOS SDK on Mac

OS X computers. The built apps can run in an iOS simulator

or can be put on real devices for testing. The apps are then

sent to Apple for review. If approved, they are signed by

Apple's private key and pushed out to the App Store for

download. Apps must be signed by a trusted party, such as

Apple, or they will not run on the devices because of the

Mandatory Code-Signing requirement in iOS (see Chapter 4

for more details). Enterprises can also distribute apps to

their employees using a similar system, but the employees'

phones must be configured to accept apps that are signed

by the enterprise as well as by Apple.

Of course, once you could download new apps to iOS

devices, it opened up the possibility for malware. Apple has

tried to reduce this risk with code signing and the App Store

review process. Additionally, App Store apps run in a

sandbox at a low privilege level to reduce the damage they

can cause. You see more on this in a bit.

Understanding Security

Threats
This book is about iOS security — how it works and how to

break it. To fully understand the decisions made by Apple in

trying to secure its devices, it is first necessary to think

about the different types of threats that the device might

face.

At a high level, iOS devices face many of the same types

of attacks that any desktop computer faces. These types of

attacks can be split into two broad categories: malware and

exploits. Malware has been around for decades on personal

computers and is starting to become a menace for mobile

devices as well. In general, malware is any software that

does something “bad” when it is installed and run on a

device. This malware might be bundled with software the

user wants, or it might disguise itself as something the user

wants. In either case, the user downloads and installs the

malware and when the malware is executed, it performs its

malicious actions. These actions might include sending e-

mails, allowing remote access to an attacker, installing a

keylogger, and so on. All general-purpose computing

devices are susceptible at some level to malware.

Computers are designed to run software; they do what they

are told. If the user tells it to run something that turns out to

be malicious, the computing device will happily comply.

There is no real vulnerability with the computer; it is just not

in a position to know which programs it should run and

which it should not. The typical way to protect devices from

malware is with antivirus (AV) software. It is the AV's job to

determine which software is safe to run and which is not

safe to run.

On the other hand, exploits take advantage of some

underlying defect of the software on the device to run its

code. A user might be innocently surfing a web page,

reading an e-mail, or doing absolutely nothing at all, when

all of a sudden some malicious code (perhaps in the form of

a web page, e-mail, or text message) takes advantage of a

vulnerability to run code on the device. Such attacks are

sometimes called drive-by-downloads because, unlike the

malware example, the user is mostly an innocent victim and

wasn't trying to install any code, but just trying to use his or

her device! The exploit might run some code inside the

compromised process, or it might download some software,

install it, and run it. The victim might have no idea that

anything out of the ordinary has happened.

Exploitation such as this requires two ingredients. The first

is a flaw or vulnerability in the software on the device. The

second is a way to leverage this vulnerability to get

attacker-controlled code to run on the device. Because of

this two-step process, you have two main ways to protect

against this kind of attack. The first involves making it

harder to find vulnerabilities. This might mean exposing less

code to the attacker (reducing the attack surface) or

cleaning up and removing as many flaws as possible in the

code. The problem with this approach is that some code

must always be exposed to the attacker or the device

cannot interact with the outside world. Furthermore, it is

very difficult to find all (or even most) of the vulnerabilities

lurking deep in a code base. If it were easy, there would be

no book like this one — or any jailbreaks, for that matter!

The second approach to protecting against exploitation is

to make the process of going from vulnerability to

performing a malicious action more difficult. This involves a

lot of engineering technologies such as data execution

prevention, and memory randomization, which are

discussed throughout this book. Continuing with this line of

reasoning, if you concede that an attacker will eventually

find a bug in your code and might get it running, you can at

least limit the damage that code might do. This involves

using privilege separation or sandboxing to keep sensitive

data from some processes. For example, your web browser

probably doesn't need the capability to make videos or send

text messages.

So far, the discussion has centered on security threats for

all devices. Next, you examine how attacking an iOS device

might differ from attacking a personal computer. In many

respects, it is very similar. iOS is a stripped-down version of

Mac OS X, and so many of the vulnerabilities and attacks

are shared between the two or are at least very similar. The

differences that do exist basically boil down to the attack

surface. The attack surface is the portion of code that is

accessible to an attacker and that processes attacker-

supplied input.

In some respects, the attack surface of iOS devices is

smaller than a corresponding Mac OS X desktop computer.

Certain applications, such as iChat, are not installed in iOS.

Other applications, such as QuickTime, are greatly reduced

in their capabilities. Likewise, certain file types are rejected

by MobileSafari but are parsed by Safari. So in these ways

iOS has a smaller attack surface. On the other hand, certain

features are present only on iOS devices, particularly the

iPhone. One such example is SMS messages. The fact that

iPhones parse these messages but you don't have

corresponding code in Mac OS X demonstrates that in some

regards, iOS has a larger attack surface. Another example of

the expanded attack surface of iOS includes the code

running on the baseband processor of the iPhone. We talk

about these two iOS-specific attack vectors later in this book

in Chapters 6 and 12, respectively.

Understanding the iOS

Security Architecture
You can imagine some of the nasty attacks that await an iOS

device; this section discusses how the device is engineered

to withstand these kinds of attacks. Here we describe iOS 5,

which as you'll see, is pretty secure. In a later section we

show you the evolution of how iOS got here, which was a bit

of a bumpy ride.

The Reduced Attack Surface

The attack surface is the code that processes attacker-

supplied input. If Apple has a vulnerability in some code,

and either the attacker can't reach it or Apple doesn't ship

the code at all in iOS, an attacker cannot base an exploit on

this vulnerability. Therefore, a key practice is minimizing the

amount of code an attacker can access, especially remotely.

In the ways that were possible, Apple reduced the attack

surface of iOS compared to Mac OS X (or other

smartphones). For example, love it or hate it, Java and Flash

are unavailable on iOS. These two applications have a

history of security vulnerabilities and not including them

makes it harder for an attacker to find a flaw to leverage.

Likewise, iOS will not process certain files, but Mac OS X will.

One example is .psd files. This file type is handled happily in

Safari, but not in MobileSafari, and importantly, nobody

would likely notice the lack of support for this obscure file

format. Likewise, one of Apple's own formats, .mov, is only

partially supported, and many .mov files that play on Mac OS

X won't play in iOS. Finally, even though iOS renders .pdf

files natively, only some features of the file format are

parsed. Just to see some numbers on the subject, Charlie

Miller once fuzzed Preview (the native Mac OS X PDF viewer)

and found well over a hundred crashes. When he tried these

same files against iOS, only 7 percent of them caused a

problem in iOS. This means that just by reducing the PDF

features that iOS handled, it reduced the number of

potential vulnerabilities by more than 90 percent in this

case. Fewer flaws mean fewer opportunities for exploitation.

The Stripped-Down iOS

Beyond just reducing the potential code an attacker might

exploit, Apple also stripped down the number of useful

applications an attacker might want to use during and after

exploitation. The most obvious example is that there is no

shell (/bin/sh) on an iOS device. In Mac OS X exploits, the

main goal is to try to execute a shell in “shellcode.” Because

there is no shell at all in iOS, some other end goal must be

developed for iOS exploits. But even if there were a shell in

iOS, it wouldn't be useful because an attacker would not be

able to execute other utilities from a shell, such as rm, ls, ps,

and so on. Therefore, attackers who get code running will

have to either perform all of their actions within the context

of the exploited process, or bring along all the tools they

want to use. Neither or these options are particularly easy

to pull off.

Privilege Separation

iOS separates processes using users, groups, and other

traditional UNIX file permission mechanisms. For example,

many of the applications to which the user has direct

access, such as the web browser, mail client, or third-party

apps, run as the user mobile. The most important system

processes run as the privileged user root. Other system

processes run as other users such as _wireless or

_mdnsresponder. By using this model, an attacker who gets full

control of a process such as the web browser will be

constrained by the fact the code she is executing will be

running as user mobile. There are limits to what such an

exploit can do; for example, the exploit will not be able to

make system-level configuration changes. Likewise, apps

from the App Store are limited in what they can do because

they will be executed as user mobile as well.

Code Signing

One of the most important security mechanisms in iOS is

code signing. All binaries and libraries must be signed by a

trusted authority (such as Apple) before the kernel will allow

them to be executed. Furthermore, only pages in memory

that come from signed sources will be executed. This means

apps cannot change their behavior dynamically or upgrade

themselves. Together, these actions prevent users from

downloading and executing random files from the Internet.

All apps must come from the Apple App Store (unless the

device is configured to accept other sources). Apple has the

ultimate approval and inspects applications before they can

be hosted at the App Store. In this way, Apple plays the role

of an antivirus for iOS devices. It inspects each app and

determines if it is okay to run on iOS devices. This

protection makes it very hard to get infected with malware.

In fact, only a few instances of malware have ever been

found for iOS.

The other impact of code signing is that it complicates

exploitation. Once an exploit is executing code in memory, it

might want to download, install, and execute additional

malicious applications. This will be denied because anything

it tries to install will not be signed. Therefore, exploits will be

restricted to the process they originally exploit, unless it

goes on to attack other features of the device.

This code signing protection is, of course, the reason

people jailbreak their phones. Once jailbroken, unsigned

applications can be executed on the device. Jailbreaking

also turns off other features (more on that later).

Data Execution Prevention

Normally, data execution prevention (DEP) is a mechanism

whereas a processor can distinguish which portions of

memory are executable code and which portions are data;

DEP will not allow the execution of data, only code. This is

important because when an exploit is trying to run a

payload, it would like to inject the payload into the process

and execute it. DEP makes this impossible because the

payload is recognized as data and not code. The way

attackers normally try to bypass DEP is to use return-

oriented programming (ROP), which is discussed in Chapter

8. ROP is a procedure in which the attacker reuses existing

valid code snippets, typically in a way never intended by the

process, to carry out the desired actions.

The code-signing mechanism in iOS acts like DEP but is

even stronger. Typical attacks against DEP-enabled systems

use ROP briefly to create a section of memory that is

writable and executable (and hence where DEP is not

enforced). Then they can write their payload there and

execute it. However, code signing requires that no page

may be executed unless it originates from code signed by a

trusted authority. Therefore, when performing ROP in iOS, it

is not possible to turn off DEP like an attacker normally

would. Combined with the fact that the exploit cannot

execute applications that they may have written to disk, this

means that exploits must only perform ROP. They may not

execute any other kinds of payloads such as shellcode or

other binaries. Writing large payloads in ROP is very time-

consuming and complex. This makes exploitation of iOS

more difficult than just about any other platform.

Address Space Layout

Randomization

As discussed in the previous section, the way attackers try

to bypass DEP is to reuse existing code snippets (ROP).

However, to do this, they need to know where the code

segments they want to reuse are located. Address space

layout randomization (ASLR) makes this difficult by

randomizing the location of objects in memory. In iOS, the

location of the binary, libraries, dynamic linker, stack, and

heap memory addresses are all randomized. When systems

have both DEP and ASLR, there is no generic way to write an

exploit for it. In practice, this usually means an attacker

needs two vulnerabilities — one to obtain code execution

and one to leak a memory address in order to perform ROP

— or the attacker may be able to get by with having only

one very special vulnerability.

Sandboxing

The final piece of the iOS defense is sandboxing.

Sandboxing allows even finer-grained control over the

actions that processes can perform than the UNIX

permission system mentioned earlier. For example, both the

SMS application and the web browser run as user mobile, but

perform very different actions. The SMS application probably

doesn't need access to your web browser cookies and the

web browser doesn't need access to your text messages.

Third-party apps from the App Store shouldn't have access

to either of these things. Sandboxing solves this problem by

allowing Apple to specify exactly what permissions are

necessary for apps. (See Chapter 5 for more details.)

Sandboxing has two effects. First, it limits the damage

malware can do to the device. If you imagine a piece of

malware being able to get through the App Store review

process and being downloaded and executed on a device,

the app will still be limited by the sandbox rules. It may be

able to steal all your photos and your address book, but it

won't be able to send text messages or make phone calls,

which might directly cost you money. Sandboxing also

makes exploitation harder. If an attacker finds a vulnerability

in the reduced attack surface, manages to get code

executing despite the ASLR and DEP, and writes a

productive payload entirely in ROP, the payload will still be

confined to what is accessible within the sandbox. Together,

all of these protections make malware and exploitation

difficult, although not impossible.

A Brief History of iOS

Attacks
You now have a basic understanding of the defensive

capabilities of iOS devices. This section discusses some

successful attacks against these devices to see how their

security holds up in the real world. This discussion also

demonstrates how the security of the device has evolved to

keep up with real-world attacks.

Libtiff

When the original iPhone came out in 2007, people were

lining up to get one. Perhaps in an effort to get it out the

door as quickly as possible, the device did not ship in a very

secure state. You've seen how iOS 5 looks, but compare it to

“iOS 1” in the original iPhone:

There was a reduced attack surface.

There was a stripped-down OS.

There was no privilege separation: All processes ran as

root.

There was no code-signing enforcement.

There was no DEP.

There was no ASLR.

There was no sandboxing.

So, if you could find a vulnerability in the device, it was

very easy to exploit it. The exploit was free to run shellcode

or download files and execute them. Even finding

vulnerabilities was rather easy because the original iPhone

software was shipped with known flaws. Every attack gave

you instant root access.

Tavis Ormandy first pointed out that the version of Libtiff,

used to process TIFF images, had a known vulnerability in it.

Chris Wade actually wrote a working exploit for this

vulnerability. Therefore, it was possible to surf to a malicious

website and have the site get remote root access to your

device. This flaw was patched in iPhone OS 1.1.2.

Compare the Libtiff exploit at that time with what would

have to happen for a similar vulnerability in the Libtiff

library found today. The original exploit filled heap memory

with executable code and then redirected execution to it.

This would fail now because of the presence of DEP.

Therefore, the exploit would have to use ROP and somehow

defeat the ASLR. This would probably require an additional

vulnerability. Furthermore, even if the attacker were to get

an exploit working, the attacker would only have the

permissions of the user mobile and would be sandboxed as

well. This is in stark contrast to having unfettered root

access.

While we're on the topic of iOS 1, it should be pointed out

that malware wasn't much of a problem for it. This is

because, with what seems unbelievable now, the original

iPhone had no official way to download third-party apps.

That didn't come along until iOS version 2.

Fun with SMS

In 2009, researchers Collin Mulliner and Charlie Miller found

a vulnerability in the way the iPhone parsed SMS messages.

By this time, iOS 2 was in use. iOS 2 featured almost all of

the security mechanisms present in iOS 5 with the exception

of ASLR. The problem was that while most processes ran as

an unprivileged, sandboxed user, the particular process that

handled SMS messages did not. The responsible program,

CommCenter, happened to run as root with no sandboxing.

The problem with not implementing ASLR is that DEP really

works only in conjunction with ASLR. That is, if memory is

not randomized and an attacker knows exactly where all

executable code is located, performing ROP is rather easy.

Besides being a powerful way into the system, SMS makes

a great attack vector for a number of other reasons. For

one, it requires no user interaction. Instead of trying to get a

victim to visit a malicious website, an attacker only has to

know the victim's phone number and send the attack.

Additionally, the victim cannot prevent the attack from

occurring. There is no way to disable SMS on a default

phone. Finally, the attack is silent and is possible even when

a device is powered off. If an attacker sends the malicious

SMS messages while a device is off, the carrier will

conveniently queue them up and deliver them as soon as

the device powers up.

This flaw was patched in version 3.0.1. Today, things would

be more difficult because not only would the exploit have to

deal with ASLR, but now the CommCenter process runs as

user _wireless instead of root.

The Ikee Worm

By the time iOS 2 came out, the device was in pretty good

shape. However, it turns out that jailbreaking your device

breaks the whole security architecture of the device. Sure, it

disables code signing, but it does much more. It increases

the attack surface by adding software (after all, the whole

point is to run unsigned code). It adds a bunch of system

utilities, such as a shell. It can install things that run as the

root user. By turning off code signing, you also turn off the

strong form of DEP. That is, ROP payloads can disable DEP

and write and execute shellcode on jailbroken devices.

Finally, the new unsigned apps are not sandboxed. So, yes,

jailbreaking pretty much turns off all the security of the

device, not just the code signing.

Therefore, it shouldn't come as a shock that jailbroken

phones were targeted for exploitation. The Ikee worm (also

known by a variety of other names like Dutch ransom,

iPhone/Privacy.A, or Duh/Ikee.B) took advantage of the fact

that many people who jailbroke their phones installed an

SSH server and didn't bother to change the widely-known

default root password This meant anybody could connect to

their device and remotely control it with root privileges. It is

hardly a challenge to write a worm given these conditions.

Additionally, the SSH server was in no way sandboxed.

The worm did various things at different stages of its

lifetime. Initially, it just changed the wallpaper of the device

(see Figure 1.2). Later, it was changed to perform malicious

actions such as locking the phone for ransom, stealing

content, or even enrolling it to become part of a botnet.

Figure 1.2 Rick Astley is never gonna give you up.

Obviously, none of this could have happened prior to the

victims jailbreaking their devices.

Storm8

In 2009, games developed by popular developer Storm8

were collecting the cell phone numbers of the devices on

which they were playing. The games would then send this

information to Storm8 servers. Some of the affected apps

included “Vampires Live,” “Zombies Live,” and “Rockstars

Live” (see Figure 1.3). A class action suit was filed against

Storm8, which claimed the data collection feature of the

apps was a simple mistake. There were approximately 20

million downloads of Storm8 apps during the time in

question.

Figure 1.3 Vampires Live brought more than rampaging

vampires to iOS.

SpyPhone

SpyPhone was a proof of concept app written by Seriot

Nicolas that exercised the limits of the iOS sandbox for third-

party apps. It tried to access every conceivable piece of

information and perform any actions allowed by the

sandbox. One thing to notice about the iOS sandbox is that

every third party app from the App Store has the same

sandbox rules. That means that if Apple thinks one app

should have a certain capability, all apps must have that

capability. This differs, for example, from the Android

sandbox where every app can have different capabilities

assigned to it based on its needs. One of the weaknesses of

the iOS model is that it may be too permissive. For example,

by using public APIs in entirely legitimate ways (despite the

fact the app was in a sandbox), SpyPhone was able to

access the following data:

Cell phone number

Read/write access to address book

Safari/YouTube search terms

E-mail account information

Keyboard cache

Geotagged photos

GPS information

WiFi access point names

This app demonstrated that even inside a sandbox, a

malicious program could extract a frightening amount of

information from the device.

Pwn2Own 2010

Two of the authors of this book, Vincenzo Iozzo and Ralf-

Philip Weinmann, won the Pwn2Own hacking competition

against the iPhone 3GS in 2010. They found a vulnerability

in MobileSafari that allowed them to execute code remotely.

This was in iOS version 3 before ASLR was introduced. Their

entire payload was written in ROP due to the code-signing

mechanisms in place. Using ROP, they were able to open up

the SMS database, which stored all the text messages, and

send them off to a remote server they controlled. They

were, however, limited to the user mobile and the

MobileSafari sandbox. It would have taken some more work

to do more damage. For their effort they won $15,000 and

the phone. The next year two different authors of this book

won the same competition.

Jailbreakme.com 2 (“Star”)

So far we've talked about all the limits that something like

iOS 5 puts on a remote attacker. This makes attacks very

difficult, but not impossible. An example of this was shown

in August 2010 by comex's infamous jailbreakme.com

website. (The first jailbreakme.com worked against the

original iPhone and so was rather easy in comparison.) This

second jailbreakme.com site performed a series of actions

that eventually led to jailbreaking the iOS device that visited

it. This means it must obtain remote root access, similar to

the iOS 1.0 days. In this case, however, it was against iOS

4.0.1, which had all the security mechanisms except ASLR

(which hadn't been added yet). So how did it work? First, it

took advantage of a stack overflow in the way a particular

type of font was handled by MobileSafari. This allowed the

exploit to begin its ROP payload within MobileSafari. Then,

instead of just shipping off the SMS database, this

sophisticated payload proceeded to exploit another

vulnerability to increase its level of access to the device.

This second vulnerability was an integer overflow in an

IOSurface property in IOKit. This second attack allowed code

execution by the attacker inside the kernel. From the kernel,

it disabled code signing, then the ROP downloaded an

unsigned dynamic library that jailbroke the phone and

loaded it. Apple quickly patched it because while the

jailbreakme.com site simply jailbroke your phone, it could

have been easily modified to perform any actions on the

device it wanted.

Jailbreakme.com 3 (“Saffron”)

One thing all the examples have had in common so far is

that they have been against iOS versions before 4.3. This is

when ASLR was introduced. Once that final obstacle is

added, perhaps it is too difficult to exploit the device? Well,

comex again showed this is not the case with the third

incarnation of the jailbreakme.com site targeting iOS

versions up to 4.3.3. Again, this required two exploits, one

to get code execution and one to disable the code signing.

http://jailbreakme.com/
http://jailbreakme.com/
http://jailbreakme.com/
http://jailbreakme.com/
http://jailbreakme.com/

But what about the ASLR? You learn more about this exploit

in Chapter 8, but for now it is enough to know that the

particular vulnerability exploited allowed the attacker to

both read and write memory. With that, it was possible for it

to figure out where it was located in memory by reading the

values of some nearby pointers. After that it was able to

corrupt memory and get control of the process by writing to

memory. Like we said before, defeating ASLR usually

requires either two vulnerabilities or one really special one.

In this case, the exploit took advantage of a single, but very

powerful, vulnerability.

Summary
This chapter began by introducing iOS devices, including the

hardware and how they've changed since their introduction.

You then learned some basic information about security

topics, including the types of threats that are faced by iOS

devices. The chapter then introduced many of the concepts

of this book at a high level. It discussed the security design

of iOS; many of whose layers will be highlighted in their own

chapters later on. Finally, it walked through some of the

attacks that have succeeded against iOS in the past, right

up to ones that bypass all the security of even iOS 5.

Chapter 2

iOS in the Enterprise

As Apple's iOS-based devices have gained popularity among

consumers, more and more enterprises have begun to allow

employees to access and store enterprise data on these

devices. Typically, the enterprise purchases and fully

manages the smartphones or other devices that may be

used to access sensitive enterprise data. In some cases (and

in what is becoming increasingly common), enterprises may

allow employees to access enterprise data from devices

they personally own. In either case, the benefits of using

these mobile devices to access enterprise data must be

weighed against the new security risks that they present.

Any mobile device can get misplaced, lost, or stolen. If the

mobile device stores or is capable of accessing sensitive

enterprise data, there is a risk that this data may be

recoverable and fall into the wrong hands. For these

reasons, it is important that access to the physical device be

restricted by requiring a strong passcode, and that it can be

remotely locked or wiped if it is lost. This chapter describes

how to use Apple's iPhone Configuration Utility and Lion

Server's Profile Manager to create and apply configuration

profiles to iOS devices. These profiles can be used to ensure

that the devices enforce your organization's security policy,

including requiring a strong device passcode, for example.

As a Mobile Device Management (MDM) service, Profile

Manager can also be used to remotely lock or wipe a lost

device.

iOS Configuration

Management
iOS-based devices are managed through the creation and

installation of configuration profiles. These profiles contain

settings configured by an administrator for installation on a

user's device. Most of these settings correspond to

configuration options visible in the iOS Settings app, but

some settings are available only through a configuration

profile and some are available only in the iOS Settings app.

The settings available in configuration profiles are the only

ones that can be centrally managed.

The simplest way to create and manage configuration

profiles is by using Apple's iPhone Configuration Utility for

Mac or Windows. This graphical utility lets administrators

create and manage configuration profiles. These profiles can

be installed onto iOS devices over a USB connection, by

attaching them to an e-mail message sent to the device's

owner, or by hosting them on a web server.

To manage a larger number of devices, enterprises should

use a Mobile Device Management (MDM) system. Apple

provides one in Lion Server through the Profile Manager

service. This service works well for workgroups and small- to

medium-sized organizations. For larger enterprises,

however, a commercial third-party MDM solution would

likely work best.

This section covers the basics of configuration profiles and

how to use the iPhone Configuration Utility and Lion Server's

Profile Manager to create and install a simple configuration

profile.

Mobile Configuration Profiles

A configuration profile is structured as an XML property list

file (referred to as a plist) with data values stored in Base64.

The plist data may optionally be signed and encrypted, in

which case the file will be structured according to RFC 3852

Cryptographic Message Syntax (CMS). Because

configuration profiles may contain sensitive information,

such as user passwords and Wi-Fi network passwords, they

should be encrypted if the profile is going to be sent over a

network. The use of a Mobile Device Management (MDM)

server automates this, which is recommended for any

enterprise managing iOS devices.

The configuration profile consists of some basic metadata

and zero or more configuration payloads. The configuration

profile metadata includes the human-readable name,

description, and creating organization of the profile, as well

as some other fields that are used only under the hood. The

configuration payloads are the most important portions of

the profile, because they implement the configuration

options specified in the profile. The available configuration

payload types in iOS 5 are listed and described in Table 2.1.

Table 2.1 Configuration Profile Payload Types

Payload Description

Removal

Password

Specifies a password that users must enter to remove a locked

profile from the device

Passcode

Policy

Defines whether a passcode is required to unlock the device and

how complex this passcode must be

E-mail Configures the user's e-mail account

Web Clip Places a web clipping on the user's home screen

Restrictions Restricts the user of the device from performing certain actions,

such as using the camera, iTunes App Store, Siri, YouTube, Safari,

and so on

LDAP Configures an LDAP server to use

CalDAV Configures a user's network calendar account using CalDAV

Calendar

Subscription

Subscribes the user to a shared CalDAV calendar

SCEP Associates the device with a Simple Certificate Enrollment

Protocol server

APN Configures an iOS device with a cellular baseband (iPhone or iPad)

to use a specific mobile carrier

Exchange Configures a user's Microsoft Exchange e-mail account

VPN Specifies a Virtual Private Network (VPN) configuration for the

device to use

Wi-Fi Configures the device to use the specified 802.11 network

Each payload type has a set of property list keys and

values that define the supported set of configuration

settings. The full list of these keys and their available values

for each payload are listed in Apple's iOS Configuration

Profile Reference in the iOS Developer Library. Although you

can create the configuration profile manually using this

specification, only Mobile Device Management product

developers are likely to do so. Apple recommends that most

users rely on Apple's iPhone Configuration Utility or a Mobile

Device Management product to create, manage, and deploy

their configuration profiles. Enterprises with a small number

of iOS-based devices are likely to configure them using the

iPhone Configuration Utility, which is described next.

iPhone Configuration Utility

Apple's iPhone Configuration Utility is a graphical utility for

Mac OS X and Windows that helps users create, manage,

and install configuration profiles on iOS devices. At the time

of writing, the latest available version is 3.4, which has just

been updated to support the new configuration options in

iOS 5.0.

The iPhone Configuration Utility automatically creates a

root certificate authority (CA) certificate in the user's

keychain the first time it is run. This CA certificate is used to

sign the certificate that is automatically created for each

device connected over USB to the host running the iPhone

Configuration Utility. These certificates are used to sign and

encrypt configuration profiles for secure transmission to the

