Subcellular Biochemistry 59

Tamas Balla Matthias Wymann John D. York *Editors*

Phosphoinositides II: The Diverse Biological Functions

Phosphoinositides II: The Diverse Biological Functions

SUBCELLULAR BIOCHEMISTRY

SERIES EDITOR

J. ROBIN HARRIS, University of Mainz, Mainz, Germany

ASSISTANT EDITOR

P.J. QUINN, King's College London, London, U.K.

Recent	Volumes	in	this	Series
--------	---------	----	------	--------

Volume 33	Bacterial Invasion into Eukaryotic Cells
	Tobias A. Oelschlaeger and Jorg Hacker
Volume 34	Fusion of Biological Membranes and Related Problems
	Edited by Herwig Hilderson and Stefan Fuller
Volume 35	Enzyme-Catalyzed Electron and Radical Transfer
	Andreas Holzenburg and Nigel S. Scrutton
Volume 36	Phospholipid Metabolism in Apoptosis
	Edited by Peter J. Quinn and Valerian E. Kagan
Volume 37	Membrane Dynamics and Domains
	Edited by P.J. Quinn
Volume 38	Alzheimer's Disease: Cellular and Molecular Aspects of Amyloid beta
	Edited by R. Harris and F. Fahrenholz
Volume 39	Biology of Inositols and Phosphoinositides
	Edited by A. Lahiri Majumder and B.B. Biswas
Volume 40	Reviews and Protocols in DT40 Research
	Edited by Jean-Marie Buerstedde and Shunichi Takeda
Volume 41	Chromatin and Disease
	Edited by Tapas K. Kundu and Dipak Dasgupta
Volume 42	Inflammation in the Pathogenesis of Chronic Diseases
	Edited by Randall E. Harris
Volume 43	Subcellular Proteomics
	Edited by Eric Bertrand and Michel Faupel
Volume 44	Peroxiredoxin Systems
	Edited by Leopold Flohd J. Robin Harris
Volume 45	Calcium Signalling and Disease
	Edited by Ernesto Carafoli and Marisa Brini
Volume 46	Creatine and Creatine Kinase in Health and Disease
	Edited by Gajja S. Salomons and Markus Wyss
Volume 47	Molecular Mechanisms of Parasite Invasion
	Edited by Barbara A. Burleigh and Dominique Soldati-Favre
Volume 48	The Coronin Family of Proteins
	Edited by Christoph S. Clemen, Ludwig Eichinger and Vasily Rybakin
Volume 49	Lipids in Health and Disease
	Edited by Peter J. Quinn and Xiaoyuan Wang
Volume 50	Genome Stability and Human Diseases
	Edited by Heinz Peter Nasheuer
Volume 51	Cholesterol Binding and Cholesterol Transport Proteins
	Edited by J. Robin Harris
Volume 52	A Handbook of Transcription Factors
	Edited by T.R. Hughes

For further volumes:

http://www.springer.com/series/6515

Tamas Balla • Matthias Wymann • John D. York Editors

Phosphoinositides II: The Diverse Biological Functions

Editors Dr. Tamas Balla National Institutes of Health NICHD Bethesda, MD USA

Dr. Matthias Wymann University of Basel Cancer- and Immunobiology Basel Switzerland Dr. John D. York Duke University Medical Center Pharmacology and Cancer Biology Durham, NC USA

ISBN 978-94-007-3014-4 e-ISBN 978-94-007-3015-1 DOI 10.1007/978-94-007-3015-1 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2012931684

© Springer Science+Business Media B.V. 2012

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

When I was approached to shape a book about phosphoinositide signaling, I first felt honored and humbled. On second thought, this appeared to be an impossible task. Phosphoinositides have grown from being just a curious lipid fraction isolated from bovine brain, showing increased radioactive metabolic labeling during intense stimulation protocols, to become the focus of immense interest as key regulatory molecules that penetrate every aspect of eukaryotic biology. The expansion of this field in the last three decades has been enormous: it turned from a basic science exercise of a devoted few to highly translatable science relevant to a large number of human diseases (isn't this the nature of good basic science?). These include cancer, metabolic-, immuno- and neurodegenerative disorders, to name just a few. Reviewing the large number of enzymes that convert phosphoinositides would fill a book-let alone the diverse biological processes in which phosphoinositides play key regulatory roles. Given the interest, a collection of up-to-date reviews compiled in a book is clearly warranted, which was enough to sway me to accept this assignment. As one editor is unable to handle this enormous task, I was delighted when Matthias Wymann and John York were kind enough to join me in this ambitious effort.

When thinking about potential authors, the obvious choice would have been to approach the people whose contributions have been crucial to push and elevate this field to the level it is today. Bob Michell, prophetically placed phosphoinositides in the center of signal transduction in a 1975 Biochem. Biophys. Acta review (Michell 1975), Michael Berridge had a key role in linking phosphoinositides and Ca^{2+} signaling and whose fascinating reviews have inspired many of us (Berridge and Irvine 1984). Robin Irvine, whose group found that $InsP_3$ was a mixture of two isomers, the active $Ins(1,4,5)P_3$ and an inactive $Ins(1,3,4)P_3$, and who described the tetrakisphosphate pathway (Irvine et al. 1986), and who always challenges us with most provocative ideas. Philip Majerus, who has insisted on the importance of inositide phosphatases (Majerus et al. 1999) very early on. The group of Lewis Cantley, with the discovery of PI 3-kinase activities and the mapping of downstream effectors (Whitman et al. 1988; Franke et al. 1997), or the Waterfield lab where the first PI 3-kinase catalytic subunit was isolated and cloned (Otsu et al. 1991; Hiles et al. 1992). Peter Downes, who recognized the translational value of phosphoinositide research. Jeremy Thorner and Scott Emr, whose work in baker's yeast still forms the

foundation of our understanding of the role of inositol lipids in trafficking (Strahl and Thorner 2007) or Pietro De Camilli, whose group documented the central role of inositides in brain and synaptic biology (Cremona et al. 1999). There are many others who made valuable or even greater contributions to phosphoinositide research. The above list reflects my bias, as these researchers had the largest impact on my thinking and the directions of my work. Research is, however, a constantly evolving process and we (now Matthias and John being involved) wanted to involve contributions of scientists who represent a second or third wave of researchers infected with the interest in phosphoinositides. We made an effort to recruit authors who have been trainees of these founding laboratories. With this selection our goal was to sample the view of the current and future generation. By selecting their trainees, we feel that we pay tribute to the "Founding Fathers", and show that the research they put in motion is alive and continues with fresh ideas, new ambitions and a translational and therapeutic value.

Phosphoinositide research in the 1980s went hand in hand with research on Ca²⁺signaling pursued in "non-excitable" cells and was also marked with the discovery of the family of protein kinase C enzymes, regulated by diacylglycerol, one of the products of phosphoinositide-specific phospholipase C enzymes. These areas of research developed and expanded to form their own fields, and could not be discussed here in detail-even though they are linked historically to the development of phosphoinositide signaling. The enormous work of the groups of Yasutomi Nishizuka on protein kinase C, and Katsuhiko Mikoshiba on cloning and characterizing the $Ins(1,4,5)P_3$ receptors are prime examples of these achievements. Although we could not cover all these areas, we included a chapter on Ca^{2+} signaling via the Ins(1,4,5) P_3 receptor by Colin Taylor, a trainee of the Michael Berridge's lab, where important links between Ca²⁺ release and Ins(1,4,5) P_3 receptor signaling were discovered. We also decided to allocate some space to inositol phosphates, the soluble counterparts of some of the phosphoinositides. These molecules for long had been viewed only as the metabolic products of the second messenger $Ins(1,4,5)P_3$ but recently gained significant prominence as regulators of important physiological processes. With the discovery of the highly phosphorylated and pyrophosphorylated inositols and the enzymes that produce them, it became clear that this system represents a whole new regulatory paradigm with exciting new developments.

Finally, it was a difficult dilemma whether to include a Chapter on the early history of phosphoinositides. We decided against it for a number of reasons. First, the really interesting history is traced back to studies that preceded the landmark 1975 Bob Michell review and included the work of the Hokins (1987), Bernard Agranoff (2009) and other pioneers of phosphoinositide research. Nobody could tell these early developments better than Bob Michell in his several recollections (Michell 1995) or Robin Irvine who commemorated the 20 years of $Ins(1,4,5)P_3$ and the period leading to its discovery (Irvine 2003). We encourage the young readers to go back and read these recollections, as they show several examples of how seemingly uninspiring observations formed the beginning of something that became huge as it unfolded. What came after these landmark discoveries is so overwhelming that each one of us has own views and subjective memories and stories to tell on some aspects of

it. As Editors we felt that our views should not be elevated above others on these historical aspects, and leave it to the authors of the individual Chapters to elucidate the diversity in this respect. The only exception is a Chapter on the history of PI 3-kinases by Alex Toker that we felt deserves special emphasis as it had the most transforming impact on the field since the late 1980s.

One needs to understand that selection of authors is a subjective process and does not always reflect on who contributed the most in a selected field. However, we are confident that proper credit is given in the individual Chapters to each groups and individuals whose work has moved this field forward. It should also be understood that a field that generates over 10,000 entries in PubMed with each keyword that relates to phosphoinositides cannot be covered without missing some aspects that could be important. However, we trust that this collection will be found useful for both the experts and the novices.

References

- Agranoff BW (2009) Turtles all the way: Reflections on myo-Inositol. *J Biol Chem* 284(32):21121–21126
- Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. *Nature* 312:315–321
- Cremona O, et al (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188
- Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt protooncogene product by PI3,4P2. *Science* 275:665–668
- Hiles ID et al (1992) Phosphatidylinositol 3-kinase: structure and expression of the 110 kDa catalytic subunit. *Cell* 70:419–429
- Hokin LE (1987) The road to the phosphoinositide-generated second messengers. *Trends Pharmacol Sci* 8:53–56
- Irvine RF (2003) 20 years of Ins(1,4,5)P3, and 40 years before. Nat Rev Mol Cell Biol 4(7):586-590
- Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakis phosphate pathway demonstration of inositol (1,4,5)trisphosphate-3-kinase activity in mammalian tissues. *Nature* 320:631–634
- Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J. Biol Chem 274:10669–10672
- Michell B (1995) Early steps along the road to inositol-lipid-based signalling. *Trends Biochem Sci* 20(8):326–329
- Michell RH (1975) Inositol phospholipids and cell surface receptor function. *Biochim Biophys Acta* 415:81–147
- Otsu M et al (1991) Characterization of two 85 kDa proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. *Cell* 65:91–104
- Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. *Biochim Biophys Acta* 1771(3):353–404
- Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type-I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. *Nature* 332:644–646

Contents

1	Ca ²⁺ Signalling by IP ₃ Receptors Colin W. Taylor and David L. Prole	1
2	Phosphoinositide Signaling During Membrane Transport in Saccharomyces Cerevisiae Amber L. Schuh and Anjon Audhya	35
3	Phosphoinositides in the Mammalian Endo-lysosomal Network Peter J. Cullen and Jeremy G. Carlton	65
4	Role of PI(4,5)P₂ in Vesicle Exocytosis and Membrane Fusion Thomas F. J. Martin	111
5	Role of Phosphoinositides at the Neuronal Synapse Samuel G. Frere, Belle Chang-Ileto and Gilbert Di Paolo	131
6	Phosphatidylinositol 4, 5 Bisphosphate and the Actin Cytoskeleton Li Zhang, Yuntao S. Mao, Paul A. Janmey and Helen L. Yin	177
7	Phosphoinositides in Chemotaxis Michael C. Weiger and Carole A. Parent	217
8	Phosphoinositides in Golgi Complex Function Giovanni D'Angelo, Mariella Vicinanza, Cathal Wilson and Maria Antonietta De Matteis	255
9	Sec14 Like PITPs Couple Lipid Metabolism with Phosphoinositide Synthesis to Regulate Golgi Functionality Carl J. Mousley, James M. Davison and Vytas A. Bankaitis	271
10	Phosphoinositide Sensitivity of Ion Channels, a Functional Perspective Nikita Gamper and Tibor Rohacs	289

11	Nuclear Phosphoinositides:	
	Location, Regulation and Function Roberta Fiume, Willem Jan Keune, Irene Faenza, Yvette Bultsma, Giulia Ramazzotti, David R. Jones, Alberto M. Martelli, Lilly Somner, Matilde Y. Follo, Nullin Divecha and Lucio Cocco	335
12	Phosphoinositides and Cellular Pathogens Bernard Payrastre, Frédérique Gaits-Iacovoni, Philippe Sansonetti, and Hélène Tronchère	363
13	Defining Signal Transduction by Inositol Phosphates Stephen B. Shears, Sindura B. Ganapathi, Nikhil A. Gokhale, Tobias M. H. Schenk, Huanchen Wang, Jeremy D. Weaver, Angelika Zaremba and Yixing Zhou	389
14	Cell Signalling by Inositol Pyrophosphates	413
Gle	ossary	445
Inc	lex	451

Abbreviations

AD	Alzheimer's disease
AMPK	5'-AMP-activated protein kinase
ALL	acute lymphocytic leukemia
ALS	amyotrophic lateral sclerosis
AML	acute myeloblastic leukemia
ARNO	Arf nucleotide binding site opener
ASK1	apoptosis signal-regulating kinase 1
ATM	ataxia telangiectasia mutated
ATX	arabidopsis trithorax 1
Bad	Bcl-XL/Bcl-2-associated death promoter
BAFF	B cell activation factor of the TNF family
BCR	B cell receptor
Bcr/Abl	break point cluster region/Abelson kinase fusion protein
Btk	Bruton's tyrosine kinase
c-Kit	stem cell growth factor receptor
CAD	caspase activated DNase
CCR(L)	C-C chemokine receptor (ligand) type
CDK	cyclin-dependent kinase
CDKN2A	cyclin-dependent kinase inhibitor 2A
CERT	ceramide transfer protein
CIN85	Cbl-interactin protein of 85kD (also Ruk (regulator of ubiqui-
	tous kinase), SETA (SH3 domain-containing gene expressed in
	tumorigenic astrocytes))
CML	chronic myeloid leukemia
CMT	Charcot-Marie-Tooth
COPI/II	coatomer protein complex I/II
CXCR(L)	C-X-C chemokine receptor (ligand) type
DAAX	death domain-associated protein
DAG	diacylglycerol
DGK	diacylglycerol kinase
DH	dbl-homology
DMSO	dimethyl sulfoxide

DNA-PK _{cs}	DNA-dependent protein kinase, catalytic subunit
DOCK2	dedicator of cytokinesis 2
Dpm1	dolichol phosphate mannosyltransferase
EGF(R)	epidermal growth factor (receptor)
eEF1A	eukaryotic elongation factor 1A
eIF4E	elongation initiation factor 4E
EMT	epithelial-to-mesenchymal transition
EnaC	epithelial sodium channel
ER	estrogen receptor, or endoplasmic reticulum
ErbB1	epidermal growth factor receptor
ERM	ezrin/radexin/moesin
FAK	focal adhesion kinase
FAPP1	phosphoinositol 4-phosphate adaptor protein 1
FAPP2	phosphoinositol 4-phosphate adaptor protein 2
FceRI	high affinity receptor for Fc fragment of IgE
FOXO	forkhead transcription factor, class O
FYVE	Fab1, YOTB, Vac1, EEA-1 homology
G6P	glucose-6-phosphatase
Gab	Grb2-associated binder
GAP	GTPase-activating protein
GEF	guanine nucleotide exchange factor
GFP	green fluorescent protein
GIST	gastrointestinal stromal tumors
GK	glucokinase
GLUT4	glucose transporter type 4
GM-CSF	granulocyte and macrophage colony stimulating factor
GPCR	G protein-coupled receptors
GRK2	G protein-coupled receptor kinase 2 (also βARK1 (adrenergic
	receptor kinase 1)
Grp1	general receptor for phosphoinositides
GSK-3	glycogen synthase kinase-3
GST-2xFYVE	glutathione S-transferase-tagged to tandem FYVE domains
HAUSP	herpesvirus-associated ubiquitin-specific protease
Hdac2	histone deacetylase 2
HSCs	hematopoietic stem cells
IκBK	IkB kinase
ING2	inhibitor of growth protein 2
Inpp5e/INPP5E	72 kDa inositol polyphosphate 5-phosphatase
Ins	<i>myo</i> -inositol
IGF1(R)	insulin-like growth factor (receptor)
ILK	integrin-linked kinase
$Ins(1,4)P_2$	inositol 1,4-bisphosphate
$Ins(1,4,5)P_3$	inositol 1,4,5-trisphosphate; also used InsP ₃
IPMK	inositol polyphosphate multikinase
IRS	insulin receptor substrate

ITAM	immunoreceptor tyrosine-based activation motif
ITIM	immunoreceptor tyrosine-based inhibitory motif
JAK	Janus-activated kinase
JNK	Jun N-terminal Kinase
Kv1.3	Voltage-gated K ⁺ channel
LAT	linker for activation of T cells
LOH	loss of heterozygosity
LSCs	leukemic stem cells
LTP	long term potentiation
MAPK	mitogen-activated protein kinase
MAPKAP-2	mitogen-activated protein kinase-activated kinase 2
M-CSF	macrophage colony-stimulating factor
MDM2	murine double minute 2
MDS	myelodysplastic syndrome
MEFs	mouse embryonic fibroblasts
miRNA	microRNA
MPP(+)	1-methyl-4-phenylpyridinium iodide
MSN	medium sized spiny projection neurons
MTM	myotubularin
MTMR	myotubularin related
mTOR	mammalian target of rapamycin, see also TOR
MVB	multivesicular body
MVP	major vault protein
Nedd4	neural-precursor-cell-expressed developmentally down-regulated 4
ΝFκB	nuclear factor KB
NLS	nuclear localization signal
NMDA(R)	N-methyl-D-aspartate (receptor)
NOS3/eNOS	NO-synthase 3
NTAL	non-T cell activation linker, also named LAB (Linker of activation
	for B cells) or LAT2
OSBP	oxysterol binding protein
OCRL	oculocerebrorenal syndrome of Lowe
OGD	oxygen-glucose deprivation
PAO	phenyalrsine oxide
PCAF	p300/CBP-associated factor
PDE	phosphodiesterase
PDGF(R)	platelet-derived growth factor (receptor)
PDZ	post synaptic density protein, Drosophila disc large tumor
	suppressor, zonula occludens-1 protein
PDK1	phosphoinositide-dependent kinase 1
PEPCK	phosphoenolpyruvate carboxy kinase
PEST	proline, glutamic acid, serine, threonine
PH	plecktrin-homology
PHD	plant homeodomain
PH-GRAM	pleckstrin homology glucosyltransferase Rab-like GTPase activator

PHTS	PTEN hamartoma tumor syndrome		
PI3K	phosphoinositide 3-kinase; catalytic subunits of class I PI3K are		
	referred to as $p110\alpha$, $p110\beta$, $p110\gamma$ and $p110\delta$		
PI3Kc	PI3K catalytic domain		
PI3Kr	PI3K regulatory subunit		
PI4K	phosphatidylinositol 4-kinase		
PI4KII	type II phosphatidylinositol 4-kinase		
PI4KIII	type III phosphatidylinositol 4-kinase		
PICS	Pten-loss-induced cellular senescence		
PID	phosphoinositide interacting domain		
PIKE	PI-3-kinase enhancer		
PIKK	phosphoinositide 3-kinase-related kinase		
PIP4K	phosphatidylinositol 5-phosphate 4-kinase (also called type II PIP		
	kinase)		
PIP5K	phosphatidylinositol 4-phosphate 5-kinase (also called type I PIP		
	kinase)		
PIPP	proline-rich inositol polyphosphate 5-phosphatase		
PIX	PAK-associated guanine nucleotide exchange factor		
PKA	protein kinase A		
PKB/Akt	protein kinase B, also called Akt after the transforming kinase		
	encoded by the AKT8 retrovirus		
PKC	protein kinase C		
PLC	phospholipase C		
PLD	phospholipase D		
PM	plasma membrane		
PML	promyelocytic leukemia protein		
PPI	polyphosphoinositide		
pRB	retinoblastoma protein		
PRD	proline-rich domain		
P-Rex	PtdIns $(3,4,5)P_3$ -dependent Rac exchanger		
PSD95	post synaptic density protein 95		
PtdIns	phosphatidylinositol		
PtdIns4P	phosphatidylinositol 4-phosphate; short PIP		
PtdIns3P	phosphatidylinositol 3-phosphate; PIP should not be used here		
PtdIns5P	phosphatidylinositol 5-phosphate; PIP should not be used here		
$PtdIns(4,5)P_2$	phosphatidylinositol 4,5-bisphosphate; short PIP ₂		
$PtdIns(3,4)P_2$	phosphatidylinositol 3,4-bisphosphate; the abbreviation PIP_2		
	should not be used here.		
$PtdIns(3,5)P_2$	phosphatidylinositol 3,5-bisphosphate; the abbreviation PIP_2		
	should not be used here.		
$PtdIns(3,4,5)P_3$	phosphatidylinositol 3,4,5-trisphosphate; short PIP ₃		
PtdOH	phosphatidic acid (also used PA)		
PTEN	Phosphatase and Tensin homolog deleted on chromosome Ten,		
	[also MMAC (mutated in multiple advanced cancers), TEP1		
	$(TGF-\beta-regulated and epithelial cell enriched phosphatase 1)]$		

PX	Phox-homology
RAN	Ras-related nuclear protein
RID	Rac-induced recruitment domain
RNAi	ribonucleic acid interference
ROS	reactive oxygen species
RSK	ribosomal S6 kinase
R-SMAD	receptor regulated SMAD
RTK	receptor tyrosine kinase
Rb2	retinoblastoma-related gene p130 ^{Rb2}
RYR1	type 1 ryanodine receptor
Sac	suppressor of actin
SCIP	Sac domain-containing inositol phosphatases
SCV	Salmonella-containing vacuole
SGK	serum- and glucocorticoid-induced protein kinase
SH2	Src homology 2
SHIP	SH2 domain-containing inositol 5'-phosphatase
SID	Set interacting domain
siRNA	short-interfering RNA
SKICH	SKIP carboxy homology
SKIP	skeletal muscle and kidney enriched inositol phosphatase
SNP	single nucleotide polymorphism
SSC	squamos cell carcinoma
Star-PAP	poly(A) polymerase
Syk	spleen tyrosine kinase, member of the Src tyrosine kinase family
TAC	transverse aortic constriction
TDLU	terminal ductal lobuloalveolar units
TGFβ	transforming growth factor β
Tiam	T-lymphoma invasion and metastasis inducing protein
TNF	tumour necrosis factor
ΤοροΙΙα	topoisomerase IIa
TOR	target of rapamycin (also called FRAP or mTOR)
TPIP	TPTE and PTEN homologous inositol lipid phosphatase
TPTE	trans-membrane phosphatase with tensin homology
TRAPs	transmembrane adapter proteins, link immune-receptors to
	downstream signaling cascades. Examples: LAT, NTAL/LAB
TSC	tuberous sclerosis complex
UTR	untranslated region
Vps34p	vacuolar protein sorting mutant 34 protein
WASP	Wiskott Aldrich Syndrome protein
Wm	wortmannin
WT	wild type

Chapter 1 Ca²⁺ Signalling by IP₃ Receptors

Colin W. Taylor and David L. Prole

Abstract The Ca²⁺ signals evoked by inositol 1,4,5-trisphosphate (IP₃) are built from elementary Ca²⁺ release events involving progressive recruitment of IP₃ receptors (IP₃R), intracellular Ca²⁺ channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP₃R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP₃R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca²⁺ waves that propagate across the cell. This hierarchical recruitment of IP₃R is important in allowing Ca²⁺ signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP₃R by Ca²⁺ and IP₃, the ability of a single IP₃R rapidly to mediate a large efflux of Ca²⁺ from the endoplasmic reticulum, and the assembly of IP₃R into clusters are key features that allow IP₃R to propagate Ca²⁺ signals regeneratively. We review these properties of IP₃R and the structural basis of IP₃R behavior.

Keywords Ca^{2+} signalling $\cdot Ca^{2+}$ channel \cdot Endoplasmic reticulum $\cdot IP_3$ receptor

1.1 Introduction

As the breadth of these volumes confirms, phosphoinositides fulfill many and varied roles in the activities of all eukaryotic cells, whether from unicellular or multicellular organisms (Balla et al. 2011). Pathways for synthesis or uptake of *myo*-inositol, and for synthesis of phosphatidylinositol (PtdIns) appear to have evolved early in a common ancestor of archaea and eukaryotes. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P₂) and many other polyphosphoinositides, which are ubiquitous in eukaryotes, made their appearance soon after the divergence of eukaryotes and archaea (Michell 2008). The phosphoinositide-specific phospholipases C (PLC),

C. W. Taylor $(\boxtimes) \cdot D$. L. Prole

Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK e-mail: cwt1000@cam.ac.uk

T. Balla et al. (eds.), *Phosphoinositides II: The Diverse Biological Functions*, Subcellular Biochemistry 59, DOI 10.1007/978-94-007-3015-1_1, © Springer Science+Business Media B.V. 2012

which provide the only route to inositol 1,4,5-trisphosphate (IP₃) in animal cells (Irvine and Schell 2001), are also ancient, although the subtypes known to be regulated by extracellular stimuli appear to be a later invention and are restricted to multicellular animals (Michell 2008). This distribution is broadly similar to that of IP₃ 3-kinases (Irvine and Schell 2001), a major route for inactivation of IP₃, and of IP₃ receptors (IP₃R). Genes encoding related IP₃R are probably found in all animals, including all vertebrates, many invertebrates, including arthropods, nematodes, coelenterates and even Paramecium, a unicellular ciliate; and in the unicellular green algae, Chlamydomonas (Wheeler and Brownlee 2008), but not in fungi or land plants (Krinke et al. 2007). The latter despite evidence that IP_3 can release Ca^{2+} from the intracellular stores of plants, within either the ER or vacuole (Krinke et al. 2007). The identity of the protein(s) through which IP₃ evokes Ca^{2+} signals in plants remains unknown. One possibility is that land plants lost genes encoding IP₃R (and ryanodine receptors) and re-invented intracellular IP₃-gated Ca²⁺ channels after their divergence from animals (Wheeler and Brownlee 2008). We can speculate that the vacuole of plants, with its membrane potential and steep electrochemical gradient for H⁺, may have demanded evolution of IP₃R with greater selectivity for Ca^{2+} than is required for IP_3R within the ER of animal cells (Sect. 1.5).

Our focus here is on IP₃ and the receptors (IP₃R) through which it releases Ca^{2+} in animal cells, but there are many additional interactions between phosphoinositides and Ca^{2+} signalling. Examples of the web of interactions that entangle phosphoinositides and Ca^{2+} signalling include regulation of membrane trafficking and cytoskeletal organization by phosphoinositides (Di Paolo and De Camilli 2006); stimulation of ion channels and transporters, including Ca^{2+} -permeable channels and Na^+-Ca^{2+} exchangers, by PtdIns(4,5)P₂ (Suh and Hille 2008); the possibility that PtdIns(4,5)P₂ may be an antagonist of IP₃R (Lupu et al. 1998); and PtdIns(3,4,5)P₃-mediated activation of protein kinase B and thereby phosphorylation of IP₃R (Khan et al. 2006; Szado et al. 2008).

Use of phosphoinositides to control membrane trafficking by defining the identity of different membranes, and signalling via 3-phosphorylated phosphoinositides (Di Paolo and De Camilli 2006) probably evolved before the appearance of IP₃mediated Ca²⁺ signalling (Michell 2008), but it was the latter that was first experimentally elucidated. A relationship between phospholipid turnover and secretion was first noted in 1953 (Hokin and Hokin 1953), but it was an influential review that first proposed a causal link between PLC-mediated hydrolysis of phosphoinosides and Ca²⁺ signalling (Michell 1975). The proposal initially envisaged a direct link between PLC activity and Ca²⁺ entry across the plasma membrane (Michell 1975), but it was later extended to Ca²⁺ release from intracellular stores. Indeed it is only very recently that the relationship between PLC, intracellular Ca²⁺ stores and Ca²⁺ entry has been resolved with the elucidation of the mechanisms linking empty Ca²⁺ stores to activation of store-operated Ca²⁺ channels in the plasma membrane (Park et al. 2009).

In the years following Michell's provocative review, and amidst some skepticism about the role of PLC in triggering Ca^{2+} signals, evidence progressively accumulated to support his insightful hypothesis (Michell 2009). Key breakthroughs included the

demonstration that PLC-mediated catalysis of PtdIns(4,5)P2 (rather than PtdIns) was the first step in the signalling sequence (Berridge 1983; Michell et al. 1981); evidence from blowfly salivary gland that depletion of phosphoinositides reversibly abrogated 5-HT-evoked Ca^{2+} signals (Fain and Berridge 1979); a demonstration that the ER, rather than mitochondria, was the likely source of the Ca^{2+} released by PLC-linked receptors (Burgess et al. 1983); and finally, in 1983, proof that IP₃ stimulated Ca²⁺ release from a non-mitochondrial store in permeabilized pancreatic acinar cells (Streb et al. 1983). The latter paper—one of the most cited in biology—moved the field into new territory with countless groups rapidly confirming the findings in numerous cell types (Berridge 1987, 1993; Berridge and Irvine 1984). This was followed by purification and functional reconstitution of IP_3R (Ferris et al. 1989), cloning of three vertebrate IP₃R genes (Blondel et al. 1993; Furuichi et al. 1989; Mignery et al. 1989), and structural and functional analyses of IP_3R behavior. We focus on the latter in this review. Several of the key players have published personal perspectives of the historical development of our current understanding of the roles of IP₃R in Ca²⁺ signalling (Berridge 2005; Irvine 2003; Michell 2009; Mikoshiba 2007; Putney 1997), and there are recent reviews on many aspects of IP_3R (Choe and Ehrlich 2006; Foskett et al. 2007; Patterson et al. 2004; Serysheva 2010; Taylor and Dellis 2006; Taylor et al. 1999; Yule et al. 2010).

1.2 Ca²⁺ Is a Versatile and Ubiquitous Intracellular Messenger

At least three features of Ca^{2+} are likely to have contributed to the evolutionary steps leading to it becoming a ubiquitous intracellular messenger. First, it seems likely that as soon as early prokaryotes adopted a phosphate-based energy economy, there was a strong selective pressure to exclude Ca^{2+} from the cytosol to avoid precipitation of calcium phosphate (Kretsinger 1977). The result is that all eukaryotic cells now maintain a low free cytosolic Ca²⁺ concentration, typically about 100 nM. This they achieve by actively extruding Ca^{2+} from the cytosol across both the plasma membrane and the membranes of intracellular organelles. Among the latter, the endoplasmic reticulum (ER) is the most important and, at least in most cells, the major intracellular Ca²⁺ reservoir from which extracellular stimuli can release Ca²⁺. The important point is that in all eukaryotic cells, the plasma membrane and the membranes of the ER separate the cytosol from much higher concentrations of Ca^{2+} . Both gradients are used to evoke rapid, and usually transient, increases in cytosolic Ca²⁺ concentration. Interactions between these sources of Ca²⁺ are also important. The second key feature of Ca²⁺ is its ability, in the presence of much higher concentrations of other cations, notably Mg²⁺, to be recognized selectively and with appropriate affinity by simple protein folds-EF-hands are the most common (Celio et al. 1996). These Ca²⁺-binding proteins provide the means of decoding cytosolic Ca²⁺ signals. Third, Ca²⁺ binds also with relatively low-affinity to countless cellular components-proteins, lipids, small organic anions, etc-causing it to diffuse in cytosol up to 100-times more slowly than expected for a small freely diffusing cation (Allbritton et al. 1992). The result is that the increases in cytosolic Ca^{2+} concentration that result from opening of Ca^{2+} -permeable channels are, at least initially, restricted to volumes within tens of nm of the channel pore, where the free Ca^{2+} concentration (at least tens of μ M) might be some 1000-times higher than that of the bulk cytosol (Shuai et al. 2006). The significant point is that Ca^{2+} signalling can be local, such that Ca^{2+} entering the cytosol via one channel may cause a local increase that is spatially distinct from that evoked by another channel. Different Ca^{2+} channels can thereby direct their Ca^{2+} to different intracellular targets (Berridge et al. 2003; Di Capite et al. 2009; Dick et al. 2008; Neher 1998; Willoughby and Cooper 2007).

That Ca^{2+} can function as either a local messenger, signalling only to proteins in close proximity to specific Ca^{2+} channels, or as a global messenger invading the cell adds enormously to its versatility as an intracellular messenger (Berridge et al. 2000). For intracellular Ca^{2+} channels, notably IP₃R and ryanodine receptors (RyR), the growth of Ca^{2+} signals from local events to larger ones depends on their ability to propagate Ca^{2+} signals regeneratively via Ca^{2+} -induced Ca^{2+} release. This regenerative capacity arises from three key attributes of both major families of intracellular Ca^{2+} channels, namely their permeability to Ca^{2+} , their stimulation by increases in cytosolic Ca^{2+} concentration and their organization into groups of channels spaced to allow effective Ca^{2+} -mediated communication between them. Other Ca^{2+} channels, such as the NAADP-regulated two-pore channels (TPC) in endosomes or lysosomes (Patel et al. 2010; Zhu et al. 2010), or voltage-gated Ca^{2+} channels in the plasma membrane (Berridge et al. 2003) can also provide the Ca^{2+} that recruits the activity of IP₃R or RyR. Here we concentrate on the interactions *between* IP₃R (Fig. 1.1).

Confocal microscopy, and more recently total internal reflection fluorescence microscopy (TIRFM) (Parker and Smith 2010), have shown that in intact cells IP₃-evoked Ca²⁺ signals are built from 'elementary events' with characteristics (durations, amplitudes and spatial spreads) that are relatively unaffected by IP₃ concentration (Rose et al. 2006). The smallest events, 'blips', are the Ca^{2+} signals that arise from opening of single IP₃R; they typically last $\sim 10 \text{ ms}$ and spread about \sim 500 nm from the source. Larger events, 'Ca²⁺ puffs', which are often preceded by a triggering Ca^{2+} blip (Rose et al. 2006), reflect the near-synchronous opening of several IP₃R within a cluster, as Ca²⁺ released by an active IP₃R very rapidly (<20 ms) ignites the activity of its neighbors (Smith and Parker 2009) (Fig. 1.1). Although there is considerable variability, reflecting the stochastic recruitment of IP₃R, a typical puff might last $\sim 100 \text{ ms}$ and spread $\sim 1 \mu \text{m}$ (Marchant et al. 1999; Thomas et al. 1998). The number of IP₃R contributing to a puff is unresolved, but on average it is probably no more than a handful; indeed with high-resolution TIRFM the falling phase of a puff often suggests the stepwise closure of about 5–6 IP_3R (Smith and Parker 2009). The shapes of individual blips and puffs are relatively insensitive to IP₃ concentration, but IP₃ increases the number of IP₃R ready to respond to Ca^{2+} (Sect. 1.4), thereby allowing Ca^{2+} signals to grow with increasing stimulus intensity. Hence, as the IP₃ concentration increases, Ca²⁺ signals grow from blips to puffs and then, as Ca^{2+} diffuses between puff sites, into regenerative Ca^{2+} waves that

Fig. 1.1 Elementary Ca^{2+} release events mediated by IP₃ receptors. Ca^{2+} blips reflect the opening of single IP₃R, either lone IP₃R (*left*) or a single IP₃R opening within a cluster (*right*). IP₃ causes IP₃R to cluster (Sect. 1.7), and at higher IP₃ concentrations more IP₃R within a cluster are primed to respond to Ca^{2+} , allowing the near simultaneous opening of several IP₃R to give a Ca^{2+} puff. At still higher IP₃ concentrations, Ca^{2+} diffusing from one puff site can ignite the activity of a neighboring cluster of IP₃R to give a regenerative Ca^{2+} wave

can invade the entire cytosol (Bootman and Berridge 1995; Marchant et al. 1999). These Ca^{2+} waves viewed from the perspective of the entire cell appear as repetitive Ca^{2+} spikes, the frequency of which also increases with stimulus intensity (Berridge 1997; Woods et al. 1986).

Many studies, each with their strengths and limitations, suggest that most IP₃R are mobile within ER membranes (Chalmers et al. 2006; Cruttwell et al. 2005; Ferreri-Jacobia et al. 2005; Iwai et al. 2005; Tateishi et al. 2005; Tojyo et al. 2008; Wilson et al. 1998). Our fluorescence recovery after photobleaching (FRAP) analyses of IP_3R_1 and IP_3R_3 , for example, suggest that each IP_3R moves freely within the ER membrane (Pantazaka and Taylor 2011), and our patch-clamp analyses of the same IP₃R in the nuclear envelope likewise suggests they are mobile (Rahman et al. 2009) (Sect. 1.7). But optical measurements of IP₃-evoked Ca^{2+} blips (Smith et al. 2009) and Ca^{2+} puffs (Smith and Parker 2009; Thomas et al. 2000; Tovey et al. 2001) suggest that the events repeatedly initiate at a limited number of fixed sites. How might these apparently conflicting observations be reconciled? A second issue relates to the scarcity of elementary events in cells. A typical mammalian cell, like the SHSY5Y neuroblastoma cells most used for TIRFM analyses of elementary Ca^{2+} release events (Parker and Smith 2010; Smith and Parker 2009; Smith et al. 2009), probably expresses about $10^4 - 10^5$ IP₃R (Tovey et al. 2008). Yet there typically appear to be only 4–5 puff sites in each cell (Smith and Parker 2009), a scarcity that appears not to result from imaging only in the TIRF field (Parker and Smith 2010). Why should less than 1% of a cell's IP_3R contribute to puffs? We return briefly to these issues in Sect. 1.7.

Fig. 1.2 Key structural features of IP₃ receptors. **a** Stucture of IP₃. **b** Low-resolution (\sim 30 Å) 3D reconstruction of IP₃R1 derived from single particle reconstruction (da Fonseca et al. 2003). **c** Key regions of a single IP₃R subunit showing the structures of the IBC with IP₃ bound (Protein Data Base, 1N4K) (Bosanac et al. 2002) and of the SD of IP₃R1 (Protein Data Base, 1ZXX) (Bosanac et al. 2005)

1.3 IP₃ Receptors: An Overview

IP₃R are unusually large proteins, each assembled from four homologous subunits arranged around a central pore (Fig. 1.2b) (Taylor et al. 2004). Invertebrate IP₃R are homomeric, but for vertebrates, where there are three genes and multiple splice variants, functional IP₃R may be either homo- or hetero-tetrameric (Taylor et al. 1999). Each subunit comprises about 2700 residues. Although there are differences in the distribution and regulation of IP₃R subtypes, the similarities are generally more striking than the differences. We concentrate on the properties that are either known, or seem very likely, to be shared by all IP₃R.

The IP₃-binding core (IBC), which is entirely responsible for IP₃ recognition, lies towards the N-terminal of the sequence, preceded by the so-called 'suppressor

domain' (SD). Both the IBC and SD are essential for the initial steps in IP₃R activation (Sect. 1.6). High-resolution structures of the IBC with IP₃ bound (Bosanac et al. 2002) and of the SD from IP_3R1 (Bosanac et al. 2005) and IP_3R3 (Chan et al. 2010) have been published (Fig. 1.2c). Towards the C-terminal, there are six predicted transmembrane domains (TMD) in each subunit (Fig. 1.2c). The last pair of TMD (TMD5-6) together with the intervening luminal loop from each of the four subunits assemble to form a central pore (Sect. 1.6). The TMD are also responsible for cotranslational targeting of IP₃R to the ER (Joseph 1994; Pantazaka and Taylor 2010; Parker et al. 2004), they play a major role in oligomerization of IP_3R (Galvan et al. 1999), and they retain IP₃R within the ER (Parker et al. 2004). It is, however, noteworthy that although most IP_3R in most cells reside in ER membranes, IP_3 also stimulates Ca²⁺ release from the Golgi apparatus (Pinton et al. 1998), from within the nucleus (Echevarria et al. 2003; Gerasimenko et al. 1995; Marchenko et al. 2005) and perhaps also from secretory vesicles (Gerasimenko et al. 1996). In some cells, small numbers of IP₃R are also selectively targeted to the plasma membrane, where they contribute to the Ca^{2+} entry evoked by physiological stimuli (Dellis et al. 2006; Taylor et al. 2009).

As described in Sect. 1.2, the versatility of Ca^{2+} as an intracellular messenger derives largely from regulating the growth of Ca^{2+} signals from local to global events. For IP₃-evoked Ca^{2+} signals, this depends on the distribution of IP₃R, their Ca^{2+} permeability and their co-regulation by IP₃ and Ca²⁺. We therefore concentrate on these features in this short review. It is, however, important to note that there are many other facets to IP₃R behavior. They are, for example, modulated by many additional intracellular signals, like ATP (Betzenhauser et al. 2008), cAMP (Tovey et al. 2008, 2010) and redox state (Higo et al. 2005; Vais et al. 2010); they are substrates for a variety of proteins kinase, which also modulate their activity (deSouza et al. 2007; Fritsch et al. 2004; Szado et al. 2008; Wagner et al. 2008); and many proteins, including calmodulin (Taylor and Laude 2002), Bcl-2 (Li et al. 2007; Rong et al. 2008), presenilins (Cheung et al. 2010), $\beta\gamma$ subunits of G proteins (Zeng et al. 2003) and various luminal proteins (Choe and Ehrlich 2006; Higo et al. 2005) associate with and regulate IP₃R. These modulatory factors, which endow IP₃R with an ability to integrate diverse intracellular signals, effect their influence by tuning the sensitivity of IP₃R to IP₃ or Ca^{2+} , or the interactions between them. It is clear that IP₃R have considerable computational ability: detecting and processing diverse inputs before deciding whether to return them to the cytosol as a Ca^{2+} signal.

Opening of the pore, giving rise to a cytosolic Ca^{2+} signal, is the most important output from IP₃R, but they can also relay information directly to other proteins. IRBIT (IP₃R-binding protein released by IP₃), for example, is a small phosphoprotein that associates with IP₃R1 and appears then to dissociate after IP₃ binding (Ando et al. 2006), freeing IRBIT to then regulate other cellular activities, like Cl⁻ channels and Na⁺-HCO₃⁻ exchangers in ion-transporting epithelia (Yang et al. 2009). In aortic smooth muscle, IP₃R1 interacts directly with Ca²⁺-sensitive K⁺ channels (BK_{Ca}) and, independent of a Ca²⁺ flux through the IP₃R, promotes their opening and consequent hyperpolarization of the plasma membrane (Zhao et al. 2010). IP₃R have also been implicated in regulating Ca^{2+} entry via interactions with other Ca^{2+} permeable channels in the plasma membrane (van Rossum et al. 2004) including some members of the transient receptor potential (trp) channel family (Kiselyov et al. 1999; Tang et al. 2001; Xi et al. 2008; Zhang et al. 2001). These suggestions remain contentious (DeHaven et al. 2009; Taylor et al. 2009).

1.4 Activation of IP₃ Receptors by Ca²⁺ and IP₃

The conformational changes in the IP₃R that lead to opening of its pore are initiated by IP₃ binding to the IP₃-binding core (IBC) (Fig. 1.2a, c). There have been reports of IP₃-independent activation of IP₃R by CaBP1 (Yang et al. 2002), a member of the neuronal Ca²⁺-sensor family, and by G $\beta\gamma$ subunits of G proteins (Zeng et al. 2003), but the physiological relevance is unclear (Haynes et al. 2004; Nadif Kasri et al. 2004). The current consensus is that binding of IP_3 is essential to initiate activation of all IP₃R, but whether all four IP₃-binding sites of the tetrameric IP₃R must be occupied is unresolved. Positively cooperative responses to IP_3 in some (Dufour et al. 1997; Marchant and Taylor 1997; Tu et al. 2005a; Marchenko et al. 2005), but not all (Finch et al. 1991; Laude et al. 2005; Watras et al. 1991), studies and delays before the first response to IP₃ that decrease with increasing IP₃ concentration (Mak and Foskett 1994; Marchant and Taylor 1997) indicate that channel opening probably requires occupancy of several IP₃-binding sites. However, even heteromeric IP₃R in which at least one subunit has been mutated to prevent IP₃ binding can open in response to IP₃, suggesting that occupancy of fewer than four IP₃-binding sites may be sufficient to cause some gating (Boehning and Joseph 2000).

IP₃R subtypes differ in their affinities for IP₃; the consensus is that IP₃R2 is more sensitive than IP₃R1, and both are more sensitive than IP₃R3 (Iwai et al. 2007; Tu et al. 2005b). Within intact cells, however, differences in expression (Dellis et al. 2006; Tovey et al. 2010), distribution (Petersen et al. 1999), post-transcriptional and post-translational modifications, and association of IP₃R with accessory proteins (Patterson et al. 2004) are likely to be more important determinants of IP₃ sensitivity.

IP₃ is the only known endogenous small ligand of the IBC, but there are many synthetic agonists, all with structures equivalent to the equatorial 6-hydroxyl and the 4- and 5-phosphate groups of IP₃ (Rossi et al. 2010) (Fig. 1.2a). Because neither of the immediate products of IP₃ metabolism, IP₂ and IP₄, binds to the IBC, both metabolic pathways are effective means of inactivating IP₃. The structure of the IBC with IP₃ bound (Bosanac et al. 2002) shows IP₃ held in a clam-like structure with the phosphate groups of IP₃ coordinated by basic residues (Fig. 1.2b). The two sides of the clam, the α - and β -domains, form a network of interactions with the essential groups of IP₃. The 4-phosphate is hydrogen-bonded with residues in the β -domain, the 5-phosphate forms hydrogen bonds with residues that lie predominantly in the α -domain, and the 6-hydroxyl interacts with the backbone of a residue in the α -and β -domains together, causing the clam to close in a manner similar to glutamate

binding to ionotropic glutamate receptors (Mayer 2006). In the absence of a structure of the IBC without IP₃ bound, two lines of evidence lend circumstantial support to this proposal. First, the IBC adopts a more constrained structure when it binds IP₃ (Chan et al. 2007). Second, adenophostins, which are high-affinity agonists of IP₃R (Rossi et al. 2010), retain some activity after loss of the 3"-phosphate (analogous to the 5-phosphate of IP₃), probably because their adenine moiety interacts strongly with a residue in the α -domain and thereby partially mimics the clam-closure that would otherwise require binding of the 5-phosphate to the α -domain (Sureshan et al. 2009). We envisage, therefore, that when IP₃ binds to the IBC, the essential vicinal phosphate groups through their contacts with the α - and β -domains cross-bridge the two sides of the clam-like structure causing it to close and thereby initiate the processes that will culminate in opening of the pore (Sect. 1.6).

There are no specific antagonists of IP₃R, although with caution some antagonists can be useful (Michelangeli et al. 1995). Heparin is a competitive antagonist of IP₃ (Worley et al. 1987), but it is not membrane-permeant and it has many additional effects (Dasso and Taylor 1991; Ehrlich et al. 1994). 2-aminoethyl diphenylboronate (2-APB) is membrane-permeant and inhibits IP₃-evoked Ca^{2+} release without affecting IP₃ binding (Maruyama et al. 1997); its mechanism of action is unresolved. But 2-APB also inhibits Ca^{2+} uptake and many other Ca^{2+} channels and it is also a modulator of STIM (stromal interaction molecule) and so store-operated Ca^{2+} entry (Goto et al. 2010). Xestospongins are high-affinity membrane-permeant inhibitors of IP₃-evoked Ca^{2+} release that do not affect IP₃ binding (Gafni et al. 1997), but they too have side-effects (Solovyova et al. 2002). High concentrations of caffeine inhibit IP₃-evoked Ca²⁺ release (Parker and Ivorra 1991) without affecting IP₃ binding (Worley et al. 1987), but caffeine also stimulates RyR, inhibits cyclic nucleotide phosphodiesterases and interferes with many Ca²⁺ indicators. Membrane-permeant peptide antagonists of IP₃R may yet provide another source of selective antagonists (Sun and Taylor 2008).

Despite some initially conflicting evidence, it is now accepted that gating of all IP₃R is biphasically regulated by cytosolic Ca²⁺. Modest increases in Ca²⁺ concentration rapidly potentiate responses to IP₃, while higher concentrations cause a slower inhibition (Finch et al. 1991; Iino 1987, 1990; Marshall and Taylor 1993; Parys et al. 1992; Foskett et al. 2007). Both elements of this Ca²⁺ regulation are widely invoked to explain both the recruitment of elementary Ca²⁺ release events by Ca²⁺-induced Ca²⁺ release (Sect. 1.2 and 1.7) and to curtail the potentially explosive release of Ca²⁺ resulting from such positive feedback (Smith and Parker 2009).

IP₃ and Ca²⁺ are essential co-agonists of all IP₃R (Adkins and Taylor 1999; Finch et al. 1991; Foskett et al. 2007; Marchant and Taylor 1997; Taylor and Laude 2002), but the interplay between them that leads to channel opening remains incompletely understood. Foskett and colleagues argue from analyses of patch-clamp recordings of nuclear IP₃R that IP₃ decreases the sensitivity of the IP₃R to inhibition by cytosolic Ca²⁺ and that this alone is how IP₃ stimulates channel opening (Ionescu et al. 2006; Mak et al. 1998; Mak et al. 2001). This appealingly simple explanation, where IP₃ serves only to relieve tonic inhibition by resting Ca²⁺ concentrations, is difficult to reconcile with the observation that treatments that abolish Ca²⁺ inhibition do not

Fig. 1.3 Ca^{2+} regulation of IP₃ receptors. A simplified scheme for the interplay between IP₃ and Ca^{2+} binding is shown. IP₃ binding is proposed to cause both exposure of a stimulatory Ca^{2+} -binding site (*S*) (or massively to increase its affinity), while simultaneously causing an inhibitory Ca^{2+} -binding site (*I*) to be occluded (or massively to reduce its affinity). Opening of the IP₃R requires Ca^{2+} to bind to the stimulatory site

prevent IP₃ from activating IP₃R (Mak et al. 2003). Nor is the scheme compatible with evidence that nuclear IP₃R from cerebellar Purkinje cells show exactly the same biphasic Ca²⁺ concentration-dependence whether activated by low or saturating concentrations of IP₃ (Marchenko et al. 2005). The simple model was later elaborated to include at least three different Ca²⁺ sensors (Mak et al. 2003), but at the core of this revised scheme is a single Ca²⁺-binding site that switches from being inhibitory in the absence of IP₃ to stimulatory in its presence (Mak et al. 2003). The core of this scheme is consistent with our initial model, derived from rapid superfusion analysis, which suggests that IP₃ both relieves Ca²⁺ inhibition and promotes binding of Ca²⁺ to a stimulatory site (Adkins and Taylor 1999; Marchant and Taylor 1997). The latter is essential for the channel to open. We, however, argue that the stimulatory and inhibitory Ca²⁺-binding sites are distinct (Marshall and Taylor 1994). We suggest, therefore, that the essential role of IP₃ is to promote Ca²⁺ binding to a stimulatory Ca²⁺-binding site. IP₃, by priming this site, allows Ca²⁺ to provide instantaneous control over whether the channel opens (Fig. 1.3).

Patch-clamp recordings from excised nuclear patches of insect cells in which the cytosolic surface is accessible to rapid changes in cytosolic IP₃ and Ca²⁺ concentration, have allowed further high-resolution analyses of the interplay between IP₃ and Ca²⁺ (Mak et al. 2007). The results reveal that activation of IP₃R is, as previously suggested (Adkins and Taylor 1999; Marchant and Taylor 1997), much slower than for other ligand-gated ion channels. The reasons for such slow conformational changes in the IP₃R as it passes though different closed states before opening, are unknown. The results also indicate that the interactions of Ca²⁺ with the IP₃R are faster than those with IP₃, consistent with rapid recruitment of IP₃-bound IP₃R by Ca²⁺ within elementary Ca²⁺ release events (Sect. 1.2). The authors claim, from their analyses of the latencies between rapid changes in IP₃ and/or Ca²⁺ concentration and

channel opening, that sequential binding of IP₃ and then Ca^{2+} (Marchant and Taylor 1997) is an unlikely explanation for IP₃R activation (Mak et al. 2007). However, the results from these challenging analyses include unexpected findings that are difficult to reconcile with any simple interactions between IP₃ and Ca^{2+} (Mak et al. 2007). We conclude that while IP₃ and Ca^{2+} are clearly both required for activation of IP₃R, no single scheme wherein IP₃ gates IP₃R solely by regulating Ca^{2+} binding to either an inhibitory or stimulatory site is entirely consistent with all published data.

The structural basis for Ca²⁺ regulation of IP₃R is unresolved. It may be direct, via Ca^{2+} binding to a site intrinsic to the IP₃R, or via an accessory Ca^{2+} -binding protein (Taylor et al. 2004). Stimulation of IP₃R by cytosolic Ca^{2+} is universally observed even with purified IP₃R reconstituted into lipid bilayers (Ferris et al. 1989; Hirota et al. 1995; Michikawa et al. 1999), suggesting that this essential Ca^{2+} -binding site probably resides within the primary sequence of the IP₃R. At least seven cytosolic Ca²⁺-binding sites have been identified within IP₃R1 (Sienaert et al. 1996, 1997), but their physiological relevance is unresolved. Two sites (residues 304-381 and 378-450) are within the IBC, in which there are two surface-exposed clusters of acidic residues that overlap with residues in the second of these Ca^{2+} binding regions. However, mutation of several of these acidic residues had no effect on Ca^{2+} regulation of IP₃R (Joseph et al. 2005). The remaining Ca^{2+} -binding sites fall within the central region of the IP_3R (Sienaert et al. 1996, 1997), but there is no evidence to link any of them directly to Ca²⁺ regulation of IP₃R. The only tangible link between specific residues and Ca^{2+} regulation comes from mutagenesis of a glutamate residue that is conserved in all IP₃R and RyR. Mutation of this residue (E2100 in IP₃R1) to another acidic residue (D) caused a \sim 5–10-fold decrease in the Ca^{2+} -sensitivity of the IP₃R to both stimulation and inhibition, abolished oscillatory Ca²⁺ transients in response to agonist stimulation, and reduced the Ca²⁺-binding affinity of a large fragment of the IP₃R that includes the residue (Miyakawa et al. 2001; Tu et al. 2003). A puzzling aspect of these results is the observation that mutation of a single residue similarly attenuated both stimulation and inhibition by Ca²⁺, when other evidence suggests that the two effects are mediated by distinct sites (Hajnóczky and Thomas 1997; Marshall and Taylor 1994). This, together with the lack of direct evidence that Ca^{2+} is coordinated by the conserved glutamate, leaves open the possibility that rather than itself contributing to an essential Ca²⁺-binding site, this residue may allosterically couple to the site.

It remains unclear whether inhibition of IP₃R by Ca^{2+} is mediated by Ca^{2+} binding directly to IP₃R or to an associated protein (Taylor and Laude 2002). The effects of Ca^{2+} on IP₃ binding differ between subtypes (Taylor and Laude 2002), purified IP₃R1 is not inhibited by Ca^{2+} (Benevolensky et al. 1994; Danoff et al. 1988; Lin et al. 2000; Richardson and Taylor 1993) and in some bilayer recordings of reconstituted IP₃R there is no Ca^{2+} -inhibition (Hagar et al. 1998; Michikawa et al. 1999; Ramos-Franco et al. 2000). These observations lend support to the idea that Ca^{2+} inhibition may be mediated by an accessory protein. However, deletion of the suppressor domain (SD, residues 1–223) of IP₃R1, which appears not to include a Ca^{2+} -binding site, abolishes inhibition of IP₃ binding by Ca^{2+} (Sienaert et al. 2002). This suggests that regulation by an accessory protein might require the SD. This is significant because the conformational changes initiated by IP_3 binding to the IBC are proposed to both pass entirely via the SD (Rossi et al. 2009) (Sect. 1.6) and to regulate the behavior of an inhibitory Ca^{2+} -binding site (Adkins and Taylor 1999; Mak et al. 1998) (Fig. 1.3).

Calmodulin (CaM) was considered a candidate for the accessory protein through which Ca^{2+} inhibition is exercised, but that now seems improbable (Nadif Kasri et al. 2002; Taylor and Laude 2002). All IP₃R subtypes are inhibited by Ca²⁺-CaM (Adkins et al. 2000; Hirota et al. 1999; Michikawa et al. 1999; Missiaen et al. 1999, 2000) and CaM has been shown to restore Ca^{2+} inhibition to purified IP₃R (Hirota et al. 1999; Michikawa et al. 1999; Nosyreva et al. 2002). But it has proven difficult to relate these functional effects of CaM to either its effects on IP₃ binding or to identified CaM-binding sites within IP₃R. CaM inhibits IP₃ binding to IP₃R1 in a Ca²⁺-independent manner (Cardy and Taylor 1998; Patel et al. 1997), through a site that probably lies within the SD (Adkins et al. 2000; Sienaert et al. 2002), but the properties of this site are inconsistent with the ability of CaM to inhibit IP₃R function only in the presence of Ca^{2+} . There is a high-affinity Ca^{2+} -CaM-binding site within the central region of IP₃R1 and IP₃R2, but it is not present in IP₃R3 (Lin et al. 2000; Yamada et al. 1995). However, mutations that prevent Ca^{2+} -CaM binding to this site have no effect on Ca²⁺-dependent inhibition of IP₃R (Nosyreva et al. 2002; Zhang and Joseph 2001). This evidence and the absence of the site in IP₃R3 suggest that the central Ca^{2+} -CaM-binding site cannot be responsible for Ca^{2+} inhibition of IP₃R. An additional high-affinity Ca²⁺-CaM-binding site is created in IP₃R1 after removal of the S2 splice region. This may increase the Ca^{2+} -CaM sensitivity of peripheral $S2^{-}$ IP₃R1, but it is not a universal candidate for mediating Ca²⁺ inhibition of IP₃R (Islam et al. 1996; Lin et al. 2000).

Recently it was suggested that bound CaM is essential for IP₃R function because a peptide antagonist of CaM inhibited IP₃-evoked Ca²⁺ release (Nadif Kasri et al. 2006). It is now clear that this peptide acts directly on IP₃R with no requirement for CaM (Sun and Taylor 2008). While this eliminates an *essential* role for tethered CaM in activating IP₃R, it raises the intriguing possibility that an endogenous CaM-like structure might be essential for IP₃R activation (Sun and Taylor 2008). In summary, all IP₃R subtypes are inhibited by Ca²⁺-CaM, but the molecular basis of this inhibition has not been established. The site through which Ca²⁺ inhibits IP₃R remains unresolved, but it is unlikely to be CaM.

Whether Ca^{2+} also regulates IP₃R from the luminal surface is another unresolved issue. Ca^{2+} release by RyR terminates before Ca^{2+} stores are entirely depleted because luminal Ca^{2+} is required to maintain RyR activity (Györke and Györke 1998; Jiang et al. 2008; Launikonis et al. 2006), possibly via its interaction with calsequestrin, a luminal high-capacity Ca^{2+} -binding protein (Launikonis et al. 2006; Terentyev et al. 2006). A similar scheme has been proposed to account for the initiation of Ca^{2+} release after the quiescent interval between repetitive Ca^{2+} spikes (Berridge 2007) and for 'quantal Ca^{2+} release' via IP₃R (Muallem et al. 1989). The latter describes the situation wherein after stimulation with sub-maximally effective concentrations of IP₃, unidirectional Ca^{2+} efflux from intracellular stores terminates before they have fully emptied (Bootman et al. 1992; Brown et al. 1992; Combettes et al. 1992; Ferris et al. 1992; Hirota et al. 1995; Meyer and Stryer 1990; Muallem et al. 1989; Oldershaw et al. 1991; Taylor and Potter 1990). The proposal is that luminal Ca^{2+} sets the gain on the regulation by cytosolic IP₃ and Ca^{2+} , so that as the luminal free Ca^{2+} concentration falls it causes the sensitivity of the IP₃R to IP₃ to fall until, as Ca^{2+} leaks from the ER, the IP₃R closes despite the continued presence of cytosolic IP₃ and residual Ca^{2+} within the ER (Irvine 1990). Conversely, as stores refill between Ca^{2+} spikes in an intact cell, the model predicts that the sensitivity of the IP₃R increases until it exceeds the threshold at which prevailing cytosolic IP₃ and Ca^{2+} concentrations become sufficient to trigger opening. Despite the appeal of the model, evidence that luminal Ca^{2+} directly regulates IP₃R is not yet wholly convincing.

Stores have been shown to become more sensitive to IP₃ as they load with Ca²⁺ in some studies (Combettes et al. 1996; Horne and Meyer 1995; Missiaen et al. 1992, 1994; Nunn and Taylor 1992; Oldershaw and Taylor 1993; Parys et al. 1993; Tanimura and Turner 1996; Yamasaki-Mann et al. 2010), but not in others (Combettes et al. 1992, 1993; Shuttleworth 1992; van de Put et al. 1994). But even the supportive results do not generally eliminate the possibility that the increased sensitivity to IP₃ comes from having Ca^{2+} pass through active IP₃R and increase their sensitivity from the cytosolic surface (Laver 2009; Marchenko et al. 2005). An exception that provides direct evidence for regulation of IP₃R by luminal $Ca^{2+}per se$ is provided by work where buffering of luminal Ca^{2+} attenuated IP₃-evoked Ca^{2+} release under conditions where feed-forward regulation via a cytosolic Ca²⁺-binding site was unlikely (Caroppo et al. 2003). In bilayer recordings of IP₃R1, where essential accessory proteins may be lost, luminal Ca^{2+} either failed to potentiate responses to IP₃ (Bezprozvanny and Ehrlich 1994) or inhibited them (Thrower et al. 2000). Despite the caveats, regulation of IP₃R by luminal Ca²⁺ deserves serious consideration. A high-affinity Ca²⁺-binding site within the luminal loop linking TMD5 and 6 (Sienaert et al. 1996) contains conserved acidic residues that could mediate luminal Ca^{2+} regulation, although the sub- μM affinity of this site for Ca^{2+} would be poorly suited to detecting likely changes in luminal Ca²⁺ concentration. Luminal accessory proteins, akin to those that regulate RyR, are another possibility, with ERp44 being one candidate. ERp44 belongs to the thioredoxin protein family and regulates IP₃R1 in a pH- and luminal Ca²⁺-dependent manner (Higo et al. 2005). Binding of ERp44 to the TMD5-6 loop of IP₃R1 inhibits channel activity, and the interaction is disrupted by high concentrations of Ca²⁺, consistent with the suggestion that luminal Ca²⁺ might enhance IP₃R activity.

To summarize, IP_3 works by tuning the Ca^{2+} sensitivity of the IP_3R , although the details are not resolved. We propose that IP_3 stimulates Ca^{2+} binding to a stimulatory site and inhibits Ca^{2+} binding to an inhibitory site (Fig. 1.3). Binding to the former is the trigger for opening of the pore. Others suggest that IP_3 works solely by preventing Ca^{2+} from binding to an inhibitory site. The identity of neither Ca^{2+} -binding site is known: the stimulatory site probably resides within the IP_3R , but the inhibitory site may require an accessory protein, though this is unlikely to be CaM. Luminal Ca^{2+} may further tune the sensitivity of the IP_3R to regulation by its cytosolic ligands, but this remains unproven.

1.5 Structure and Function of the IP₃ Receptor Pore

Although commonly referred to as 'intracellular Ca²⁺ channels', IP₃R are only modestly selective for bivalent over monovalent cations (P_{Ca}/P_K or $P_{Ba}/P_K \sim 6-8$) (Dellis et al. 2006; Foskett et al. 2007; Mak and Foskett 1994; Marchenko et al. 2005). Within the ER, where Ca²⁺ is probably the only permeant ion with an appreciable electrochemical gradient, there is no need for IP₃R to discriminate between cations. Ion selectivity is delegated to the SR/ER Ca²⁺-ATPase (SERCA), the Ca²⁺ pump that creates the Ca²⁺ concentration gradient across the ER membrane. Indeed within the ER, the ability to conduct K⁺ may allow IP₃R to mediate both Ca²⁺ release into the cytosol and the retrograde movement of K⁺ required to maintain electroneutrality and so sustain high rates of Ca²⁺ release (Gillespie and Fill 2008). The weak cation selectivity of IP₃R might therefore be viewed as an adaptation to allow rapid rates of Ca²⁺ release. Within the plasma membrane, where IP₃R are expressed in some cells (Dellis et al. 2006; Kuno and Gardner 1987; Tanimura et al. 2000), the situation is different and opening of such a relatively non-selective cation channel would be expected to cause both Ca²⁺ entry and depolarization.

Although parallel studies of each of the IP₃R subtypes suggest that each has similar ion selectivity and conductance (Tu et al. 2005b), there is considerable, and largely unexplained, variation in published values for the single-channel conductance of IP₃R. One point, however, is clear: all IP₃R have large conductance for monovalent cations (up to \sim 500 pS) (Boehning et al. 2001a, b; Dellis et al. 2006; Ionescu et al. 2006; Mak and Foskett 1998; Marchenko et al. 2005; Perez et al. 1997; Ramos-Franco et al. 2000) and smaller, though still large, conductance for bivalent cations (up to \sim 80 pS) (Watras et al. 1991). We need, therefore, to understand how IP₃R allow cations to pass selectively and rapidly through the pore.

IP₃R lacking TMD1-4 assemble to form constitutively active channels that are insensitive to IP₃, but with appropriate permeation and conduction properties (Ramos-Franco et al. 1999). This demonstrates that the single ion-conducting pore, almost certainly lying at the centre of the tetrameric IP_3R , is formed by the TMD5-6 region (Fig. 1.4a). This is consistent with mutations within this region affecting conductance and/or ion selectivity (Boehning et al. 2001b; Dellis et al. 2006, 2008; Schug et al. 2008). Because available 3D reconstructions of the IP₃R are not yet sufficient to resolve details of the pore (Taylor et al. 2004), our present understanding of its structure is inferred from comparisons with K⁺ channels and RyR. Each of these tetrameric channels is thought to share a pore structure formed by two TMD from each subunit cradling a selectivity filter, but the K⁺ channels for which there are high-resolution structures (eg, KcsA, KirBac1.1 and MthK) have minimal sequence similarity with IP₃R or RyR. Indeed even RyR, the closest relatives of IP₃R, while sharing some sequence similarity with IP₃R within this region, differ from them in both the length and primary sequence of the TMD5-6 region (Fig. 1.4a). High resolution maps (~ 10 Å) of RyR1 come close to revealing the likely secondary structure of the pore (Ludtke et al. 2005; Samso et al. 2005, 2009). This region appears to have six α -helices contributed by each of the four subunits (Samso et al. 2009), and along the central axis there is a luminal constriction (probably the selectivity filter) and

Fig. 1.4 Structure of the pore of the IP₃ receptor. **a** Alignment of the selectivity filter and TMD6 of rat IP₃R1 (ACT21453.1) and RyR1 (XP_001078539). **b** Schematic of the IP₃R pore showing TMD6 from two of the four subunits. Gates located within the inner pore (*left*) or selectivity filter (*right*) my prevent ion flow until the channel opens (*centre*)

a tepee-like assembly of four inner helices (probably TMD6) with the apex pointing into the cytoplasmic structure. In all likelihood the IP_3R forms a similar overall structure.

The only clear sequence similarity between K⁺ channels, RyR and IP₃R is that known to form the selectivity filter in K⁺ channels (2545 GGGXGD 2550 in IP₃R1, Fig. 1.4a). Mutations within this sequence are also consistent with its role as a selectivity filter in IP₃R. Mutation of D2550 abolishes Ca²⁺ conductance without affecting K⁺ conductance (Boehning et al. 2001b; Dellis et al. 2006; van Rossum et al. 2004), although in the mutant, low concentrations of Ca²⁺ block the K⁺ conductance (Dellis et al. 2008). Whether this acidic residue binds directly to Ca²⁺, as occurs for voltagegated Ca²⁺ channels (Yang et al. 1993), or whether it facilitates coordination of Ca²⁺ by neighboring carbonyl groups, as occurs for cyclic nucleotide-gated (CNG) channels and their bacterial relatives, NaK channels, is unknown (Alam et al. 2007). Mutation of other residues within the putative selectivity filter (G2545A, G2546A, G2547A, G2549C or G2549W of IP₃R1) abolished IP₃-evoked Ca²⁺ release (Schug et al. 2008), and the G2547A mutant substantially reduced the K⁺ conductance (Dellis et al. 2006). This suggests that these residues also contribute to either ion-binding