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Springer’s Selected Works in Probability and Statistics series offers scientists 
and scholars the opportunity of assembling and commenting upon major 
classical works in statistics, and honors the work of distinguished scholars in 
probability and statistics. Each volume contains the original papers, original 
commentary by experts on the subject’s papers, and relevant biographies and 
bibliographies.

Springer is committed to maintaining the volumes in the series with free 
access on SpringerLink, as well as to the distribution of print volumes. The 
full text of the volumes is available on SpringerLink with the exception of a 
small number of articles for which links to their original publisher is included 
instead. These publishers have graciously agreed to make the articles freely 
available on their websites. The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting 
of Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sörensen, and Jon Wellner.
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Richard Mansfield Dudley



It is almost impossible to describe all the research of Richard Mansfield 
Dudley, as it comprises more than 100 articles and spans over more than 45 
years. The three co-editors of this volume have selected what we think are the 
most influential and representative of his articles and have shared the task of 
offering a few comments on them. Consistent with the overview of his work 
that follows, these Selected Works of Richard M. Dudley are divided into six 
chapters, each preceded by a short note on its content.

Dudley has been extremely influential in the development of Probability 
and Mathematical Statistics during the second half of the last century (or 
more exactly, between the nineteen sixties and the present). The two subjects 
on which he has left the deepest mark so far, in our view, are Gaussian proc-
esses and empirical processes. Succinctly, on the first: his research changed 
the framework of study of Gaussian processes by highlighting the intrinsic 
metric structure on the parameter space, and provided one of the main tools of 
their study, the famous metric entropy bound. And on the second: Vapnik and 
Červonenkis, in connection with their work on machine learning, initiated the 
modern view of empirical processes as processes indexed by general classes 
of sets and functions and proved uniform laws of large numbers for them, 
but it was the results of Dudley on the uniform central limit theorem that a) 
made this theory so useful and pervasive in asymptotic statistics, and b) initi-
ated a vigorous development by many authors, that in turn made this theory 
even more useful. We may well say that in the first case Dudley changed the 
direction of the field in a way that led to the solution of some of its outstand-
ing questions and in the second he created (or co-created with Vapnik and 
Červonenkis) a whole new field.

There are at least three more quite large fields of research where Richard 
M. Dudley’s achievements are crucial and manifold. When Dudley started 
his career, the works of Prokhorov, Skorokhod, Varadarajan and LeCam on 
the general theory of weak convergence were very recent, and Dudley made 
substantial contributions to this theory in several ways, in particular, to com-
plete the proofs of results of Donsker on the empirical process, and to study 
metrizability of this convergence in metric spaces. He also wrote, between 
1965 and 1973, a series of articles on ‘relativistic Markov processes’, where 
he introduced Lorentz invariant diffusions as the only possible analogues in 
Lorentz space of Brownian motion and (in 3 dimensions) rotationally invari-
ant Lévy processes, gave their properties, including asymptotics, and pointed 
at possible applications in Cosmology. Empirical processes can be thought of 
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as the ‘linear term’ in Taylor type developments of statistical functionals, and 
several researchers in the seventies and eighties used compact differentiation 
of functionals defined on D[0, 1] endowed with the supremum norm; Dudley 
advocates replacing the sup norm by the p-variation norm and compact dif-
ferentiability by the more regular Fréchet differentiability, and shows this is 
possible (and desirable) by using empirical process techniques and by proving 
the Fréchet differentiability of some of the most usual operators like composi-
tion and inverse; this theory is not only quite elegant but it leads to optimality 
results.

This classification of Dudley’s research into large areas leaves out many 
other remarkable works that touch upon approximation theory, learnability, 
Wiener functionals, singularity of measures, prediction theory, mathematical 
statistics, IQ and heredity, ... . Some of them are commented upon below.

If we try to think about the common attributes of Dudley’s works, three 
come immediately to mind: good taste in the choice of subjects by their 
relevance and beauty, rigor and scholarship. These characteristics make of 
Richard Dudley an excellent adviser, as one of us directly experienced, and 
this may help explain why he has had as many as thirty-one PhD students, 
while fairness and generosity are some of his other personal attributes that help 
further explain why he has been such a successful adviser.

It has been both an honor and a pleasure to select and comment on the works 
of a scholar of Richard M. Dudley’s quality, and even more so as he has had a 
deep influence on the work (and on more than just the work) of each of us. We 
are thus grateful to the Editors of the Springer Selected Works in Probability 
and Statistics for the opportunity to assemble this volume. We also thank Edith 
Dudley Sylla for correspondence on Dudley’s biography. Finally, we wish to 
acknowledge John Kimmel’s and Jim Pitman’s support in the preparation of 
this volume.
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Rimas Norvaiša
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A Biographical Sketch of  
Richard M. Dudley

Richard Mansfield Dudley was born on July 28, 1938, in Cleveland, Ohio, 
into a family with a strong university tradition, some of it mathematical. He 
graduated as valedictorian from Bloom Township High School in Chicago 
Heights, Illinois in 1955, attended Harvard University from 1955 to 1959, 
where he graduated Summa cum Laude as Bachelor of Arts, and obtained the 
PhD in Mathematics from Princeton University in 1962. Richard Dudley had 
two advisers, Gilbert A. Hunt and Edward Nelson, and wrote a thesis entitled 
‘Lorentz invariant random distributions’. Professor Dudley’s professional 
career has taken place at the University of California at Berkeley, from 1962 
to 1966, and at the Massachusetts Institute of Technology since 1967. He was 
a Fellow of the A. P. Sloan Foundation in 1966–68 and of the Guggenheim 
Foundation in 1991.

At Berkeley, Dudley coincided with Volker Strassen, who introduced him 
to Sudakov’s idea of using metric entropy for the study of sample Gaussian 
paths and with whom he also shared an interest in probability distances that 
metrize weak convergence. He also worked with two other Berkeley col-
leagues, Lucien Le Cam and Jack Feldman, on different aspects of Gaussian 
processes. While at Berkeley, Dudley published work on Lorentz-invariant 
Markov processes, singularity of measures on linear spaces, random walks on 
groups, sequential convergence, prediction theory for non-stationary processes 
(the subject of the first PhD thesis he supervised), and on weak convergence 
of probabilities on nonseparable metric spaces (having to do with empirical 
processes) and Baire measures, among other topics.

Dudley completed his deep and extensive study of Gaussian processes when 
he was already at M.I.T., and, although he also started working on empirical 
processes at Berkeley (empirical measures on Euclidean spaces), he developed 
this theory at M.I.T., in about twenty publications including his landmark 1978 
paper ‘Central limit theorems for empirical processes’ in Annals of Probability, 
that basically created a new subfield within Mathematical Statistics, the very 
influential Saint-Flour lecture notes (1984), and the book ‘Uniform Central Limit 
Theorems’ (Cambridge Studies in Advanced Mathematics). Empirical process 
theory is pervasive in modern Mathematical Statistics and has had a deep impact 
in the field of machine learning. Moreover, Dudley has worked on measurability 
problems, testing hypotheses, Wiener functionals, and approximation theory (in 
connection with metric entropy, Gaussian processes and empirical processes), to 
name a few subjects. During the last twenty years, he has also been interested in 
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p-variation and in differentiable functionals, in connection with the delta method 
for statistical functionals. Most of the work of Richard Dudley is single authored 
but at the same time he has collaborated with several colleagues and with a few 
of his thirty-one PhD students. Aside from the already mentioned Strassen, Le 
Cam and Feldman, the list of collaborators includes S. L. Cook, M. Durst, J. 
M. González-Barrios, S. Gutmann, D. Haughton, J. Hoffmann-Jørgensen, Y.-C. 
Huang, M. Kanter, J. Kuelbs, S. R. Kulkarni, J. Llopis, L. Pakula, N. P. Peng, 
P. Perkins, W. Philipp, A. Quiroz, B. Randol, T. J. Richardson, L. Shepp, S. 
Sidenko, D. Smith, D. Stroock, F. Topsøe, Z. Wang, R. S. Wenocur, O. Zeitouni, 
J. Zinn, and the editors of this volume.

Richard Dudley was visiting professor at the University of Aarhus, Denmark, 
in the spring of 1976, and, while there, he wrote a very nice set of lectures for 
a graduate course, Probabilities and Metrics. Most of these notes were later 
adapted and incorporated in the second part of his deservedly successful grad-
uate text Real Analysis and Probability (1989, 2002). This book is special in 
particular because the author looked for the best and shortest proofs available 
and each chapter ends with very accurate and complete historical notes. He 
has also written monographs on two of the subjects on which he has recently 
worked most: on empirical processes, he has written the book Uniform Central 
Limit Theorems, which also originated in lecture notes, in this case the above 
mentioned Saint-Flour lectures, ‘A course on empirical Processes’, and on 
p-variation and related matters, jointly with Rimas Norvaiša, he has written 
two sets of lecture notes (Differentiability of Six Operators on Non-Smooth 
Functions and p-variation, and An Introduction to p-variation and Young 
Integrals), and a forthcoming book, Concrete Functional Calculus. Beside the 
above, his scholarly service to the profession also includes having been the 
Editor of the Annals of Probability, 1979–1981, after six years of being an 
Associate Editor, and having served on the Editorial Board of the Wadsworth 
Advanced Series in Statistics/Probability, 1982–1992. He has talked and talks 
about his work at many scientific meetings, and in particular he has been 
an invited speaker at the 1974 International Congress of Mathematicians, 
at American Mathematical Society, Institute of Mathematical Statistics and 
Bernoulli Society meetings, at Vilnius Conferences in Probability Theory and 
Mathematical Statistics, at Saint-Flour, at many Probability in Banach Spaces 
meetings (some of which he helped organize), etc.

Dudley has participated at different times in very concrete and effective 
ways in civic activities related to his convictions or to his interests, so, for 
instance, he was a volunteer news writer and broadcaster one afternoon a 
week in 1963–1966 for public radio station KPFA in Berkeley, and in 1979 he 
was the Editor of the Appalachian Mountain Club White Mountain Guide. He 
has hiked up all the mountains in New England over 4000 feet, besides Mont 
Blanc and other mountains in the Alps and elsewhere.

Professor Dudley has received several honors, in particular, he has 
served in the (honorary) Advisory Board of Stochastic Processes and their 
Applications, 1987–2001 and is a Fellow of: the Institute of Mathematical 
Statistics, the American Statistical Association, and the American Association 
for the Advancement of Science; and an elected Member of the International 
Statistical Institute.

Richard Dudley lives in Newton, Massachusetts, with Liza Martin, his wife 
of thirty-one years.
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Introduction

The papers in this chapter deal with important properties of weak convergence of probability measures 
on metric spaces. Most of them are motivated by, and applied to, the question of establishing conver-
gence in law of empirical processes, a basic topic of statistics.

The problem considered in the first paper comes from the fact that, due to certain set-theoretic 
assumptions, a finite, countably additive measure defined on all Borel sets of a metric space is con-
centrated in a separable subspace whereas, on the other hand, almost all sample paths of empirical 
processes are not elements of a separable subset of a metric space. Dudley extended the notion of weak 
convergence to countably additive probability measures defined on s-algebras of a metric space not 
necessarily related to its metric topology. Namely, the weak∗  convergence of measures bn defined on 
s-algebras Bn of subsets of a metric space S to a Borel measure b0 on S means that 

	
→∞ →∞

= = 0lim limn nn n
f d f d f d*

*
b b bÚ Ú Ú 	 (1)

for every bounded continuous real-valued function f on S, where Ú 
∗
  and Ú ∗  are upper and lower inte-

grals, respectively. Results were obtained for this convergence in case each Bn includes the smallest 
s-algebra U generated by all open balls of S. A probability measure on U does not need to be con-
fined to a separable subspace of S. Dudley proved the weak∗  convergence of measures an, n ³ 1, on a suit-
able function space J with the uniform metric when an is the probability distribution of normalized 
empirical distribution functions induced by a sequence of independent identically distributed Rk-valued 
random variables. The suggested solution of the problem corrected the main results of M. D. Donsker 
(Mem. Amer. Math. Soc., 1951, No. 6 and Ann. Math. Statist., 1952, 23, 277-281) for real-valued 
random variables and generalized them to random variables with values in a Euclidean space.

The second paper continued the subject of the first one by giving a more general definition of weak∗  
convergence. Let U be the s-algebra on a metric space S generated by open balls as before. Let M(S, U )  
be the set of all finite, countably additive, real-valued set functions on U, and let C(S, U) be the closed  
linear subspace of U-measurable elements of the Banach space C(S) of all bounded, continuous, 
real-valued functions on S with the supremum norm. Then any mÎM(S, U) defines a bounded linear 
functional f→Ú f  dm on C(S, U) and we have the weak∗  topology of pointwise convergence on C(S, U). 
Let (bn) be a sequence of nonnegative elements of M(S, U) and let b0 be a nonnegative element of M(S, U ) 
concentrated in a separable subspace of S. Under the hypothesis that the metric space S is complete 
Dudley proved that bn → b0 for the weak∗  topology if and only if (1) holds for every f in C(S).

The third paper in this chapter compares various metrics on the set of all probability measures of 
a metric space, and relates the weak∗  convergence of probability measures with almost surely convergent 
realizations. Let P(S) be the set of all Borel probability measures on a separable metric space S, 
endowed with the weak∗  topology. For S complete and m, n Î P(S), V. Strassen (Ann. Math. Statist., 
1965, 36, 423-439) proved that the Prokhorov distance r(m, n) is the minimum distance in prob-
ability between random variables distributed according to m and n. Dudley generalized this result 
without assuming completeness of S and by using the finite combinatorial “marriage lemma”. Useful 
bounds for the Prokhorov and the bounded Lipschitz metrics are given in this paper. Also Dudley 
proved that if bn → b0 in P(S) then there exist random variables Xn with distributions bn such that 
Xn → X0 almost surely. This was proved by A. V. Skorokhod (Theor. Prob. Appl., 1956, 1, 261-290) 
to hold if S is complete. Later M. J. Wichura (Ann. Math. Statist., 1970, 41, 284-291) and P. J. Fernandez 
(Bol. Soc. Brasil.  Math., 1974, 5, 51-61) proved another extension of Skorokhod’s result when the 
metric space S may be non-separable. In this case probability measures bn, n ³ 1, are defined on the 
s-algebra U generated by all open balls of the metric space S, b0 is a Borel probability as before,  
and bn converges to b0 in the sense Dudley defined.

Further improvement on almost surely convergent realizations of probability measures was made 
in the last paper of this chapter. Let (Wn, An, Pn) be probability spaces for n = 0, 1, 2, … , and let Xn a 
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function from Wn into S, where X0 takes values in some separable subset of S and is measurable for 
the Borel sets on its range. Following J.  Hoffmann-Jørgensen (Various Publication Series no.  39, 
Matematisk Institut, Aarhus Universitet, 1991) one says that Xn converges to X0 in law if 

	
→∞

= 0 0lim ( ) ( )n nn
f X dP f X dP*Ú Ú 	

for every bounded continuous real-valued function f on S, where the upper integral and integral are 
taken over Wn, not S as in (1), so that the laws of Xn for n ³ 1 need not be defined on any particular 
s-algebra of the metric space S. Dudley proved that Xn converges in law to X0 if and only if one can 
redefine each Xn on a new probability space in such a way that the new sequence of S-valued random 
variables converges almost surely (in fact, almost uniformly). He uses this theorem in particular to 
show that the empirical process based on a sample from P and indexed by a class of functions con-
verges in law in the sense of Hoffmann-Jørgensen to the corresponding ‘P-Brownian bridge’ if and 
only if the class of functions is functional P-Donsker, as previously defined by Dudley (Lect. Notes in 
Math., 1984, 1097, 1-142) and by Dudley and Philipp (Z. Wahrsch. verw. Geb., 1983, 62, 509-552).
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