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    1.1   Arsenic Exposure from Rice 

 The fi rst solid food that most humans eat as weaning babies is rice, because of its 
blandness, lack of allergen reactions and material properties that give rise to a palat-
able porridge (Meharg et al.  2008  ) . It is also the dietary staple for half the world’s 
population (Meharg et al.  2009  ) . Rice is approximately tenfold elevated in arsenic 
concentration compared to all other dietary grain staples (Williams et al.  2007a ,  b ). 
The major component species of total arsenic in rice grain is inorganic arsenic 
(arsenate and arsenite), a class 1, non-threshold carcinogen (Meharg et al.  2009  ) . 
Inorganic arsenic gives rise to a range of cancers: lung bladder and skin being the 
most prominent (NRC  2001 ; WHO  2004  ) . Chronic exposure to inorganic arsenic 
species is also implicated in a range of other negative health impacts such as hyper-
tension, diabetes, and premature births (NRC  2001 ; WHO  2004  ) . 

 While there is rightful concern regarding high levels of inorganic arsenic expo-
sure to ~100 million people around the world through elevated drinking water sup-
plies (Ravenscroft et al.  2009 ; Smedley and Kinniburgh  2002  ) , arsenic from rice is 
the largest dietary source of arsenic to the world’s population with no elevated arse-
nic in their drinking water (EFSA  2009 ; Meacher et al.  2002 ; Meharg et al.  2009 ; 
Meliker et al.  2006 ; Tsuji et al.  2007 ; Yost et al.  2004  ) . Even in many of the coun-
tries with highly elevated arsenic in drinking waters, because those countries at the 
heart of the arsenic drinking water crisis in southeast (SE) Asia and the Indian sub-
continent have subsistence rice diets, rice is still a major dietary contributor to arse-
nic intake, and indeed may be the dominant source, particularly when drinking 
water sources have been reduced through mitigation (Kile et al.  2007 ; Mondal and 
Polya  2008 ; Ohno et al.  2007  ) . 

 Even at baseline (i.e. not further elevated through anthropogenic activity), arse-
nic in rice is problematic (Lu et al.  2010 ; Meharg et al.  2009  ) ; at its worst it is pre-
dicted that 22 in 10,000 Bangladeshi population will suffer bladder and lung cancers 
from lifetime exposures to “natural” levels of arsenic in rice (Meharg et al.  2009  ) . If 
rice is grown on geogenically, naturally, arsenic enriched soils, rice arsenic level 
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2 1 Introduction

further elevated from average baseline may be expected (Lu et al.  2010  ) . 
Anthropogenic elevation of arsenic in rice grain occurs from three major pollution 
scenarios:

    (a)    Irrigation of rice paddies with groundwater elevated in arsenic, as occurs in 
Bangladesh and West Bengal India (Duxbury et al.  2003 ; Meharg and Rahaman 
 2003 ; Pal et al.  2009 ; Williams et al.  2006  ) ;   

   (b)    Contamination of paddy soils from industrial and mining activity, with this 
problem being extensive over SE Asia (Liao et al.  2005 ; Williams et al.  2009 ; 
Zhu et al.  2008  ) ;  

    (c)    Growing paddy rice on soil previously treated with arsenical pesticides, as 
occurs in South Central USA (Williams et al. 2007).     

 In the areas of the Indian sub-continent impacted by groundwater arsenic, not 
only does the irrigation with contaminated groundwater lead to elevation of arsenic 
in rice, rice also effectively scavenges arsenic from its cooking water (Bae et al. 
 2002 ; Pal et al.  2009  )  further elevating dietary exposure, remembering that the pop-
ulace affected by this elevated arsenic in rice are also exposed to elevated arsenic in 
drinking water. This entwining of groundwater and rice exposure pathways creates 
many logistical problems with respect to the management of water resources in the 
affected regions (Meharg and Raab  2010  ) . 

 As rice is traded locally, nationally and internationally, rice elevated in arsenic 
in one region may become the food staple of populations geographical remote from 
the food production source (Meharg et al.  2009 ; Meharg and Raab  2010  ) . This 
makes arsenic in rice a trans-boundary concern of global consequence. The 
European Food Safety Authority (EFSA  2009  )  has recently evaluated dietary 
sources of arsenic to the European populace, and concluded that grain staples con-
tributed ~60% of dietary exposure to inorganic arsenic, the species of most concern 
(EFSA  2009  ) , with rice dominating this grain exposure as rice has typically ~10-
fold higher concentration of inorganic arsenic in grain than other crops such as 
wheat or barley. To put these exposures into context, tap water contributed <5% 
inorganic arsenic to the European diet. Average rice consumption in the United 
Kingdom (UK), for example, is only 10 g/day (Meharg  2007  ) , which is not untypi-
cal for a Western European diet (Meharg et al.  2009  ) . For specifi c subgroups in 
Europe, such as those who follow SE Asian and Indian sub-continent dietary pat-
terns, exposure to inorganic arsenic from rice is much higher. On average a UK 
Bangladeshi consumes 250 g of rice per day, with the Bangladeshi community in 
the UK constituting 5% of the population (Meharg  2007  ) . The population of coun-
tries such as Bangladesh, Laos and Myanmar typically consume 400–500 g of rice 
per day (Meharg et al.  2009  ) . 

 Besides rice subsistence diets, rice is the mainstay of restricted diets such as 
vegan, macrobiotic and dietary item avoidance regimens, due to the origin of these 
diets on Eastern cuisine (vegan and macrobiotic) and to its low gluten (wheat intol-
erance). For breast cancer patients avoiding animal milks (due to their hormone 
content) and for lactose intolerance patients, rice milk may be consumed to replace 
animal milks in the diet (Kushi  2004  ) .  



31.3 Biogeochemistry of Paddy Soils

    1.2   Historical Context 

 Initial studies regarding arsenic concentration of rice grain were fi rst published for 
Taiwan (Schoof et al.  1998  ) , the US (Schoof et al.  1999 ; Tao and Bolger  1998  ) , and 
Vietnam (   Phuong et al.  1999 ), identifying rice as high in total and inorganic arsenic, 
stating that it may be an important dietary input. These formative studies had little 
context in which to place their fi ndings and did not show whether the rice they analy-
sed was anthropogenically contaminated or not. They also could not extrapolate their 
fi ndings more generically because of the limited number of samples analysed. 

 The role of plant and soil factors responsible for arsenic accumulation in rice 
started to be unravelled in the fi rst decade of the twentieth century. Abedin et al. 
 (  2002a,   b  )  identifi ed that the irrigation of paddy rice with arsenic elevated water 
to the levels commonly found in the groundwater in Bangladesh and West Bengal, 
India, may be of concern, placing their physiological studies into arsenic assimi-
lation by rice into this context. This was shortly followed by the fi rst fi eld surveys 
of arsenic in rice, identifying that there was indeed extensive arsenic contamina-
tion of rice, and paddy soil, in Bangladesh (Duxbury et al.  2003 ; Meharg and 
Rahman  2003  ) . 

 These fi ndings provided impetus to further study, resulting in the fi rst paper to 
place arsenic in rice in a global context, leading to a realization that EU, US and 
Bangladeshi rice was elevated above “natural”, and the fi rst to realise that arsenic 
speciation in rice varied between different rice producing regions (Williams et al. 
 2005  ) . The fi ndings for Bangladesh were further clarifi ed by a detailed rice grain 
survey (Williams et al.  2006  ) , while concerns regarding US (Williams et al.  2007a  ) , 
EU (Williams et al.  2007b  )  and Chinese (Zhu et al.  2008  )  rice were also character-
ized. Note that rice is widely exported, globalizing problems regarding arsenic in 
rice from specifi c elevated locations (Meharg et al.  2009 ; Williams et al.  2005 ; 
   Zavala and Duxbury  2008  ) . The most detailed global assessment of total and 
inorganic arsenic concentration of rice grain to date was published by Meharg et al. 
 (  2009  ) , enabling potential cancer risks from rice to be calculated on a regional basis. 
This study shows an elevated risk of bladder and lung cancers from rice, based on 
the most up to date US Environmental Protection Agency (EPA) modelling of inor-
ganic arsenic cancer risks, and that those risks are highest for countries such as 
Bangladesh that have very high rice consumption rates and highly contaminated 
rice from anthropogenic activity.  

    1.3   Biogeochemistry of Paddy Soils 

 Arsenic is problematic in rice due to the fact that rice is the only major crop grown 
anaerobically (i.e. under fl ooded conditions), and that rice is particularly effi cient at 
assimilating some forms of arsenic, particularly those generated under anaerobic 
conditions, and exporting them to grain (Williams et al. 2007; Xu et al.  2008  ) . 



4 1 Introduction

 The element arsenic exists in a multitude of different chemical species in 
 biological tissues, soils, waters and minerals, many of which are biotically and abi-
otically inter-convertible under a range of conditions observed in terrestrial and 
marine environments (Cullen and Reimer  1989  ) . A list of the “free”, that is not 
ligand co-ordinated, arsenic species routinely observed are given in Fig.  1.1 . These 
can be considered as inorganic (arsenate and arsenite) or organic (including monom-
ethylarsonic acid [MMA], dimethylarsinic acid [DMA], tetramethylarsonium 
[TMA], asenobetaine (AB) and arsenosugars). The inorganic species are generally 
more acutely toxic than organic species (Aposhian et al.  2004  ) , with the exception 
of trivalent MMA(III) and DMA(III), which are intermediates of the arsenic methy-
lation pathway, and organic species developed for chemical warfare, but these 
chemical agents are not found naturally, and only exist in nature highly localized 
around a small number of munition manufacture and testing sites (Arao et al.  2009 ; 
Baba et al.  2008  ) .  

 The inorganic species arsenate [As(V)] and arsenite [As(III)] are redox sensitive, 
arsenite predominating under reduced and arsenate under oxidized conditions (Zhao 
et al.  2010  ) . This interchange of species can be driven chemically through changing 
Eh and pH, as well as the presence of chemical oxidants and reductants, or enzy-
matically. Arsenate reductases, which are widespread in biota, can reduce arsenate 
to arsenite. Arsenate can be used as a terminal electron acceptor (Heimann et al. 
 2007  ) , while arsenite may be oxidized by certain microbes to produce energy (litho-
trophy) (   Rhine et al.  2006  ) . Arsenite can be methylated aerobically or anaerobically 
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  Fig. 1.1    Structural formulae of arsenic species       

 



51.4 Plant Physiology

(Cullen and Reimer  1989  ) . In soils methylated arsenic species can be either partially 
demethylated or totally mineralized (Gao and Burau  1997 ; Huang et al.  2007  ) . 

 With respect to plant uptake and transport, protonated arsenic species (arsenite, 
MMA and DMA) can behave like silicic acid analogues (Li et al.  2009a,   b  )  and 
arsenate, and potentially deprotonated DMA, as phosphate analogues (Karim et al. 
 2009  ) . These species have varying affi nities for minerals present in the soil. Under 
oxidized conditions arsenate has a high affi nity for iron oxyhydroxides (FeOOH) 
and manganese oxides (Chen et al.  2005  ) , which makes it relatively immobile in 
soils, while arsenite has a lower affi nity for these solid phases, making it more 
mobile. Under strongly reduced conditions arsenic can be precipitated as sulphide 
minerals such as arsenopyrite (Smedley and Kinniburgh  2002  ) . The humic and ful-
vic acids that constitute dissolved organic matter in soil pore waters compete with 
arsenate for anion exchange sites. 

 Arsenic speciation is highly dynamic over the range of redox potential found in 
paddy fi elds, and those redox conditions vary spatially and temporally throughout 
the growing season (Dittmar et al.  2007 ; Takahashi et al.  2004  ) . The fl ooding regi-
men is an obvious driver for redox, as is the vertical gradient with atmospheric 
oxygen perfusing down the soil profi le. Rice roots aerate their rhizosphere to enable 
roots to survive in reduced conditions, creating redox gradients from the root sur-
face to the bulk soil, leading to the formation of iron plaque on the root surface and 
in the rhizosphere (Chen et al.  2005 ; Liu et al.  2006  ) .  

    1.4   Plant Physiology 

 The complexity of arsenic dynamics in soil is mirrored by that in the rice plant. 
Plant roots assimilate arsenic species through both silicic acid pathways (arsenite, 
protonated MMA and DMA) (Ma et al.  2008 ; Li et al.  2009a  )  and through phos-
phate transport pathways (Abedin et al.  2002b ; Wu et al.  2011  ) . Phosphate is an 
essential, and usually limiting, macronutrient, while rice is a silicon accumulator, 
thus rice is effi cient at acquiring silicic acid and phosphate from the soil, making it 
effi cient at assimilating arsenic analogues of these moieties. It is this effi ciency at 
silicic acid/arsenite assimilation, combined with the mobilization of arsenite under 
reduced conditions that sets rice apart with respect to high grain arsenic burdens, as 
compared to crops grown under aerobic soil conditions (Zhao et al.  2010  ) . 

 Once within the plant the arsenic species undergo metabolism, complexation, 
symplastic transport, sub-cellular localization, xylem transport to shoots and grain, 
with potential remobilization from shoot to grain via phloem during grain fi ll. 
Unravelling the molecular regulation of these processes is complicated as the arse-
nic species also exert toxicological action through inhibition of ATP formation and 
other phosphorylation processes, oxidative stress and binding to protein sulphylhy-
dryl groups amongst others (Meharg and Hartley-Whitaker  2002  ) . This toxicologi-
cal action leads to grain yield reduction, further exacerbating agronomic concerns 
regarding arsenic in paddy rice cultivation (Panaullah et al.  2009  ) . 


