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Preface

Statistical methods are important tools for scientific research to extract information

from data. Some statistical methods are simple whilst others are more complex, but

without such methods our data are just numbers and useless to our understanding of

the world we are living in. In epidemiology, researchers use more advanced and

complex statistical methods than colleagues who work with experimental data,

often under more controlled conditions than can be achieved with the larger

datasets and more “real-life” conditions required by observational data. The issues

of observational data are not just about the amount of data but also the quality of

data. Epidemiological data usually contains missing values in some variables for

some patients, and the instruments used for data collection may be less accurate or

precise than those used for experimental data. Therefore, textbooks of epidemiology

often contain much discussion of statistical methods for dealing with those problems

in analysis and interpretation of data, and very often they also contain some

discussion of the philosophy of science. This is because elaborating causes and

their consequences from observational data usually requires certain epistemological

theories about what constitutes “causes” and “effects”.

Routine applications of advanced statistical methods on real data have become

possible in the last 10 years because desktop computers have become much more

powerful and cheaper. However, proper understanding of the challenging statistical

theory behind those methods remains essential for correct application and inter-

pretation, and rarely seen in the medical literature. This textbook contains a general

introduction to those modern statistical methods that are becoming more important

in epidemiological research, to provide a starting point for those who are new to

epidemiology, and for those looking for guidance in more modern statistical

approaches. For those who wish to pursue these methods in greater depth, we

provide annotated lists of further reading material, which we hope are useful for

epidemiological researchers who wish to overcome the mathematical barrier of

applying those methods to their research.

The Centre for Epidemiology and Biostatistics at the University of Leeds,

United Kingdom, where we have been working for many years, has a masters
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degree programme in the field of Statistical Epidemiology, aiming to provide a

unique opportunity for researchers to obtain further training in both epidemiology

and statistics. Several modules in the programme teach statistical methods that are

not discussed in standard textbooks of epidemiology or biostatistics. For example,

very few textbooks of epidemiology discuss multilevel modelling, whilst very few

textbooks of biostatistics discuss confounding using Directed Acyclic Graphs

(DAGs). Here we bring these two important topics in modern epidemiology

together in the same book. For topics such as G-estimation, latent class analysis,

regression trees, or generalised additive modelling, students have previously had to

dig into monographs or journal articles for those methods, which are usually aimed

at more advanced readers. We feel that there is a need for a textbook that can be

used for teaching modern, advanced statistical methods to postgraduate students

studying epidemiology and biostatistics and also a good source of self-learning for

researchers in epidemiology and medicine. We therefore invited colleagues from

Leeds, Bristol, Cambridge and London in the United Kingdom, and colleagues in

Denmark and South Africa, all leading experts in their respective fields, to contrib-

ute to writing this book.

This volume contains 17 chapters dedicated to modern statistical methods for

epidemiology. The opening chapter starts with the most important, but also the most

controversial concept in epidemiology: confounding. Before the introduction of

DAGs into epidemiology, the definition of confounding was sometimes confusing

and deficient. Graham Law and his co-authors provide an overview of DAGs and

show why DAGs are so useful in statistical reasoning surrounding the potentially

causal relationships in observational research. Chapter 2 discusses another trou-

bling issue in observational research: incomplete data or missing data. James

Carpenter and his colleagues provide an overview of incomplete data problems in

biomedical research and various strategies for imputing missing values. At the heart

of all epidemiology is an appropriate assessment of exposure. Chapter 3 discusses

this problem of measurement error in epidemiological exposures. Darren Green-

wood provides a concise introduction to the problems caused by measurement error

and outlines some potential solutions that have been suggested. Chapter 4 discusses

the issue of selection bias in epidemiology, a particular problem in the context

of case-control studies. Graham Law and his co-authors use DAGs as a tool to

explain how this problem affects the results of observational studies and how it may

be resolved.

Chapter 5 discusses multilevel modelling for clustered data, a methodology also

widely used in social sciences research. Andrew Blance provides an overview of the

basic principles of multilevel models where random effects are assumed to follow a

normal distribution. In Chap. 6, Mark Gilthorpe and his co-authors discuss the

issues of outcomes formed from a mixture of distributions and use zero-inflated

models as an example. Chapter 7 can be seen as an extension of Chaps. 5 and 6.

Wendy Harrison and her co-authors discuss scenarios where the assumption that

random effects follow a normal distribution is not appropriate, instead assuming

a discrete distribution, describing discrete components that can be viewed as latent

classes. Chapters 8 and 9 both discuss Bayesian approach for sparse data, where
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observations of events are scattered in space or time, Chap. 8 discussing bivariate

disease mapping and Chap. 9 discussing multivariate survival mapping models.

Samuel Manda and Richard Feltbower use data from the Yorkshire region in

the United Kingdom and from the South Africa to illustrate these approaches. In

Chap. 10, Darren Greenwood discusses meta-analysis of observational data. This is

more complex than meta-analysis of randomised controlled trials because of greater

heterogeneity in design, analysis, and reporting of outcome and exposure variables.

Methods and software packages available to deal with those issues are discussed.

Chapter 11 returns to the concepts introduced in the opening chapters, focusing

on the resemblance between DAGs and path diagrams. Yu-Kang Tu explains how

to translate regression models into both DAGs and path diagrams and how those

graphical presentations can inform us the causal relations in the data. Chapter 12

discusses latent growth curve modelling, which is equivalent to multilevel model-

ling for longitudinal data analysis. Yu-Kang Tu and Francesco D’Auito use a

dataset from Periodontology to illustrate the flexibility of latent growth curve

modelling in accommodating nonlinear growth trajectories. These ideas are extended

in Chap. 13 by allowing random effects to follow a discrete distribution. DarrenDahly

shows how growthmixture modelling can be used to uncover distinctive early growth

trajectories, which may be associated with increased disease risk in later life. Chapter

14 focuses on the problem of time-varying confounding, and Kate Tilling and her

colleagues explain how G-estimation may be used to overcome it.

Chapter 15 discusses generalised additive modelling for exploring non-linear

associations between variables. Robert West gives a concise introduction to this

complex method and shows how it can be extended to multivariable models.

He then continues to explain regression trees and other advanced methods for

classification of variables in Chap. 16. These methods have become popular in

biomedical research for modelling decision-making. In the final chapter, Mark

Gilthorpe and David Clayton discuss the intricate issues surrounding statistical

and biological interaction. They use the example of gene-environment interaction

to show that statistical interactions and biological interactions are different con-

cepts and much confusion arises where the former is used to describe the latter.

Editing this book has been an exciting experience, and we would like to thank all

the authors for their excellent contributions. We also want to thank Dr Brian Cattle

for his help with the preparation of the book and our editors in Springer for their

patience with this project.

Leeds, UK Yu-Kang Tu

Darren C. Greenwood
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Chapter 1

Confounding and Causal Path Diagrams

Graham R. Law, Rosie Green, and George T.H. Ellison

1.1 Causal Models

The issue of causation is a challenging one for epidemiologists. Politicians and the

public want to know whether something of concern causes a disease or influences

the effectiveness of healthcare services. However, the training provided to

statisticians, and to scientists more generally, tends to stress that non-experimental

research will only ever offer evidence for association and that suitably designed

experimental studies are required to offer robust evidence of causation. In the real

world, where experimental data are rare, difficult or impossible to produce, the

extent to which associations between variables can and should be interpreted as

evidence of causality is less a technical question than a philosophical, moral,

cultural or political one. These issues have been discussed at some length elsewhere

(see for example Susser 1973; and Pearl 1998, 2000), and although these influence

the extent to which associational evidence from non-experimental studies is (and

should be) used in real-world settings, the following Chapter will focus on the more

technical issue of strengthening the causal inferences drawn from non-experimental

data by using causal path diagrams when designing and describing the analysis of

data from non-experimental studies. In this chapter we will introduce causal path

diagrams (specifically Directed Acyclic Graphs; DAGs) and explore the issue of

confounding.
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1.1.1 Directed Acyclic Diagrams (DAGs), Nomenclature
and Notation

A causal path diagram is a visual summary of the likely (and, where relevant, the

speculative) causal links between variables. Constructing these diagrams is based

on a priori knowledge and, in the case of speculative and hypothesised relationships
being explored in the analysis, on conjecture. Causal path diagrams have been used

informally for many years in causal analysis and in recent years have been formally

developed for use in expert-systems research (Greenland et al. 1999). Although

such diagrams are beginning to be adopted by the epidemiological community

(Hoggart et al. 2003; Hernandez-Dı̀az et al. 2006; Shrier and Platt 2008; Head et al.

2008, 2009; Geneletti et al. 2011; Tu and Gilthorpe 2012), a causal diagram is still a

novel epidemiological tool which can be used in a variety of ways: to think clearly

about how exposure, disease and potential confounder variables, relevant to the

research hypothesis, are related to each other; to communicate these inter-

relationships to academic and professional audiences; to indicate which variables

were important to measure; and to inform the statistical modelling process –

particularly the identification of confounding, confounders and competing

exposures.

In this Chapter we discuss the use of causal path diagrams (Pearl 2000), specifically

Directed Acyclic Graphs (DAGs), to develop models that can inform the analysis of

one variable (the ‘exposure’) as a potential cause of another (the ‘outcome’). Within

epidemiology, such analyses include exploring: the potential role of risk factors

(as ‘exposures’) in the aetiology of disease (where the ‘outcome’ is the prevalence,

incidence or severity of disease); and the role of specific characteristics of healthcare

systems (where these characteristics are the ‘exposures’) in the effective and efficient

delivery of health services (where this constitutes the ‘outcome’).

1.1.1.1 Nomenclature and the Construction of DAGs

The nomenclature of DAGs is still evolving, and can be off-putting to the uninitiated,

particularly when accompanied by statistical notation (such as that developed by

Geneletti et al. (2009)). However, the terminology that is developing helps to specify

each of the components of DAGs in a way that facilitates their consistent application

and further utility. And, with this in mind, we have provided a comprehensive

glossary of terms in Table 1.1, and a more detailed explanation of these below.

Nodes, Arcs and Directed Arcs

In statistical parlance, each variable in a DAG is represented by a node (also known

as a vertex), and relationships between two variables are depicted by a line connecting
the nodes, called an arc (or alternatively an edge or a line). A directed arc indicates

2 G.R. Law et al.



known (i.e. from a firm grasp of established functional biological, social or clinical

relationships between variables); likely (i.e. from previous robust empirical studies);

or speculative (i.e. hypothesised) relationships between any two variables, with an

arrow representing causality – the direction of causality following in the direction of

the arrow. For example, ‘X causes Y’ would be represented as X! Y, where X and Y
are nodes (or vertices) and the arrow between them is an arc (or edge or line).

Parents, Children, Ancestors and Descendants

DAGs are usually depicted with the nodes arranged in a temporal and thus causal

sequence, with the preceding variables to the left of the diagram and subsequent

Table 1.1 Glossary of terms for causal diagrams

Term Description

Ancestor A variable that causes another variable in a causal path in which there are

intermediary variables situated along the causal/direct path between them

Arc A line with one arrow that connects two nodes (synonymous with edge and
line)

Backdoor path A path that goes against the direction of the arc on the path, but can then follow
or oppose the direction of any subsequent arc

Blocked path A path that contains at least one collider

Causal path A path that follows the direction of the arcs (synonymous with direct path)

Child A variable that is directly affected by another variable, with no intermediary

variables situated along the causal path between them

Collider A variable that a path both enters and exits via arcs

Descendant A variable that is caused by one or more preceding variables in a direct causal
path in which there is one or more intermediary variables situated along the

causal path between them

Direct path A path that follows the direction of the arcs (synonymous with causal path)

Directed arc An arrow between two variables that indicates a known, likely or speculative

causal relationship between them

Edge A line with one arrow that connects two nodes (synonymous with arc and line)

Line A line with one arrow that connects two nodes (synonymous with arc and
edge)

Node A point within the diagram which denotes a variable, such as the (key)

exposure variable of interest, the (key) outcome (of interest), and another

covariates (synonymous with vertex)

Parent A variable that directly affects another variable, with no intermediary variables

situated along the causal path between them

Path An unbroken route between two variables, in either direction (synonymous

with route)

Route An unbroken route between two variables, in either direction (synonymous

with path)

Unblocked path A path that does not contain a collider

Vertex A point within the diagram which denotes a variable, such as the (key)

exposure variable of interest, the (key) outcome (of interest), and another

covariates (synonymous with vertex)
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variables to the right. This is not mandatory, but can help when deciding which of

two closely related variables precedes the other and acts as its cause. A node

immediately preceding another node to which it is connected (i.e. a node at the

non-arrow end of an arc) is known as a parent of the node at the arrow end of the

arc, which is in turn known as a child. Thus, in the example X! Y, X is the parent

node and Y is the child. Similarly, a node ‘preceding’ another node but connected to

another node via at least one other node is known as an ancestor, whereas the

preceding node from which it is separated is known as a descendent. Therefore,
in the example X ! Y ! Z, X is the ancestor of Z, and Z is the descendent of

X; while Y (which is a child of X and a parent of Z) lies on the causal pathway

between X and Z.

Directed Paths, Backdoor Paths, Colliders and Blocked Paths

A path is the sequence of arcs connecting two or more nodes, thus X ! Y ! Z is

the path (or route) connecting the nodes X and Z. A direct (or causal) path is one

where the arcs all follow in the direction of causality. In contrast, a backdoor path is
where one exits a node along an arc pointing into it, against the causal direction, to

another node across any number of arcs pointing in either direction. For example,

when X  Z ! Y backdoor path exists between X and Y via Z. A node becomes a

collider where both arcs of the path entering and leaving the node have arrows

pointing into it. For example, Y is a collider when X! Y  Z and a path is blocked
if it contains at least one collider. A directed acyclic graph occurs if no directed

path forms a closed loop, reflecting the assumption that that no variable can cause

itself (an assumption that may limit the utility of DAGs for modelling functional

processes containing positive or negative feedback loops).

Identification of Arcs

All arcs in a DAG reflect a priori presumptions about cause and effect in a specific

context. Some of these presumptions will be based on known causal relationships

between variables (drawing on established functional biological, social and clinical

processes); others on likely causal relationships (drawing, for example, on the

statistical findings of previous robust empirical studies); as well as speculative

relationships (drawing on unsubstantiated hypotheses – including the specific

hypotheses being tested in the analyses). These arc-related presumptions cannot

(and should not) be inferred empirically from data on which the analyses will be

conducted, but must be drawn from established mechanisms or strong research

evidence, both of which are crucial for developing an accurate DAG as the basis on

which suitable statistical analyses can then be designed (Tu et al. 2004; Weinberg

2005; Tu and Githorpe 2012).

4 G.R. Law et al.



1.1.1.2 Notation

An additional technical approach to represent the statistical relationships

between variables (as nodes) in causal path diagrams is to use the notation

developed by Geneletti et al. (2009). For example, the notation A � BjC signifies

A as being independent of B given C, where A, B and C are known variables.

For example the DAG represented in Fig. 1.1 consists of 5 variables: E the

exposure of interest, O the outcome of interest and 3 other additional variables

A, B, and C.
In Fig. 1.1a the exposure, E, causes the outcome, O. This can be represented as

O n� E

1.1.2 The Speculative Nature of DAGs and Their Limitations

In most research studies the causal pathways described and summarised within

causal path diagrams are not established (i.e. ‘proven’) causal relationships, but

are in the main based on evidence from whatever previous studies are available.

Proof in this context is essentially more of a philosophical than a scientific

concept, and can be subject to intense debate. The pathways included in the

diagrams are therefore often based on: (i) incomplete or predominantly theoretical

understanding (rather than established knowledge) of the functional relationships

between the variables involved; (ii) the statistical findings of empirical research

which may not themselves be definitive; and (iii) hypotheses based on putative,

tentative or speculative beliefs about the sorts of relationships that exist – not least

the one between the exposure(s) and the outcomes that the study set out to

address. These three very different ingredients involved in the conceptualisation

of causal pathways are important to recognise as they influence both: the extent to

which different causal path diagrams can be drawn for the same variables

(reflecting different views of what is known, likely or speculative) and the extent

E 

A 

O 

C 

B 

E 

A 

O 

C 

B 

a b c
E 

A 

O 

C 

B 

Fig. 1.1 An example of Directed Acyclic Graphs. Key to variables: E exposure, O outcome, A, B,
C additional
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to which these different diagrams might be more (or less) useful for generating

robust evidence of causality between two or more specific variables. Despite this

DAGs are useful because they force researchers to make explicit their

presumptions about the relationships between pairs of variables, whether or not

these presumptions prove to be correct. Other analysts are then able to critique,

(re)interpret and (where necessary) repeat and improve on the analyses

conducted, based on different presumptions or firmer knowledge of the causal

relationships involved.

However, alongside their assumption that no variable can be its own cause

(which, as mentioned earlier, reduces the utility of DAGs for modelling systems

containing feedback loops), a key limitation of DAGs is that they will only ever be

able to include variables (as nodes) that are (as Donald Rumsfeld would have it)

‘knowns’ (i.e. are recognised as conceptual entities within the epistemological

context concerned). Likewise, analyses based on DAGs will only ever be

able to include those variables for which data are available (i.e. that have been

measured – in Donald Rumsfeld’s parlance, ‘known knowns’). This is a fundamen-

tal limitation of all analyses of data from non-randomised non-experimental stud-

ies, not least because unknown or unmeasured confounders cannot be taken

into account when modelling or analysing potential causal relationships. Nonethe-

less, using DAGs to identify the most appropriate statistical analyses for any given

set of measured variables will reduce the likelihood that these are subject to

confounding (from known and measured confounders) and help others to critique,

(re)interpret and (where necessary and possible) repeat and improve on the analyses

conducted. These then are the core strengths of using DAGs to design the analysis

of data from non-experimental studies – strengths we explore in greater detail in

Sect. 1.2.4, below.

Meanwhile, another potential limitation of DAGs is that, despite the potential

for visual complexity (particularly for those DAGs with more than a handful of

nodes), they are essentially an oversimplification of the causal relationships

between variables. For example, a causal diagram does not indicate whether

an effect is harmful or protective or whether effect modification is actually

occurring (Hernan et al. 2004 – although Weinberg 2007 recently suggested how

DAGs might be modified to include this), nor does a causal diagram identify

whether a cause is sufficient or necessary to elicit the outcome(s) involved

(Rothman 1976). Nonetheless, it bears restating that one of the key strengths

of such diagrams is that they enable researchers to think clearly and logically

about the research question at hand, and to make explicit any presumptions that

are being made about the (presumed) relationships between the pairs of variables

involved. This visual summary can then be used as an aid to communicate

these inter-relationships to academic and professional audiences and to explicitly

identify, for example, if important variables or relationships are missing from

or misrepresented in the diagram or, indeed, whether any of the presumed

relationships are contentious.
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1.1.3 Notation

One way to represent the statistical relationships between variables (as nodes) in

causal diagrams is to use the notation developed by Geneletti and colleagues

(2009). For example, the notation A � BjC signifies A is independent of B given

C, where A, B and C are known variables. For example the DAG represented in

Fig. 1.1 consists of 5 variables: E the exposure of interest, O the outcome of interest

and 3 other additional variables A, B, and C.
In Fig. 1.1a the exposure, E, causes the outcome, O. This can be represented as

O n� E

A common practice in epidemiology is to consider other covariates at the same

time as the exposure. For example, these might include a measure of socio-

economic status, age or sex.

1.2 Confounding and Confounders

Confounding is a central concept in epidemiological research. It is a process that

can generate biased results when examining the association between exposure and

outcome. Historically there have been many definitions of confounding, but they

may be divided broadly into two main types: “comparability-based” and “collaps-

ibility-based” (Greenland and Robins 1986):

• In terms of the “comparability-based” definition, confounding is said to occur

when there are differences in outcome in the unexposed and exposed populations

that are not due to the exposure, but are due to other variables that may be

referred to as ‘confounders’. This results in bias in the estimate of the effect of a

particular exposure on a particular outcome (McNamee 2003).

• In terms of the “collapsibility-based” definition, confounding may be: (i)

reduced by adjusting the data by the potential confounder; or (ii) eliminated by

stratifying the data by the potential confounder (McNamee 2003). This second

definition is therefore based solely on statistical considerations and confounding

is said to occur if there is a difference between unadjusted or “collapsed”

estimates of the effect of exposure on outcome and estimates that have been

adjusted or stratified by the potential confounder.

Although these two definitions of confounding have often been considered indis-

tinguishable, focusing on confounding as a causal rather than a statistical issue leads

one to adopt the “comparability-based” definition over the “collapsibility-based”

definition (Greenland and Morgenstern 2001). The “comparability-based” definition

of confounding can then be used to establish which epidemiological criteria can and

should be used to establish whether a variable should be classified as a confounder or

not. First, the variable concerned must be a cause of the outcome (or a proxy for a
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cause) in unexposed subjects (i.e. a ‘risk factor’). Second, the variable concernedmust

be correlated with the exposure variable within the study population concerned.

Finally, the variable concerned must not be situated on any causal pathway between

exposure and outcome (Hennekens and Buring 1987). More recently, the last of these

three conditions has been replaced with an even stricter one: the variable concerned

must not be an effect of the exposure (McNamee 2003).

Confounding can exist at the level of the population, or as a consequence of a

biased sample. This is an important point; the consideration of confounding should

not be solely based on a study sample, indeed it may be the case that apparent

confounding in a study is due to sampling and is not true confounding in the

population as a whole. Many studies are often able to identify more than one

relevant confounder in their analyses, and we will discuss later how one might

establish whether the analyses have accounted for a sufficient set of confounders (or

whether too few/too many have been included in the analyses: see Sect. 1.2.3,

below).

We may have a situation where E! O and A! O, but there is no association

between E and A. This happens in a successfully randomised controlled trial (RCT)

where baseline variables (A) are balanced between groups – so A is independent of

E (due to the success of randomisation for treatments). Nonetheless, because A is a

competing exposure for O, the precision with which the relationship between E and

O is characterised improves after adjusting for A.

1.2.1 Confounding and DAGs

The use of causal path diagrams to identify confounding and confounders in

epidemiological research was introduced by Greenland et al. (1999). The use of

DAGs represents a rigorous approach to assessing confounding and identifying

confounders, and DAGs are particularly useful given the absence of any objective

criteria or test for establishing the presence (or absence) of confounding. Compared

with the use of traditional epidemiological criteria to identify confounders, the

key additional insight that DAGs provide is the extent to which adjustment for

a confounding variable may create further confounding which in turn requires

adjustment (Greenland et al. 1999). DAGs also allow analysts to select a subset

of potential confounders (i.e. a subset selected from all identified potential

confounders) that is sufficient to adjust for potential confounding. Indeed, DAGs

can be used to identify the full range of such subsets and thereby test and select the

most appropriate one to use (Greenland et al. 1999).

1.2.2 Identifying Confounding

In order to explain how DAGs can be used to determine whether there is potential

for confounding in the apparent relationship between an exposure and an outcome

let us first use a simple DAG as an example (see Fig. 1.1a). To determine
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if confounding is present the following algorithm is applied to the DAG (Greenland

et al. 1999):

(i) delete all single headed arrows that exit from the exposure variable (i.e. remove

all exposure effects); and

(ii) check if there are any unblocked backdoor paths from exposure to outcome

(i.e. examine whether exposure and outcome have a common cause).

If there are no unblocked backdoor paths the relationship between exposure and

outcome should not be subject to potential confounding (albeit from those variables

that have been measured precisely and are available for inclusion in the model and

its related statistical analyses). For example, in order to check if the relationship of

E on O in Fig. 1.1a is subject to potential confounding:

(i) the arrow between E and O is deleted; and

check if there are any unblocked backdoor paths from E to O (there are three:

E  C ! O; E  A ! C ! O; and E  C  B ! O)

Because there are three unblocked backdoor paths from E to O, there is the

potential for confounding of the effect of E on O, because we can identify three

potential confounders – A and B, and C (which lies on the pathway between A and

O, and between B and E). When confounding is present an additional algorithm can

be applied to identify where adjustment is required and of which variables (see

Sect. 1.2.3 below).

However, before we address this it is important to point out that two variables

that are not associated with each other, and that share a child (or descendent) that is

a confounder, may also become associated within at least one stratum of the

confounder. This is a well-established observation in epidemiological research

(Weinberg 1993). Adjusting for one confounder may also alter the associations

between other variables. In a DAG, this is equivalent to creating a non-directed arc

between the two variables and therefore a new backdoor path that has to be dealt

with when adjusting for confounding. This can be illustrated using the example in

Fig. 1.1a, where controlling only for C in the relationship between E and O may

create an association between A and B, because both A and B are parents of C. If this
is the case, then A and Bmust also be included as confounders, otherwise additional

confounding will have been introduced by adjustment for C alone.

1.2.3 Sufficient Set of Confounders

Where confounding is present it is usually possible and desirable to identify

a subset of variables (S) using a DAG that is sufficient to address confounding

through adjustment. In other words, S constitutes the subset of variables with which
it is possible to address all confounding through adjustment. In order to
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assesswhether S removes all confounding another algorithm is applied to the DAG

(Pearl 1993):

(i) delete all single headed arrows that exit from the exposure variable;

(ii) draw non-directed arcs that connect each pair of variables that share a child

that is either in S or has a descendant in S (i.e. account for any associations

between variables that are generated by controlling for S); and
(iii) check if there are any unblocked backdoor paths from exposure to outcome

that do not pass through S – if there is no unblocked backdoor path then S is

sufficient for control of confounding.

If we apply this algorithm to the five-variable DAG described earlier in Fig. 1.1a

to check whether a tentative set of variables (S’) that contains A, B and C would be

sufficient for controlling for any potential confounding control would involve:

(i) deleting the arrow between E and O;
(ii) drawing a nondirected arc between A and B (since C is a child of A and B; see

Fig. 1.1c); and

(iii) assessing whether there are no unblocked backdoor paths from E to O that do

not pass through A, B and C (there are none).

Using this approach in this example would therefore lead us to conclude that

adjusting for A, B and C would be sufficient to address potential for confounding in

the relationship between E and O.
However, in order to check whether there might be an even smaller subset of the

tentative subset of confounders (S’; A, B, and C) it is worth exploring the

consequences of deleting each of these variables in turn:

Deleting A would still mean that:

• the backdoor path E  A � B ! O in Fig. 1.1c would be blocked at B;
• E  A � B ! C ! O would be blocked at B;
• E  A ! C ! O would be blocked at C; and
• E  C ! O would be blocked at C.

Therefore B and C are minimally sufficient. In other words, it is not necessary to

adjust for A in addition to B and C.
Deleting B would mean that:

• the backdoor path E  A � B ! O in Fig. 1.1c would be blocked at A;
• E  A � B ! C ! O would be blocked at A;
• E  A ! C ! O would be blocked at A; and
• E  C ! O would be blocked at C.

Therefore A and C (like B and C, above) would also be minimally sufficient.

Deleting C would mean that:

• the backdoor path E  A ! C ! O in Fig. 1.1c would be blocked at A;
• E  C ! B ! O would be blocked at B; and
• E  C ! O would be blocked

Therefore A and B would not be minimally sufficient.
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As this example shows, there can be more than one minimally sufficient set (S).
However, these sets may also vary in size and may not necessarily overlap

(Greenland et al. 1999). It can therefore be helpful to identify all minimally

sufficient sets so that the best one can be chosen for dealing with confounding

through adjustment. For example, some sets may need to be rejected if they contain

variables that were not measured in the study. Others may be rejected due to

concerns about measurement error, or because they contain many more variables

than other sets and would thereby generate less precise estimates from multivari-

able statistical analyses on the sample sizes available. As such an important

advantage of using DAGs over traditional approaches to identifying potential

confounding is that the latter are usually unable to identify any of the potential

sufficient subsets of potential confounders, and all potential confounders would

therefore need to be included in the analysis (at cost to the precision of the estimates

produced).

1.2.4 Strengths and Weaknesses of Causal Path Diagrams

As we have shown in this chapter, DAGs can be used to identify confounding and

confounders in a systematic way, and by helping researchers to identify these

objectively and explicitly, DAGs can help to reduce bias and advance debate.

Moreover, despite the various limitation mentioned earlier in this Chapter

(see Sect. 1.1.2, above), one of the main strengths of using causal path diagrams

in epidemiological analyses of data from non-experimental studies is that it enables

researchers to think clearly and logically about the known, likely and speculative
causal relationships between variables that are relevant to the research hypothesis

and related analytical questions. Causal path diagrams thereby facilitate the com-

munication of any causal presumptions that have been made during data analysis to

academic and professional audiences using a structured approach that is explicit

and easy to critique or re-model.

DAGs also enable the identification of variables that are important to measure in

a prospective research study, and thereby improve the efficiency of both data

collection and statistical analyses by avoiding the unnecessary measurement or

inclusion of variables that are irrelevant to the study and its analysis.

Nonetheless, a somewhat surprising feature of tackling confounding using

DAGs is that incorrect specification of the model itself can itself create more

problems than it solves. For example, bias may be introduced by including variables

that are consequences of the exposure, while additional confounding may be

created by including variables that are common descendents of other confounders.

Likewise, as we saw earlier, stratification may lead to key changes to some of the

paths within the DAG, and these changes may lead to previously blocked paths

becoming unblocked and causing further confounding. However, both of these

potential flaws can be put to good use in identifying whether adjustment for specific

confounders might create new associations between variables that may generate
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further confounding that will also need to be addressed. As such, these features are

arguably an additional strength of using DAGs in analytical design.

One important weakness of DAGs is that with increasing numbers of highly

inter-related variables they can rapidly become visually complex to read.

DAGs also represent an inherent oversimplification of causal relationships between

variables as they do not indicate whether: any relationships are positive or negative

(e.g. harmful or protective); effect modification might occur; each causal relation-

ship is weak or strong; and some of the variables might only be able to cause an

effect in combination with other variables.

Moreover, as with all causal models, DAGs are only as good as the functional

and empirical knowledge and speculative hypotheses on which they are based.

In particular, DAGs may be based on a set of presumptions that are wrong (either as

a result of incorrect knowledge, weak empirical evidence or fallacious hypotheses).

However, because DAGs ensure that these presumptions are explicitly stated, the

key benefit of DAGs is that they facilitate criticism, (re) interpretation and (where

necessary) modification of the model to assess whether different conclusions would

be reached about: which variables are true confounders (see Chap. 11 on structural

equation modelling); and which subset of variables are best to adjust for in order to

address confounding while taking into account the availability and quality of data

on each of the variables involved.

1.3 Conclusions

Directed acyclic graphs (DAGs) have great potential utility in epidemiological

analyses of data from non-experimental studies; not least because they encourage

researchers to formally structure presumed and predicted causal pathways.

These causal path diagrams are essentially intuitive to construct but nonetheless

require considered thought. As with all models, careful interpretation remains

imperative. Following established algorithms, they can nonetheless be used to

identify sufficient sets of confounders which will greatly advance analytical

modelling strategies and their subsequent interpretation, critique, testing and

re-modelling by other researchers.
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Chapter 2

Statistical Modelling of Partially Observed

Data Using Multiple Imputation:

Principles and Practice

James R. Carpenter, Harvey Goldstein, and Michael G. Kenward

2.1 Introduction

Missing data are inevitably ubiquitous in experimental and observational

epidemiological research. Nevertheless, despite a steady flow of theoretical work

in this area, from the mid-1970s onwards, recent studies have shown that the way

partially observed data are reported and analysed in experimental research falls far

short of best practice (Wood et al. 2004; Chan and Altman 2005; Sterne et al. 2009).

The aim of this Chapter is thus to present an accessible review of the issues raised

by missing data, together with the advantages and disadvantages of different

approaches to the analysis.

Section 2.2 gives an overview of the issues raised by missing data, and Sect. 2.3

explores those situations in which a ‘complete case’ analysis, using those units with

no missing data, will be appropriate. Section 2.4 describes the advantages and

disadvantages of various methods for the analysis of partially observed data and

argues that multiple imputation is the most practical approach currently available to

applied researchers. Section 2.5 reviews some key issues that arise when using

multiple imputation in practice. We conclude with a worked example in Sect. 2.6

and discussion in Sect. 2.7.
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2.2 Issues Raised by Missing Data

We illustrate the issues raised by missing data using Fig. 2.1, which shows the

frontage of a high-level mandarin’s house in the New Territories, Hong Kong.

First, we notice missing data can either take the form of completely missing

figurines, or damaged— i.e. partially observed—figurines. The former is analogous

to what is usually termed unit non-response, while the latter is analogous to item

non-response. However, the statistical issues raised are the same in both cases.

For simplicity, we therefore assume there are no completely missing figurines.

Next, we see that the effect of missing data on any inference depends crucially

on the question at hand. For instance, if interest lies in the position of the figurines in

the tableau shown in Fig. 2.1, then missing data are not a problem. If, instead,

interest is in the height, or facial characteristics of the figurines, then missing data

raises issues that have to be addressed. Thus, when assessing the impact of missing

data it is not the number, or proportion of missing observations per se that is the key,

rather the extent of the missing information about the question at hand. Changing

the example, if we are interested in the prevalence of a rare disease, missing the

disease status of two individuals—potentially non-randomly—out of 1,000 means

we have lost a substantial amount of information.

Now suppose we are interested in estimating a facial characteristic—say average

hair length—of the four figurines shown. Two are missing their heads, and we

cannot be sure why. In order to estimate the average hair length we need to make an

assumption about why the two heads are missing, and/or how their mean hair length

relates to those whose heads are present. Our assumptions must take one of the

following three forms:

1. the reason for the missing heads is random, or at any rate unconnected to any

characteristics of the figurines;

2. the reason for the missing heads is not random; but within groups of ‘similar’

figurines (e.g. with similar neckties) heads are missing randomly, or

3. the reason for the missing heads is not random, and—even within groups of

apparently similar figurines—depends on hair length (i.e. depends directly on

what we want to measure).

In case 1, the ‘data’ (hair length) are said to be Missing Completely At Random

(MCAR). What is usually termed the missingness mechanism may depend on the

position of the figurines relative to missing tiles in the roof above, but is indepen-

dent of information relevant to the question at hand. Under this assumption there is

no difference in the distribution of hair-length between the figurines, so we can get a

valid estimate using the complete cases (i.e. figurines with heads). In case 2,

the data are said to be Missing At Random (MAR). The reason for the missing

data (hair length) depends on the unseen value (hair length) but we can form groups

based on observed data (e.g. necktie) within which the reason for the missing data

does not depend on the unseen value (missing hair length). If we assume hair length

is MAR given necktie, we can estimate hair length among figurines with straight
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neckties, and among those that end in a bobble. We can then calculate a weighted

average of these—weighting by the number with each kind of necktie—to estimate

mean hair length across the ‘population’ of figurines.

In case 3, the data are said to be Missing Not At Random (MNAR). In this case,

we cannot estimate average hair length across the figurines without knowing either

(i) the relationship between the chance of a headless figurine and hair length or (ii)

the difference in mean hair length between figurines with, and without, heads.

This terminology was first proposed by Rubin (1976), and despite the slightly

counter-intuitive meaning of ‘Missing At Random’ it is now almost universally

used. We now highlight two things, implicit in the above discussion, which are

universal in the analysis of partially observed data:

2.2.1 Ambiguity Caused by Missing Data

Given Fig. 2.1, we do not know which of the assumptions 1–3 above is correct;

furthermore each has different implications for how we set about validly estimating

mean hair length. Therefore, the best we can do is state our assumptions clearly,

arrive at valid inference under those assumptions, and finally report how inference

Fig. 2.1 Mandarin’s house, New Territories, Hong Kong (Photo H. Goldstein)
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varies with the assumptions. The latter is referred to as sensitivity analysis, and is

fundamental to inference from partially observed data. We hope that our inference

is pretty robust to different assumptions about the missing data, so that we can be

fairly confident about our conclusions. However, as we cannot verify our

assumptions using the data at hand, our readers can reasonably be expected to be

informed if this is indeed the case.

2.2.2 Duality of Missingness Mechanism and Distribution
of Missing Data Given Observed Data

Each of the assumptions 1–3 above makes a statement both about the probabilistic

mechanism causing the missing data (which we refer to as the missingness

mechanism) and the difference between the distribution of the missing data

given the observed data. To see this, suppose that Y is hair length, X is

characteristics of the body (observed on all figurines) and R ¼ 1 if the head is

present and 0 if absent.

Under MCAR, the chance of R ¼ 1 given X, Y —for which we use the notation

[R|X, Y]—does not depend on X or Y, that is [R|X, Y] ¼ [R]. This means that the

distribution of Y given X does not depend on R. More formally, using the definition

of conditional probability,

½YjX;R� ¼ ½Y;X;R�
½X;R� ¼ ½RjX; Y�½X; Y�

½RjX�½X�
¼ ½R�½Y;X�

½R�½X� (because of MCAR assumption)

¼½YjX� (2.1)

Thus the missingness mechanism tells us about the distribution of the missing

data given the observed, and vice versa.

A similar argument gives (2.1) if data are MAR, for then the chance of R ¼ 1

does not depend on Y once we take X into account, so that [R |Y, X] ¼ [R|X]. Thus,

if data are MCAR or MAR, the distribution of the partially observed variables (hair

length) given the fully observed ones (body characteristics) is the same across

individuals, regardless of whether—for a particular individual—the partially

observed variable (hair length) is seen or not.

However, this relationship does not hold if data are MNAR. In that case

the chance of R ¼ 1 depends on both X and Y, and this means that the distribution

of [Y |X] is different depending on whether Y is observed or not (i.e. whether R ¼ 1

or not). This makes MNAR analyses more difficult, as we either have to say (i)

exactly how [R] depends on Y, X or (ii) exactly how [Y |X] differs according to

R—i.e. whether Y is observed or not.
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