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Université de Limoges / CNRS
123 avenue Albert Thomas
87060 Limoges Cedex, France

Structured Matrix Based Methods for Approximate Polynomial GCD



Paola Boito

Structured Matrix Based
Methods for Approximate
Polynomial GCD



c© 2011 Scuola Normale Superiore Pisa

ISBN: 978-88-7642-380-2
e-ISBN: 978-88-7642-381-9



“He found him under a pine tree, sitting on the ground,
arranging fallen pine cones in a regular design: an
isosceles triangle. At that hour of dawn Agilulf always
needed to apply himself to some precise exercise:
counting objects, arranging them in geometric patterns,
resolving problems of arithmetic. It was the hour in which
objects lose the consistency of shadow that accompanies
them during the night and gradually reacquire colors, but
seem to cross meanwhile an uncertain limbo, faintly
touched, just breathed on by light; the hour in which one
is least certain of the world’s existence. He, Agilulf,
always needed to feel himself facing things as if they were
a massive wall against which he could pit the tension of
his will, for only in this way did he manage to keep a sure
consciousness of himself. But if the world around was
instead melting into the vague and ambiguous, he would
feel himself drowning in that morbid half light, incapable
of allowing any clear thought or decision to flower in that
void. In such moments he felt sick, faint; sometimes only
at the cost of extreme effort did he feel himself able to
avoid melting away completely. It was then he began to
count: trees, leaves, stones, lances, pine cones, anything
in front of him. Or he put them in rows and arranged
them in squares and pyramids.”

Italo Calvino, The Nonexistent Knight
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6.6.3. QR decomposition of the companion matrix res-

ultant . . . . . . . . . . . . . . . . . . . . . . . 114

7 A fast GCD algorithm 117
7.1. Stability issues . . . . . . . . . . . . . . . . . . . . . . 117
7.2. Fast and stable factorization of rectangular matrices . . . 120
7.3. Computing a tentative GCD . . . . . . . . . . . . . . . 124
7.4. Fast iterative refinement . . . . . . . . . . . . . . . . . . 124

7.4.1. Iterative refinement with line search . . . . . . . 127
7.5. Choice of a tentative degree . . . . . . . . . . . . . . . . 128

7.5.1. Is LU factorization rank-revealing? . . . . . . . 129
7.6. The Fastgcd algorithm . . . . . . . . . . . . . . . . . . 131

8 Numerical tests 133
8.1. Tolerance-sensitive degree . . . . . . . . . . . . . . . . 134
8.2. Mignotte-like polynomials . . . . . . . . . . . . . . . . 137
8.3. High GCD degree . . . . . . . . . . . . . . . . . . . . . 138
8.4. An ill-conditioned case . . . . . . . . . . . . . . . . . . 139
8.5. Unbalanced coefficients . . . . . . . . . . . . . . . . . . 140
8.6. Multiple roots . . . . . . . . . . . . . . . . . . . . . . . 141
8.7. Small leading coefficient . . . . . . . . . . . . . . . . . 143
8.8. Effectiveness of the estimate on the ε-GCD degree . . . 143
8.9. Computation time . . . . . . . . . . . . . . . . . . . . . 145
8.10. A comparison with δ-GCD . . . . . . . . . . . . . . . . 150

9 Generalizations and further work 157
9.1. Approximate GCD of many polynomials . . . . . . . . . 158

9.1.1. Generalized resultants . . . . . . . . . . . . . . 159
9.2. Approximate GCD of multivariate polynomials . . . . . 161
9.3. Polynomial GCD in other bases . . . . . . . . . . . . . 162
9.4. Fast QR decomposition . . . . . . . . . . . . . . . . . . 163
9.5. A structured approach to the companion matrix resultant 164



x Paola Boito

A Distances and norms 167
A.1. Vector norms . . . . . . . . . . . . . . . . . . . . . . . 167
A.2. Matrix norms . . . . . . . . . . . . . . . . . . . . . . . 168
A.3. Polynomial metrics . . . . . . . . . . . . . . . . . . . . 169

B Special matrices 171
B.1. Convolution matrices . . . . . . . . . . . . . . . . . . . 171

B.1.1. Univariate case . . . . . . . . . . . . . . . . . . 171
B.1.2. Multivariate case . . . . . . . . . . . . . . . . . 172

B.2. The Fourier matrix and polynomial computations . . . . 173
B.3. Circulant matrices . . . . . . . . . . . . . . . . . . . . . 175

References 179

Index 191



Introduction

The computation of polynomial GCD is a basic algebraic task, which has
many applications in several fields such as in polynomial root-finding,
control theory, image deblurring, CAGD.
The problem is usually stated as follows: given the coefficients of two

polynomials u(x) and v(x), compute the coefficients of their greatest
common divisor g(x). We focus here on the univariate case.
The usual notion of polynomial GCD, however, is ill-suited to deal

with many applications where input data are affected by errors (due for
example to roundoff, or to the fact that the data come from physical
experiments or previous numerical computations). Indeed, if the given
polynomials u(x) and v(x) have a nontrivial GCD, then arbitrarily small
perturbations in the coefficients of u(x) and v(x)may transform u(x) and
v(x) into relatively prime polynomials. Therefore the problem of finding
an exact GCD is ill-posed in an approximate setting.
This is why the notion of approximate GCD has been introduced. Sev-

eral definitions of approximate GCD are found in the literature; here we
will mostly use the so-called ε-GCD. Roughly speaking, a polynomial
g(x) is an ε-GCD of u(x) and v(x) if there exist polynomials û(x) and
v̂(x) such that

(i) û(x) and v̂(x) are “close” to u(x) and v(x), that is, d(u, û) < ε and
d(v, v̂) < ε for some fixed polynomial metric d and tolerance ε;

(ii) g(x) is an exact GCD of û(x) and v̂(x), and
(iii) g(x) has maximum degree among the exact GCDs of pairs of poly-

nomials that satisfy (i).

The first analysis of the approximate GCD problem dates back to 1985
([118]); several approaches to the problem have been proposed since
then. We seek here to give a comprehensive overview of the existing
literature on the subject, with a focus on matrix-based methods. We next
explore in detail the relationship between approximate GCD and resultant
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matrices (namely, Sylvester, Bézout and companion resultant matrices),
their properties and factorizations. Three new algorithms for the compu-
tation of ε-GCD are presented:

• the algorithm TdBez uses Householder tridiagonalization of the Bézout
matrix as its main tool;

• the algorithm PivQr is based on QR decomposition of the Sylvester
matrix and subresultants, stabilized by column pivoting;

• the algorithm FastGcd exploits the Toeplitz-like structure of the
Sylvester and Bézout matrices to compute an ε-GCD in a stable way
and with a computational cost that is quadratic in the degrees of the
input polynomials (whereas the complexity of known stable methods
is at least cubic).

Chapters 1 to 5 present the definitions and formulations of the approxim-
ate GCD problem that can be found in the literature and outline the main
ideas in the approaches proposed so far. Chapter 1 lists the definitions of
quasi-GCD, ε-GCD, AGCD and δ-GCD and presents related topics that
give useful insight into the approximate GCD problem, such as ε-root
neighborhoods and a graph-theoretical description of approximate GCD.
Chapter 2 introduces the main tools that are necessary in a matrix-

based approach to the polynomial GCD problem. Resultant matrices
are defined and their relationship with polynomial GCD is examined.
In particular, we prove some norm inequalities and a result on the QR
decomposition of the Bézout matrix that will be useful later on. Result-
ant matrices have remarkable structure properties; therefore part of the
chapter is devoted to a discussion of displacement structure and the fast
method GKO for the factorization of structured matrices.
Chapter 3 analyses the use of variants of the Euclidean algorithm to

compute an approximate GCD or estabilish approximate coprimeness.
The basic version of the Euclidean algorithm has a low computational
cost (i.e., quadratic in the degree of the input polynomials), but it is nu-
merically unstable. Several stabilized versions of the algorithm have been
proposed; in some of them the crucial point is the choice of the termina-
tion criterion, whereas in other cases a look-ahead technique is employed
to avoid ill-conditioned steps.
Chapter 4 is devoted to a description of known results and algorithms

that rely on factorizations of the Sylvester matrix and subresultants. The
singular value decomposition of the Sylvester matrix is often used to ob-
tain estimates on the approximate rank of a resultant matrix, and there-
fore on the degree of an approximate GCD. The QR decomposition of
the Sylvester matrix has been used in [41] to compute an approximate
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polynomial GCD, whereas the method outlined in [144] relies on the QR
decomposition of Sylvester subresultants.
In most cases, algorithms for the computation of ε-GCD take a pair of

polynomials and a tolerance ε as input, and output an ε-GCD. An altern-
ative approach involves taking polynomials and the approximate GCD
degree as input, and trying to minimize the norm of the perturbation that
should be applied to the given polynomials so that they have an exact
GCD of the prescribed degree. This is often called the optimization ap-
proach, and it is examined in Chapter 5.
Chapters 6 and 7 are devoted to the presentation of new methods for

approximate GCD. The algorithms TdBez and PivQr are described in
detail in Chapter 6, along with a study of the QR decomposition of res-
ultant matrices and of the tridiagonalization of the Bezoutian. At the end
of the chapter, three more algorithms for approximate GCD are briefly
proposed. We feel that the algorithms described in this chapter, besides
being quite effective, have the merit of highlighting some aspects of the
interplay between resultant matrices and polynomial GCD that have been
overlooked in the literature.
The main feature of the algorithm Fastgcd, presented in Chapter 7, is

its low computational cost, combined with good stability properties. We
show how a stabilized version of the GKO algorithm for the LU factor-
ization of displacement structured matrices can be used to estimate the
approximate GCD degree, compute the approximate GCD coefficients
along with the associated cofactors, and perform iterative refinement.
The new algorithms presented here have been implemented in Matlab

and applied to many test polynomials in order to evaluate the perform-
ance of these algorithms on typical “difficult” cases. Chapter 8 shows
the most significant among these numerical experiments and compares
the performance of our algorithms with the results given by other meth-
ods for which an implementation is available. A comparison between
the notions of ε-GCD (based on perturbation of polynomial coefficients)
and δ-GCD (based on perturbation of polynomial roots, see [103]) is also
given in the last section.
Finally, Chapter 9 gives an overview of the many possible generaliza-

tions of the approximate GCD problem, as well as indications on further
work.
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Notation

Fields of numbers are denoted here, as usual, by R (real) and C (com-
plex). The imaginary unit is denoted by ı̂ (so as not to be confused with
the letter i used as an index).
The vector space of real vectors of length n is denoted by R

n and the
vector space of real m×n matrices is denoted by R

m×n . Analogously, Cn

andC
m×n are the vector spaces of complex n-vectors andm×n matrices,

respectively.
We use capital letters (e.g. A, B, C) for matrices and boldface lower

case letters for (column) vectors (e.g. u, v, w); the identity matrix of
order n is denoted by In , whereas I is used when the size of the identity
matrix is not explicitly specified. For diagonal matrices, the notation
A = diag (a1, . . . , an) stands for

A =

⎛
⎜⎜⎝

a1 O
. . .

O an

⎞
⎟⎟⎠ .

Transpose matrices and vectors are denoted by AT , uT , whereas the nota-
tion A∗, u∗ is used to indicate transpose in the real case and Hermitian
adjoint (i.e., conjugate transpose) in the complex case.

Unless otherwise specified, a Matlab1-like notation is used for sub-
matrices and matrix entries. Namely:

• A(i, j) is the entry of A that belongs to the i-th row and to the j-th
column;

• A(i, :) is the i-th row of A and A(:, j) is the j-th column of A;

1 Matlab is a registered trademark of The MathWorks, Inc.
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• A(m:n, p:q) is the submatrix of A formed by the intersection of rows
m to n and columns p to q.

Where explicitly stated, u denotes the column vector of length n + 1
associated with a univariate polynomial u(x) = ∑n

i=0 ui x
i , i.e., u =

[u0, u1, . . . , un]T . See Section B.1 for notation in the multivariate case.
First-order approximations are sometimes denoted by

.= and <̇, so that
a

.= b and c<̇d mean a = b + O(ε2) and c ≤ d + O(ε2) respectively.



Chapter 1
Approximate polynomial GCD

Finding the greatest common divisor (GCD) of two given polynomials is
a basic problem in algebraic computing. The problem is usually stated
as follows: given the (real or complex) coefficients of two polynomials,
compute the coefficients of their greatest common divisor.
The range of applications is very wide; we mention here some ex-

amples.

• Polynomial root-finding. Computing the roots of a polynomial p(x)
which has multiple roots is an ill-conditioned problem. If a robust
GCD finder is available, computing g(x) = GCD(p, p′) may help to
solve this difficulty, since the roots of the polynomial p(x)/g(x) will
turn out to be better conditioned.

• Simplifying rational functions. Representing or performing computa-
tions with a rational function R(x) = a(x)/b(x) might require a(x)
and b(x) to be coprime. If g(x) = GCD(a, b) is computed, then R(x)
can be replaced by R̃(x) = ã(x)/b̃(x), where ã(x) = a(x)/g(x) and
b̃(x) = b(x)/g(x). An application is degree reduction of rational
curves, such as Bézier curves (see e.g. [120] and [18]).

• Control theory. Polynomial coprimeness is related to the controllabil-
ity of linear control systems (see [7]).

• Image restoration. Polynomial GCD computations can be used for
blind image deblurring (see [108]).

We will be mainly concerned here with the problem of evaluating the
GCD of univariate polynomials u(x) and v(x).
The problem is well-understood in the exact case, that is, under the

assumption that the coefficients of u(x) and v(x) are error-free. How-
ever, in many applications, input data are represented as floating point
numbers or derive from the results of physical experiments or previous
computation, so that they are generally affected by errors. The applica-
tion of ordinary polynomial computations to such empirical polynomials
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is a field of study comprising elements from computer algebra and nu-
merical analysis, to which a considerable amount of work has lately been
devoted; see [121] for a review and further bibliography.
In our case, if u(x) and v(x) have a nontrivial GCD, it turns out that

arbitrarily small perturbations in the coefficients of u(x) and v(x) may
transform u(x) and v(x) into relatively prime polynomials. Therefore, it
is clear that the concept of GCD is not well suited to deal with applica-
tions where data are approximatively known. This is why the notion of
approximate GCD has been introduced.

1.1. Coefficient-based definitions

Starting from Schönhage ([118]), several different definitions of approx-
imate polynomial GCD are found in the literature. The common under-
lying idea, however, is to look for a pair of polynomials û(x) and v̂(x)
which are “close” to u(x) and v(x) and have a nontrivial exact GCD of
maximum degree. The precise meaning of “close” depends both on the
technical details of the definition and on the choice of a tolerance ε > 0,
which is related to the magnitude of the errors that may affect the coeffi-
cients of u(x) and v(x).
Throughout this work, the expression approximate GCD will be used

to denote any of the different polynomials (quasi-GCD, ε-GCD, AGCD,
δ-GCD) defined in the following sections, whereas the specific denom-
ination will be used when appropriate. Notice that, while the acronym
AGCD used by Zeng in [144] (see Section 1.1.3) actually stands for “ap-
proximate GCD”, the abbreviated form will be reserved for Zeng’s defin-
ition, so that the expression approximate GCD keeps its generic meaning.

1.1.1. Quasi-GCD

The first formalization of the notion of approximate GCD (quasi-GCD)
is due to Schönhage ([118]) and dates back to 1985.
The definition is given at first for homogeneous polynomials, in order

to account for the fact that a system of polynomial equations may have
solutions close to (or at) infinity, which corresponds to nearly vanishing
leading coefficients. Let

A(z0, z1) =
n∑
i=0

αi z
n−i
0 zi1,

B(z0, z1) =
m∑
j=0

β j z
m− j
0 z j1,
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with degrees 1 ≤ n ≤ m. Define a polynomial norm as

|A| =
n∑
i=0

|αi |,

|B| =
m∑
i=0

|β j |,

i.e. | · | is induced by the 1-norm applied to the vector of coefficients. It is
also convenient to assume some kind of normalization on A and B, such
as

|A|, |B| ∈
[
1

2
, 1

]
.

Definition 1.1.1. Given ε > 0, a homogeneous polynomial H(z0, z1) of
degree k is called a quasi-GCD of A and B within error ε if:

• there exist homogeneous polynomials A1 of degree n − k and B1 of
degree m − k such that |H A1 − A| < ε and |HB1 − B| < ε;

• for any exact common divisor D of A and B there exists a homogen-
eous polynomial Q of degree k − degD such that |DQ − H | < ε|H |.

It is convenient, however, to reduce Definition 1.1.1 to the case of ordin-
ary univariate polynomials. Let f (z) and g(z) be polynomials of degree
n and m, respectively, with m < n, and let 0 < ε ≤ 1/2. Let ρ( f ) be the
root radius of f (z), that is,

ρ( f ) = max
i=1,...,n

{|zi | such that f (zi) = 0}.

As a normalization condition, assume that | f |, |g| ∈ [ 12 , 1] and f has
bounded root radius, e.g. ρ( f ) ≤ 1/4.

Definition 1.1.2. A polynomial h(x) is a quasi-GCD for f and g with
tolerance ε if there are polynomials u(z) and v(z) of degree m − 1 and
n − 1 respectively, such that:

• |h f1 − f | < ε, |hg1 − g| < ε for suitable f1, g1;
• |u f + vg − h| < ε|h|.

The problem of quasi-GCD computation can therefore be stated as fol-
lows: given the coefficients of polynomials f (z) and g(z) and given ε as
above, compute the coefficients of polynomials h(z), u(z) and v(z) that
satisfy Definition 1.1.2.
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Schönhage proposes and discusses an algorithm for quasi-GCD compu-
tation, based on a modification of the Euclidean algorithm with pivoting.
This part of his pioneering work, while theoretically interesting, is of
little use for practical purposes, because input numbers are assumed to
be available at any desired precision. In other words, if a number α ∈ R

belongs to the input set, then an oracle called with an arbitrary parameter
s will deliver a rational number a such that |α − a| < 2−s . This is hardly
the case in most practical applications, where the input polynomials are
known only to a limited accuracy, once and for all.

1.1.2. ε−GCD
We will present in this section the definition of approximate GCD that is
most widely used in the literature (see e.g. [40, 49, 103, 63]). This is also
the definition that is used in most cases throughout this work.

Definition 1.1.3. Let u(x) and v(x) be univariate (real or complex) poly-
nomials, with n = deg u(x) andm = deg v(x). Choose ‖·‖ a polynomial
norm (see Section A.3) and ε a positive real number. Then a polynomial
g(x) is called

• an ε-divisor of u(x) and v(x) if there exist perturbed polynomials
û(x) and v̂(x) such that

deg û(x) ≤ n,

deg v̂(x) ≤ m,

‖û(x) − u(x)‖ ≤ ε, (1.1.1)

‖v̂(x) − v(x)‖ ≤ ε (1.1.2)

and g(x) is an exact divisor of û(x) and v̂(x);
• an ε-GCD of u(x) and v(x) if it is an ε-divisor of maximum degree.

A few comments about this definition are needed.
First of all, notice that the definition requires to choose a polynomial

norm. A common choice is the 2-norm of the vector of coefficients, or an-
other vector-induced norm; however, for some purposes one might want
to use a different norm, or even a polynomial distance not necessarily
induced by a norm. See Section A.3 for a brief discussion of this topic.
It should also be observed that several authors (e.g. [103]) prefer to

use a normalized version of Definition 1.1.3, replacing (1.1.1) and (1.1.2)
with

‖û(x) − u(x)‖ ≤ ε‖u(x)‖,
‖v̂(x) − v(x)‖ ≤ ε‖v(x)‖.
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Lastly, it is important to point out that the ε-GCD, as defined here, is not
unique. More precisely, its degree is uniquely defined, but its coefficients
are not. This does not only happen because of the lack of normalization
requirements on g(x); there might be – and usually are – several polyno-
mials that satisfy Definition 1.1.3, even without being scalar multiples of
each other.

1.1.3. AGCD

In [144], Zhonggang Zeng points out that an approximate polynomial
GCD (AGCD) for a set of polynomials should exhibit the following char-
acteristics:

1. nearness: an AGCD is the exact GCD of a set of polynomials which
are close to the given ones;

2. maximum degree: an AGCD has maximum degree among the polyno-
mials that satisfy (1);

3. minimum distance: an AGCD minimizes the distance between the
given set of polynomials and the set of polynomials of which it is
the exact GCD.

Nearness and maximum degree are the key ideas shared by all the defin-
itions of approximate GCD. Minimum distance is not always addressed
in the literature, but it can certainly be desirable, though maybe difficult
to achieve or check with certainty.
In order to achieve nearness, maximum degree and minimum distance,

Zeng describes the AGCD problem as follows. Let p1(x), . . . , pl(x) be
polynomials of degrees m1, . . . ,ml respectively.
Saying that a polynomial u(x) is an exact common divisor of fixed de-

gree k for the pi ’s means that there exist polynomials v1(x), . . . , vl(x)
such that pi(x) = u(x)vi(x) for all i = 1, . . . , l. But these equations
characterize u(x) only up to multiplication by a constant; so one might
want to add some normalization condition on u(x), which can be ex-
pressed as r∗u = 1 for some given vector r. For example, if u(x) is
expected to be monic, then r will be chosen as [1 0 . . . 0]∗. So one
obtains the following system:

F(z) = b, (1.1.3)

where

F(z) =

⎡
⎢⎢⎢⎣
rHu− 1
Ck(v1)u

...

Ck(vl)u

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣
u
v1
...

vl

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣
0
p1
...

pl

⎤
⎥⎥⎥⎦


