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Preface

Evapotranspiration is the process of water transport from evaporating surfaces to

the atmosphere. Evaporating surfaces can be plant surfaces (intercepted water),

substomatal cavities and cuticle tissue (transpiration), soil, the water table, or

impermeable surfaces. The most important process is transpiration, the process of

water movement from the soil to and through the plant, and further on to the

atmosphere. This process is part of biomass production.

On average, about 60% of precipitation reaching the land surface evaporates; in

dry regions this ratio is higher and can reach up to 90% of the annual rainfall.

Evapotranspiration is an invisible and complicated process; its study is difficult.

Quantification of evapotranspiration involves numerous fields of science, such as

hydropedology, soil hydrology, plant physiology, and meteorology. The impor-

tance of the evapotranspiration process, particularly for biomass production, pro-

voked its study and broad research. However, only a few books describe this

process. Among them, those that strongly influenced specialists were Evaporation
in Nature by Budagovskij (1964) for those who read Russian; and Evaporation into
the Atmosphere by Brutsaert (1982) for those who read English. Within the

framework of the series, benchmark papers were republished in hydrology

(2007), and evaporation (Gash and Shuttleworth, eds), as well as basic literature

about the evaporation process.

These publications analyze evapotranspiration as a process of water movement

from evaporating surfaces to the atmosphere. However, water movement from the

soil to the evaporating surface or roots, and water extraction by roots and water

movement to a plant’s leaves are mentioned only marginally.

A wide variety of methods for the calculation of evapotranspiration as a whole,

as well as the components of its structure (e.g., transpiration, evaporation) have

already been published.

The aim of this book is to focus attention primarily on water movement in the

soil root zone and soil water extraction by roots. I also hope this volume will

contribute to broadening study and research into the field of soil physics.
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Finally, I would like to acknowledge the assistance of my colleagues. Comple-

tion of this interdisciplinary-oriented book required much of their effort and

patience.

Institute of Hydrology Viliam Novák

Slovak Academy of Sciences
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Chapter 1

Evapotranspiration: A Component

of the Water Cycle

Abstract Evapotranspiration as a process is part of the water cycle of the Earth; it

is the most important consumer of energy, creating the link between water and

energy cycles of the Earth. The physics of water phase change is briefly presented.

Consumption of energy to change liquid water into water vapor cools the biosphere,

thus allowing the creation of suitable conditions for life on the Earth. This chapter

contains basic information about the Earth and continents’ water cycle and its

components, as well as the energy balance structure of the Earth. The kinetic theory

of fluids is used to quantify the evaporation process because it depends on the

properties of an environment, allowing us to find the most important properties of

the environment influencing evapotranspiration. The kinetic theory of evaporation

can help us understand evaporation as a process, but does not allow use in directly

quantifying it; therefore other methods should be used.

1.1 The Evaporation Process and Its Basic Properties

Evaporation is a process in which matter changes its phase from the solid or liquid

phase to the gaseous phase. The change of solid to gaseous phase is usually denoted

as sublimation.

All matter can evaporate if its molecules have enough energy for phase transi-

tion. In this book, our interest will be focused on evaporation of water in nature and

from artificial structures in the environment.

Evaporation of water from plants, which is transported through the plants from

soil to the leaves, is of particular importance and is referred to as transpiration. It is

a part of the plant production process. Evaporation of water accumulated directly on

the plant surface can be defined as evaporation of intercepted water. Simultaneous

evaporation from soil, water, and plants is known as evapotranspiration.

The different terms allow us to specify evaporation with respect to the evapo-

rating surface. Evaporation of water is a term denoting phase transition from liquid

to gaseous phase—laws describing it are equal for different evaporating substances.

V. Novák, Evapotranspiration in the Soil-Plant-Atmosphere System,
Progress in Soil Science, DOI 10.1007/978-94-007-3840-9_1,
# Springer Science+Business Media Dordrecht 2012
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It has been shown that the first stage of the process known as sublimation is phase

transition from solid to liquid phase and then to gaseous phase. This means that

“direct” phase transition from solid to liquid phase, in reality, does not exist. The

term “evaporation” describes the process of evaporation as well as the quantity of

evaporated mass. The evaporation process is characterized by high specific con-

sumptive use of energy. Monteith compares the evaporation process to a transaction

in which a wet surface is “selling” water to its environment in a gaseous phase.

Any gram of water at 20�C is paid by 2,450 J of energy. The “transaction”

can be performed in different ways: by the energy of solar radiation, or by hot

air convection from places of higher temperature. The “price” of evaporated water

is high. To increase the temperature of 1 g of water to 1�C, 4.18 J energy (at 20�C)
is needed. To increase the temperature of 1 g of water from 0�C to 100�C, 418 J of

energy is needed, which is 5.86 times less than is needed to evaporate 1 g of water!

This is the reason why evaporation is important not only for the water cycle on the

Earth, but is vital for the cycle of energy too.

Evaporation is a process in which energy is consumed; therefore, it is a thermo-

dynamic process. For thermodynamic processes, the macroscopic state of matter

typically can be characterized by two thermodynamic characteristics: temperature

and pressure. This is demonstrated in the pressure–temperature diagram (Fig. 1.1)

for pressures and temperatures around the so called “triple point,” where all three

Fig. 1.1 Pressure versus temperature behavior of water near the triple point
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phases of water are in equilibrium. The liquid phase of water exists between curves

A-B, water vapor between curves A-C, and ice between curves B-C. Phase transi-

tion means crossing those curves; it can be done in both directions. The intersection

of all three curves is the triple point, denoted as T, characterized by coordinates

(0.01�C; 6.1 hPa). The Earth’s surface has an average atmospheric pressure of

10,013 hPa, at which water boils at 100�C and water freezes at 0�C. Phase transition
temperatures depend on atmospheric pressure; pressure fluctuation is small at a

particular site, therefore it can be neglected in majority of cases.

Evaporation is the process linking water and energy cycles of the Earth.

1.2 Evaporation and the Kinetic Theory of Fluids

The theory of the evaporation process is based on the results of the kinetic theory

of evaporation, originally published by Shulejkin (1926). The kinetic theory of

fluids is based on the fact that all the molecules are in continuous, chaotic motion.

Velocities of molecules’ motion are distributed stochastically in a wide range,

which can be described byMaxwell function. Mean quadratic velocity of an oxygen

molecule (the most probable velocity) at 0�C is 461 m s�1 (supersonic velocity),

number of collisions per second is 4.29 � 109, and mean free path of a molecule

(the distance between individual collisions) is 8.7 � 10�6 cm.

Water molecules of the water table monomolecular layer (the water molecule

dimension is approx. 2.72 � 10�8 m) are attracted in one direction only (to the

liquid) and they possess relatively low free energy, but molecules below this layer

are of relatively high free energy and can overcome the energetic barrier and enter

the adjacent atmosphere. To overcome this energetic barrier, one molecule needs

energy that equals latent heat of evaporation of one molecule (W). During evapora-

tion, water loses molecules with the highest kinetic energy. Therefore, the average

kinetic energy of water molecules decreases and water temperature decreases too.

This phenomenon leads to a decrease of the evaporation rate, because the maximum

of the molecules energy distribution is shifting to the lower values.

To preserve evaporation rate, the flux of energy to the evaporating surface

should be maintained; it equals the latent heat of evaporation. Energy flux to the

evaporating surface increases kinetic energy of water molecules and temperature of

water as well. The mean quadratic velocity of water molecules and the evaporation

rate increases too.

Water molecules move randomly in the adjacent layer of the atmosphere and

part of them come back to the liquid water. The ratio of the number of molecules

evaporating and condensing depends on the number of molecules in the air layer

adjacent to the evaporating surface. An air layer saturated with water vapor above

the wet surface contains the maximum water vapor molecules at some temperature

and effective evaporation does not exist; however, equilibrium exchange of water

molecules between liquid water and air layer still exists.

Evaporation is a complicated phenomenon and its quantification by kinetic theory

methods is difficult. The main reason is that basic postulates of kinetic theory are

1.2 Evaporation and the Kinetic Theory of Fluids 3



valid only approximately in liquids (high density of molecules, finite dimensions

of them). But, application of kinetic theory to evaporation can help us understand

this process in relation to the conditions in which this process is occurring. The next

part can be applied not only for water, but for the sake of simplicity liquid water will

be used as a model.

The number of water molecules Nc condensed on the unit area of water surface is

proportional to the density of water molecules in the air n and to the average

molecules velocity v:

Nc ¼ n � v (1.1)

Water molecules will evaporate if they gain energy W needed to leave liquid.

Probability n1 to gain the energy higher than W is (Feynman and Leighton 1982):

n1 ¼ exp � W

kT

� �
(1.2)

where T is liquid temperature, K; and k is Boltzmann constant,

k ¼ 1.38 � 10�23 J K�1.

The number of water molecules Ne leaving the unit area of liquid per unit of

time is proportional to the density of molecules per unit water surface area (1/A),
to the time interval needed to pass the surface layer of molecules when escaping

the liquid (d/v), and to the probability of water molecule escape n1:

Ne ¼ 1

A

v

d
exp � W

kT

� �
(1.3)

where v is velocity of water molecule; d is diameter of water molecule; and A is

molecule surface area.

Volume of a spherical water molecule Va can be approximately expressed as

a product of molecule diameter d and maximum molecule cross–section area A1:

Va ¼ d � A1 (1.4)

Then, Eq. 1.3 can be rewritten as:

Ne ¼ v

Va

exp � W

kT

� �
(1.5)

During the state of equilibrium, the number of molecules condensing Nc and

evaporating Ne are the same (Nc ¼ Ne), and by combination of equations we get:

nv ¼ v

Va

exp � W

kT

� �
(1.6)
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becauseW is the energy needed to overcome bonds between molecules in the liquid,

and the molecules’ energy distribution (after evaporation) in the air is the same as

it was in the liquid. Equation 1.6 expresses number of molecules leaving unit area

of evaporating surface per unit of time. It is the maximum evaporation rate in a case

in which all the molecules from the air layer adjacent to the evaporating surface are

removed. In reality part of the molecules return to the water, and therefore actual

evaporation rate is lower than expressed by Eq. 1.6. Evaporation velocity decrease

can be expressed by the coefficient ke, defined as the ratio of molecules number

condensing at the liquid surface Nc and leaving liquid Ne:

ke ¼ Nc

Ne

(1.7)

Then, evaporation velocity can be expressed as:

Ne ¼ n � v � ke ¼ v � ke
Va

exp � W

kT

� �
(1.8)

From Eq. 1.8 it follows that evaporation rate:

• is proportional to the molecules’ motion velocity and is indirectly proportional

to their volume

• is indirectly proportional to the energy needed to overcome energetic barrier in

the liquid; it is property of liquid and is different for different liquids

• is proportional to the liquid temperature

From the kinetic theory of evaporation it follows:

• Water can evaporate if water vapor pressure in the air layer adjacent to the liquid

surface is below saturated water vapor pressure corresponding to the air

temperature.

• To keep evaporation rate constant, it is necessary to preserve energy flux to the area

of evaporation in a rate needed for phase transition of liquid to vapor. Evaporation

of water needs specific energy known as latent heat of evaporation (L), depending
on liquid temperature. For T ¼ 20�C, L ¼ 2.45 � 106 J kg�1.

Results of kinetic theory are in agreement with our experiences. But direct

use of the aforementioned equations to calculate evaporation in a field is difficult.

Distribution of water molecules’ velocity as well as temperature distribution near

the evaporating surface should be known, as well as the value of coefficient ke.
Therefore, to estimate evaporation rate under different conditions, so called macro-

scopic methods are used, based on measurement of “macroworld” properties, which

are phenomena such as air temperature or wind velocity integrating the effect of a

large number of molecules.
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1.3 Water Balance and Water Cycle

The term water balance can express algebraic sum of water fluxes to and out of the

defined volume during given time interval. This term is used to quantify the ratio

of individual components of water balance too. Water balance can denote also

the process of estimating individual terms of the water balance equation. Water

balance is application of the energy conservation statement to part of the hydro-

logical cycle (Hillel 1982).

The water cycle starts by precipitation (irrigation) falling to the Earth surface.

Precipitation can infiltrate to the soil at the rate of precipitation; if the infiltration

rate is smaller, ponding on the soil surface occurs. Depending on soil morphological

properties, part of the water can flow out (surface run off), part of the ponded water

can infiltrate later, and part of the water volume can evaporate. A particular

phenomenon of plant water retention is intercepted water, that is, plant surface

retention of water, which will evaporate. Part of the infiltrated water can evaporate

from the soil surface layer. The rest of the infiltrated water is retained by the soil

and later extracted by plant roots to transpirate. In the case of a shallow water table,

part of the infiltrated water can reach and recharge it and then feed water streams.

The other source of water for soil can be surface water from the other parts of the

territory or groundwater feeding. Snow precipitation accumulates on the soil

surface and its melting and subsequent infiltration or runoff depend on the temper-

ature regimen of the soil-plant-atmosphere system (SPAS).

Evapotranspiration is one of the most important water balance equation

components not only for its quantity, but for its importance in biomass production

process.

The basic water balance equation can be written for a catchment area and a

period of 1 hydrological year. It expresses the distribution of annual precipitation

total P to outflow O and evapotranspiration E:

P ¼ Eþ O (1.9)

Water balance of a territory for a short time interval can be expressed by the

equation, in which rates [kg m�2 s�1], (instead of totals) are used:

dS

dt
¼ ðPþ I þ OiÞ � ðEþ OÞ (1.10)

where S is water quantity in a catchment per unit area, P is precipitation rate, I is
irrigation rate, Oi is rate of water flow into the catchment, E is evapotranspiration

rate, O is outflow rate, and t is time.

Soil root zone water balance can be expressed (taking into account vertical flow

components only):

dS

dt
¼ ðIi þ IuÞ � ðEe þ Et � OdÞ (1.11)
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where Ii is infiltration rate into soil, Iu is groundwater inflow to the soil, Ee is soil

evaporation rate, Et is transpiration rate, and Od is outflow to the groundwater.

The most important component in the outflow part of Eq. 1.11 is usually trans-

piration and evaporation. In areas with groundwater depth 2 m below soil surface,

the groundwater feeding term should be neglected. In areas with high precipitation

totals (Northern Europe, Canada) and low air temperatures, surface and subsurface

outflow are dominant components of the Eqs. 1.11. In Table 1.1 the average annual

components of the water balance equation of continents can be seen. It can be

seen that Africa and Australia are evapotranspirating at a greater part of precipita-

tion than other continents. Differences in component structure of the water balance

equation are observed in different areas of continents. In Europe, e.g., the evapora-

tion ratio (ratio of evapotranspiration to precipitation) in Hungary is 0.91, but

the ratio of contiguous state Slovakia is 0.647. Those differences are mainly caused

by the morphological properties of both countries; Slovakia is mainly hilly, but

lowlands are characteristic for Hungary.

The interface between precipitation and other components of the water balance

equation includes soil-surface and soil-roots surface as well. Water transport

processes in the soil- plant-atmosphere system (SPAS) are shown in Fig. 1.2.

Typical seasonal courses of soil water balance equation components are shown

in Fig. 1.3, for a site in Trnava (South Slovakia) with maize canopy. Ground water

table was about 10 m below the soil surface; surface runoff was not observed

during the vegetation period. Water content of the maize canopy and its changes

were neglected too.

Our knowledge of evapotranspiration process is not satisfactory at this time.

To calculate evapotranspiration flux, one needs complicated devices to estimate the

Table 1.1 Average annual values of the Earth’s water balance equation components Denmead

(1973)

Continent Area, 103 km2

Volume of water per year, km3 year�1

Precipitation Runoff Evapotranspiration

(P) (O) (E)

Europe 10,500 8,290 3,210 5,080

Asia 43,475 32,240 14,410 17,830

Africa 30,120 22,350 4,570 17,780

North America 24,200 18,300 8,200 10,100

South America 17,800 28,400 11,760 16,640

Australia 7,615 34,170 300 3,170

Continent

Water layer, mm/year Ratio

P O E E/P O/P

Europe 789 305 489 0.62 0.38

Asia 742 332 410 0.55 0.45

Africa 742 151 591 0.8 0.2

North America 755 339 417 0.55 0.45

South America 1,600 650 940 0.59 0.41

Australia 455 40 415 0.91 0.09
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Fig. 1.2 Water transport processes in the soil-plant-atmosphere system (SPAS)

Fig. 1.3 Seasonal courses of soil water balance equation components during the vegetation period

of maize. (a) precipitation total, (b) precipitation interception by canopy, (c) integral water

flux through bottom boundary at a depth 150 cm below soil surface, (d) evapotranspiration (E),
evaporation (Ee), transpiration (Et), (e) water content in soil layer 0–150 cm (Trnava site, South

Slovakia, 1981)



input parameters of the SPAS. To include plant properties in the calculations, fully

understanding methods of evapotranspiration and its components is still the actual

problem.

1.4 Energy Balance of the Evaporation Area

Energy and water transport processes are interconnected by evaporation. Therefore

it is important to estimate energy that can be used for evaporation. As will be

presented later, the energy transport to the evaporating surface is the deciding factor

for evaporation rate from water surfaces, wet soils, and canopies grown on wet soils.

From a methodological point of view, it is suitable to perform energy water

balance at the evaporating surface level, or at a height above it, where vertical fluxes

of water and energy do not change significantly (Budagovskij 1981). Practical

reasons dictate measurement of such fluxes at the height of 2 m above the soil

surface; standard meteorological measurements, frequently used to calculate evap-

oration fluxes, are performed at this height.

The energy balance equation of this volume (between soil surface and 2 m height

above it) can be written:

R ¼ LEþ H þ Gþ Af þ Ar (1.12)

where R is net radiation at reference level, sum of all radiation fluxes, W m�2;

E is water vapor flux (evapotranspiration), kg m�2 s�1; H is convective (turbulent,

sensible) flux of heat from evaporating surface to the atmosphere, W m�2; L is latent

heat of evaporation, J kg�1 s�1; G is soil heat flux, W m�2; Af is photosynthetic

energy flux, W m�2; and Ar is change of canopy heat capacity, W m�2.

Equation 1.12 does not involve the advective flux of energy and snow melting.

Term Af is very small (usually less than 2% of net radiation) (Budagovskij 1981)

and term Ar is even smaller, therefore Eq. 1.12 usually is used in simplified form

without terms Af and Ar.

In the literature, conventionally downward net radiation flux is supposed to be

positive; turbulent (sensible) heat flux and water vapor flux are usually positive in

an upward direction. Conversely, downward soil heat flux is taken as positive

(Budagovskij 1964; Brutsaert 1982).

Energy fluxes and their directions depend on the SPAS properties, and they

possess typical daily and seasonal courses. Figure 1.4 presents typical daily courses

of energy balance equation components during a clear day. Courses of some

meteorological components corresponding to those courses are shown in Fig. 1.5.

The most important source of energy for evaporation is solar radiation.

Intensity of solar radiation through the unit area perpendicular to the direction of

radiation is approximately constant, and therefore it is referred to as solar constant

s ¼ 1.4 kW m�2. The majority of radiation flux occurs in the wavelength range

0.3–3 mm, in which the visible part of the solar radiation is in the range of
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wavelength 0.4–0.7 mm (Brutsaert 1982). Solar radiation corresponds to the

emission spectrum of a black body at the temperature approx. 6,000�C.
The Earth’s surface, with an effective temperature of approximately 300 K,

radiates with relatively low intensity and with longer wavelengths than the Sun,

Fig. 1.4 Daily courses of the energy balance equation components over maize canopy during a

clear summer day (Kursk, Russia, 1991)

Fig. 1.5 Daily courses of air temperature T, wind velocity u, and water vapor pressure e at

standard height above the maize canopy during a clear summer day (Kursk, Russia, 1991)
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