

Tissue and Cell Processing

AN ESSENTIAL GUIDE

EDITED BY

Deirdre Fehily, Scott A. Brubaker,
John N. Kearney and Lloyd Wolfinbarger

WILEY-BLACKWELL

Table of Contents

[Cover](#)

[Title page](#)

[Copyright page](#)

[Contributors](#)

[Foreword](#)

[Preface](#)

[1 Regulations and Standards](#)

[Introduction](#)

[Regulations - development, scope, and principles](#)

[Regulations - tissue and cell processing](#)

[The role of professional standards in the context of regulations](#)

[Implementation and practice](#)

[Case studies](#)

[Conclusions](#)

[2 Risk Management in Tissue and Cell Processing](#)

[Introduction](#)

[Definition of risk management](#)

[Principles of risk management](#)

Why is risk management important?
Risk management methodologies and tools
Documentation of risk assessments
Application of risk management in tissue and cell processing
Weighing the cost of risk management
A general quality risk management process - a team approach
Conclusions

3 Principles of Cell Collection and Tissue Recovery

Introduction
Donor suitability activities
Procurement preparations
Living donation
Deceased donation
Recovery model

4 Principles of Cell and Tissue Cryopreservation

Introduction
Cryoprotectants
Cooling and warming
Vitrification
Freeze drying
Cryopreservation of decellularized tissue
Cryopreservation for assisted reproductive technology

Conclusions

Acknowledgment

5 Principles of Tissue Decontamination and Sterilization

Introduction

History of process development and evolution

Technical aspects of current processing methods

Efficacy of the processing

Conclusions

6 Control of Contamination and Cross-contamination During Processing: Optimizing the Processing Environment

Introduction

Contamination and cross-contamination in tissue banking

Clean room lifecycle phases

Clean room daily practice

7 The Principles of Process Validation and Equipment Qualification

Introduction

Validation and qualification principles

Sterility assurance levels and log reductions

Practical aspects of validation

Examples of validation studies

8 Biomechanical and Biocompatibility Testing Considerations

Why is biomechanical testing relevant for human tissue implants?

Testing and test methods

Biocompatibility in tissue transplantation

9 Coding and Traceability

Introduction

Why is traceability important?

Why is coding important?

The difference between coding and traceability systems

End user tracking

Global trend in tissue and cell transplantation

Coding principles

Common agreed nomenclatures

Machine-readability versus manual transcription

The EU CEN project

Practices in North America

Harmonization of coding for human cellular therapy products

The challenges of implementing a coding system – tips for success

10 Training of Tissue Bank Personnel

Introduction

Training needs

International experience

Certification Conclusions

11 Cardiac Tissue: Specific Recovery and Processing Issues

Introduction

Brief history of allograft heart valves

Specific selection criteria for donors of cardiac tissue

Recovery (cardiectomy) and receipt considerations

Processing overview

Decellularization and the future of heart valve processing

Heart valve banking worldwide

12 Skin: Specific Recovery and Processing Issues

Skin procurement

Processing

Distribution

Skin allografts: indications for use

Future developments in skin banking

13 Ophthalmic Tissues: Specific Recovery and Processing Issues

Introduction

Historical background

Cornea: anatomy and function

Sclera: anatomy and function
Conjunctiva and limbus: anatomy and function
Maintenance of the donor eye before donation
Ocular tissue removal
Tissue processing
Tissue evaluation
Storage of corneas
Tissue processing for specific surgical purposes
The future

14 Skeletal Tissue: Specific Recovery and Processing Issues

Introduction
History
Specific donor selection criteria
Recovery of bone and soft tissue
Recovery of joint and articular surface allograft
Presterilization/predisinfection cultures
Processing bone and soft tissue
Bone and soft tissue preservation and sterilization methods
Processing joint and articular surface tissue
Joint and articular surface allograft preservation methods
Bone and soft tissue clinical use
Joint and articular surface allograft clinical use
Current issues
The future

15 Processing of Cells for Transplantation

Introduction

Terminology

Definitions of “open” versus “closed” processing

The regulatory environment

Regulation of ATMPs

Donor selection

Allogeneic HSC-M: methods and current practices

Autologous HSC-M: methods and current practices

Allogeneic and autologous HSC-A: methods and current practices

Cord blood banking

T-cell depletion of allogeneic HSC products

Therapeutic lymphocyte products

Non-T-cell therapeutic cell products

Nonhematopoietic therapeutic cells

Conclusions

16 Gametes and Embryos: Specific Collection and Processing Issues

Introduction

Processing methods

Challenges

Future and conclusions

Acknowledgments

17 Engineering of Human Tissue Grafts

Introduction

Viable allografts - acute rejection
Decellularization of tissue allografts
Combinations of decellularized matrices with growth factors/cytokines
Use of cultured autologous cells
Cells and matrices
Bioreactors
Conclusions

Index

Supplemental Images

Tissue and Cell Processing

AN ESSENTIAL GUIDE

EDITED BY

Deirdre Fehily, PhD

Inspector and Technical Advisor, Tissues and Cells
National Transplant Centre
Rome, Italy

Scott A. Brubaker, CTBS

Chief Policy Officer
American Association of Tissue Banks
McLean, VA, USA

John N. Kearney, BSc, PhD, CBiol, MIBiol, SRCS

Head of Tissue Services/Lead Scientist/PI for Research
Liverpool Blood Centre
NHS Blood and Transplant
Liverpool, UK

Lloyd Wolfinbarger, Jr., PhD

BioScience Consultants, llc
Norfolk, VA, USA

 WILEY-BLACKWELL

A John Wiley & Sons, Ltd., Publication

This edition first published 2012 © 2012 by Blackwell Publishing Ltd

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell.

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is

designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work.

Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Tissue and cell processing : an essential guide / edited by Deirdre Fehily ... [et al.].

p. ; cm.

Includes bibliographical references and index.

ISBN 978-1-4051-9826-4 (cloth : alk. paper)

I. Fehily, Deirdre.

[DNLM: 1. Tissue Transplantation-standards. 2. Cell Transplantation-standards. 3. Government Regulation. 4. Histocompatibility Testing-standards. 5. Tissue Preservation-standards. 6. Tissue and Organ Harvesting-standards. WO 660]

617.9'54-dc23

2012009762

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover images: Left hand image courtesy of editors, remainder © Getty Images and main cover image courtesy of LifeNet Health.

Cover design by Sarah Dickinson.

Contributors

Helmi Albrecht, Chem Ing

Sydney Heart Valve Bank
St. Vincent's Hospital
Darlinghurst, NSW, Australia

Kyle Bennett, BSc (Hons), CTBS

NHS Blood and Transplant, Tissue Services
Liverpool, UK

Montserrat Boada, PhD

ART Lab Director
Reproductive Medicine Service
Department of Obstetrics, Gynaecology and Reproduction
Institut Universitari Dexeus
Barcelona, Spain

Scott A. Brubaker, CTBS

Chief Policy Officer
American Association of Tissue Banks
McLean, VA, USA

Debbie Butler Newman, BA

Accreditation Manager
American Association of Tissue Banks
McLean, VA, USA

Michael Cox, BSc (Hons)

Principal Scientist
Danish Medicines Agency
Copenhagen, Denmark

Francisco da Costa, MD

Head of Cardiovascular Surgery

Medical Director of Valve Tissue Bank

Santa Casa de Curitiba, Pontificia Universida de Catolica do

Parana

Curitiba, Brazil

Patricia Dahl, BS

Executive Director/CEO

The Eye-Bank for Sight Restoration

New York, NY, USA

Oscar Fariñas, MD

Transplant Services Foundation

Hospital Clinic Barcelona

Barcelona, Spain

Helen Gillan, BSc (Hons)

Head of Operations

NHS Blood and Transplant, Tissue Services

Liverpool, UK

Caroline A. Hartill, BSc (Hons), MA

Chief Scientific Officer

RTI Biologics, Inc

Alachua, FL, USA

Marisa Roma Herson, MD, PhD

Head, Donor Tissue Bank of Victoria

Southbank, VIC, Australia

John N. Kearney, BSc, PhD

Head of Tissue Services/Lead Scientist/PI for Research

Liverpool Blood Centre

NHS Blood and Transplant

Liverpool;
Professor of Tissue Engineering
University of Leeds
Leeds, UK

Art Kurz, BS
Chief Business Officer
Center for Tissue Innovation and Research
Community Tissue Services
Kettering, OH, USA

Johann Kurz, PhD
Head of Department III/4, Strategic Affairs
Blood, Tissues and Transplantation
Federal Ministry of Health
Wien, Austria

Alyce Linthurst Jones, PhD, RAC
Director, Cardiovascular Product Development
LifeNet Health
Virginia Beach, VA, USA

Richard Lomas, PhD
Senior Clinical Development Scientist
NHS Blood and Transplant, Tissue Services
Liverpool, UK

Pierre Lory, DI
President of BioBank ZA Lavoisier
Presles en Brie, France

Mark W. Lowdell, MSc, PhD, FRCPath
Senior Lecturer in Haematology
University College London Medical School;
Director of Cellular Therapy and Biobanking

Royal Free Hampstead NHS Trust
London, UK

Linda S. Manning, PhD

Managing Scientist, Research Centre
Quality Manager, Cell & Tissue Therapies WA
Royal Perth Hospital
Perth, WA, Australia

Martí Manyalich, MD, PhD

Assessor of Transplantation
Medical Direction
Hospital Clínic de Barcelona;
Director of Transplant Procurement Management (TPM)
Parc Científic Barcelona
Barcelona, Spain

Lisa Nair, PhD

Director, Operations Integration
LifeCell a KCI Company
Branchburg, NJ, USA

Aziz Nather, FRCS

Director
National University Hospital Tissue Bank;
Senior Consultant, Orthopaedic Surgeon
National University of Singapore
National University Health System
Singapore

Aurora Navarro, PhD

Head of Tissue Services
Banc de Sang i Teixits
Barcelona, Spain

Joel C. Osborne, CTBS

Vice President, Quality Assurance/Reg Affairs
Musculoskeletal Transplant Foundation
Edison, NJ, USA

Gloria Páez, MSn, MBA

Education Director
Transplant Procurement Management (TPM)
Parc Científic de Barcelona
Barcelona, Spain

Derwood H. Pamphilon, MD, MRCPCH, FRCP, FRCPPath

Consultant Haematologist
NHS Blood and Transplant;
Honorary Clinical Reader
Department of Cellular and Molecular Medicine
University of Bristol
Bristol, UK

Robert Parker, MSc

Heart Valve Bank Manager
Royal Brompton Hospital
London, UK

David E. Pegg, MD, FRCPPath

Professor, Department of Biology
University of York
York, UK

Elisabeth Pels, PhD

Emeritus Head, Cornea Bank
Amsterdam, The Netherlands

Elisa Pianigiani, MD

Director of Siena Skin Bank

Department of Dermatology
University of Siena, Policlinico S. Maria alle Scotte
Siena, Italy

Jan L. Pierce, CTBS, MBA
President & CEO
Bio Cell & Tissue Technologies, Inc.
Salt Lake City, UT, USA

Stefan Poniatowski, BSc (Hons)
Operations Manager/Acting Head
Donor Tissue Bank of Victoria
Southbank, VIC, Australia

Diego Ponzin, MD
Director
The Veneto Eye Bank Foundation
Venice, Italy

Edward Samuel, BSc (Hons), MSc, MICR
Clinical Scientist
Paul O'Gorman Laboratory of Cellular Therapeutics
Royal Free Hampstead NHS Trust
London, UK

Jacinto Sánchez-Ibáñez, MD
Director, Regional Transplant Coordination Office
Santiago de Compostela, Spain

Ineke Slaper-Cortenbach, PhD
Head, Cell Therapy Facility
University Medical Center Utrecht
Utrecht, The Netherlands

Ying C. Song, MD, PhD

Chief Scientific Officer
Beike Biotechnology Co., Ltd.
Shenzhen, China;
Clinical Associate Professor
Department of Surgery & Institute of Molecular Medicine &
Genetics
Georgia Health Sciences University
Augusta, GA, USA

Esteve Trias, MD

Medical Director, Tissue Bank
Transplant Services Foundation
Hospital Clinic Barcelona
Barcelona, Spain

Izabela Uhrynowska-Tyszkiewicz, MD, PhD

Acting Deputy Director for Medical Affairs
National Centre for Tissue and Cells Banking;
Associate Professor
The Medical University of Warsaw
Warsaw, Poland

Anna Veiga, PhD

Reproductive Medicine Service
Department of Obstetrics, Gynaecology and Reproduction
Institut Universitari Dexeus;
Stem Cell Bank, Centre for Regenerative Medicine
Barcelona, Spain

Diane Wilson, BSN, MSN/MHA

Chief Operating Officer
Community Tissue Services
Dayton, OH, USA

Martell Winters, BS, RM/SM (NRCM)

Senior Scientist

Nelson Laboratories

Salt Lake City, UT, USA

Lloyd Wolfinbarger, Jr., PhD

BioScience Consultants, llc

Norfolk, VA, USA

Foreword

It gives me great pleasure to introduce this book, which covers the historical context of tissue and cell processing since the first allograft implantation was introduced clinically to current practice in tissue and cell banking. Its publication is timely – in the golden jubilee year of the first heart valve allograft (homograft) operation in 1962. Even then, it was clear that allografts had significant benefits over mechanical valves, which continue to require lifelong anticoagulation and carry the increased risk of stroke or bleeding, a particular problem in populations with limited medical staff and facilities. Our only disappointment was that it became apparent that the homograft did deteriorate over a number of years and would eventually need replacement. This led me, in 1967, to perform the pulmonary autograft, where the patient's pulmonary valve is transplanted to the aortic position and the pulmonary valve is replaced with a pulmonary allograft, where it is subjected to much lower pressures and therefore should have improved longevity. This continues to be *Work in Progress*. Research in tissue engineering and stem cells currently holds great promise for donated cardiac tissue.

From those early pioneering days we have seen the development of highly professional, uniform systems, embracing all aspects of organ and tissue transplantation, enshrined by the guiding principles issued by the World Health Organization.

This book describes parallel developments in other clinical specialties where tissues or cells have been donated for the benefit of others. It is not surprising that many common themes emerge across these specialties. It is a comprehensive guide to the level of technical complexity

and precision required, where surgeons can be assured that the graft they receive for implantation will meet a particular specification. I have no doubt this publication will be regarded as a required handbook for tissue banks throughout the world.

Donald Ross

Preface

It was the development of techniques to preserve donated tissues and cells that gave life to the field of tissue and cell banking. This ability to store is what makes tissue banking different from organ transplantation. The banking activities of washing, cutting, shaping, cell separating, decontaminating, preserving, packaging, storing and distributing have become almost industrial in many countries, with large numbers of “products” being prepared and distributed internationally. But these are not like other healthcare products. Their human origin gives them a very particular nature, associated with the fact that they have been donated by people who want to help others and with the inescapable knowledge that they carry some risk for recipients, usually very small but sometimes unpredictable or undetectable. On the spectrum of healthcare substance processing, tissues and cells sit with blood components, somewhere between organ transplantation at one extreme and medicines manufacture at the other. This second book in a series of three explores those aspects of tissue and cell processing that aim to preserve and respect the special, emotional aspects tied to their human origin, while maximizing safety and quality through the application of quality standards and approaches similarly applied in other fields, such as the manufacture of aspirin or, for that matter, cars!

The development of methodologies to preserve tissues and cells brought with it a number of advantages. Once tissues could be made readily available for human application at a later date, shortages could be avoided with banked inventories providing various sizes and types as required. Better utilization of invaluable donations became

achievable by making multiple grafts from single donations: the cortical bone of a femur could be used to prepare strong weight-bearing rings for spinal surgery while the cancellous bone of the same femur could be morcelized and provided as an effective packing material to fill bony defects. With this greater donation utilization came the opportunity to cut and shape certain graft types in advance, saving time in the operating theatre. Allografts are not only transplanted, they can be infused, implanted or transferred, and prepared for specific applications. For example, the 120 mL of collected cord blood becomes 25 mL of concentrated progenitor cells, the placental membrane becomes a batch of clean 1 cm square patches for ocular surgery, and one semen donation becomes a series of aliquots of washed spermatozoa. But apart from this increase in efficient use of donations, tissue and cell banking brought opportunities to increase safety by removing those parts of the tissue or cell donation that were not necessary for clinical effectiveness or by applying decontamination or sterilization methods to remove bacterial, fungal or, in some cases, viral agents.

Tissue and cell processing brings these indisputable benefits but it also brings its own risks. The literature has documented rare but sometimes tragic results of environmental contamination and cross-contamination, of the extension of donor-derived risk to multiple recipients through large scale processing, of the accidental mixing of gametes or embryos or the reliance on sterilization methods that were not properly validated or effective. The potential for making profit from tissue and cell recovery and processing exacerbates the risk that income will be prioritized over safety and quality. For all these reasons, the world of tissue and cell processing is increasingly regulated. Professionals and regulators alike call on the field to maximize the benefits of processing and storage, while minimizing the risks, by applying the knowledge and tools of

“manufacturing,” particularly those of the pharmaceutical industry, to achieve consistently high levels of quality and safety.

In this book, in line with the other two books in the series, we have drawn on the experience and expertise of international experts to capture and describe, in a didactic way, the key principles of safe and effective banking in this “industry” that is like no other. The regulatory framework is described and chapters address the scientific principles behind tissue and cell preservation, decontamination and sterilization – the added value of tissue and cell banking processes. Many of the processes that have been applied over the years have developed in a “cottage industry” way and been copied from bank to bank; Chapter 7 describes how facilities can meet today’s regulatory expectation that processes be properly validated and thoroughly documented. The importance of risk management, traceability and coding and personnel training are all addressed by experts who have learned through experience that these aspects are crucial to providing safe allografts. Finally, a series of chapters address the specificities of particular substance processing from skin or bone marrow to gametes and embryos.

Despite huge developments in science and technology, donated human tissues and cells are frequently still the best option for replacement of damaged or diseased tissues or cells in patients or for achieving successful pregnancy. In parallel, however, novel and creative approaches are being developed as described in Chapter 18. Traditional tissue and cell banking is likely to co-exist well into the future, providing an essential clinical service, with exciting, more sophisticated new processes such as cell culture, gene therapy or tissue engineering.

The editors of this book are most grateful to all the authors who worked together, always trying to ensure that the “best

practice" picture they presented reflected varying geographical and regulatory realities. Many of the authors who worked together to write these chapters had not known each other previously but have forged strong professional relationships through this collaboration. The editors would also like to thank Mr Donald Ross for writing the Foreword. Now retired, Donald Ross was a pioneering cardiac surgeon who performed the UK's first heart transplant in 1968, having already been the first surgeon in the world to use an aortic homograft in 1962. He went on to advance the use of pulmonary homografts and originated the pulmonary autograft operation which is now known as the Ross Procedure. The first book in this series was published in 2009 and addressed tissue and cell donation. The third is published in parallel with this book and addresses tissue and cell clinical use. The editors hope that these three books together provide a comprehensive guide to the provision of safe and effective tissues and cells for human application through ethical and safe donation procedures, validated antimicrobial and preservation processes, and appropriate clinical application.

Deirdre Fehily
Scott A. Brubaker
John N. Kearney
Lloyd Wolfinbarger

1

Regulations and Standards

Michael Cox¹ and Scott A. Brubaker²

¹Danish Medicines Agency, Copenhagen, Denmark

²American Association of Tissue Banks, McLean, VA, USA

Introduction

The primary purpose of statutory regulations is to serve as a common framework for ensuring with confidence the current state of the art on the quality and safety of tissues and cells for therapeutic benefit. Equally, the regulations and linked guidance should be compatible on a wider level to encourage equitable distribution between countries, where regulations may be similar and well established, in early development, or in their infancy. Many countries have implemented or are refining their healthcare services to provide a better standard of care to patients and to enhance the use of tissues and cells for clinical applications. The steps involved in the processing of tissues and cells are critical activities and require the application of specific controls to prevent contamination and cross-contamination, as well as to maintain quality and safety. This chapter gives an overview on the status, history, and scope of key regulations; the practical aspects of implementation; the interface with advanced therapy medicinal products

(ATMPs); medical devices; biologics; and some global perspectives.

The therapeutic application of tissues or cells is preceded by a series of complex and inter-related activities, from donor selection and screening, infectious disease testing, tissue and cell recovery, processing, temporary or long-term storage, and distribution for use in the clinical setting. The organization and delivery of healthcare systems are structured and operate quite differently, according to resources and health programs, to address epidemiological characteristics of the endemic population. To encompass these diverse organizations, and their inter-linked activities, a tissue establishment can be defined as:

a tissue bank or a unit of a hospital or another body where the activities of processing, preservation, storage or distribution of human tissues and cells are undertaken. It may also be responsible for the procurement or testing of human tissues and cells [1].

Organizations in healthcare services or the commercial sector performing one or typically more of these activities should be authorized by their national regulating body and are expected to verify compliance with appropriate requirements, so governing the quality and safety of tissues and cells.

Professionals working in the tissues and cells sector have not been wholly amenable to “allografts” being referred to as “products” or “devices;” and some have reservations regarding the use of the term “manufacturing” being applied in the context of human tissues and cells donated altruistically for the benefit of others. However, regulatory preferences and established terminology of other healthcare sectors often over-ride the human dimension in this donation-related work and such terms are commonly applied. This chapter discusses the requirements and