


     Signaling Pathways and Molecular 
Mediators in Metastasis



   



Alessandro Fatatis
Editor

Signaling Pathways 
and Molecular Mediators 
in Metastasis



ISBN 978-94-007-2557-7 e-ISBN 978-94-007-2558-4
DOI 10.1007/978-94-007-2558-4
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011944018

© Springer Science+Business Media B.V. 2012
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means, electronic, mechanical, photocopying, microfi lming, recording or otherwise, without 
written permission from the Publisher, with the exception of any material supplied specifi cally for the 
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of 
the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editor
Alessandro Fatatis
Drexel University College of Medicine
245 N. 15th Street
Philadelphia, PA 19102
USA
afatatis@drexelmed.edu



To Mara, Enrico and Fabrizio, 
for introducing me to life.

To Olimpia and our son Andrea, 
for making my life worthwhile.



     



vii

   Preface    

Since the dawn of modern medicine, the spreading of a tumor has always been 
regarded as an unfavorable event. However, until recently patients would refer to 
this condition as a tumor that had ‘returned’ and simply prepare for additional 
rounds of treatment, as if the recurrence would be a replica of the original disease, 
just in a different site. 

Today, patients and physicians alike are fully aware that the detection of metas-
tases is a negative prognostic factor, in most cases leading to serious repercussions 
on the quality of life and overall survival. Indeed, the treatment of metastatic patients 
with curative intent is frequently a daunting task, albeit not always bond to fail. The 
fi rst chapter of this book provides an excellent overview of the problem.

The gravity of metastatic disease is often due to the multiplicity of lesions to be 
treated, combined to locations not easily amenable of surgical excision or irradiation. 
Although cytotoxic, targeted and in selected cases hormone-deprivation systemic 
therapies can initially bypass some of these limitations, the onset of resistance mech-
anisms will eventually obligate physicians to change chemotherapy protocol, switch 
to different targeted drugs and eventually resolve to palliative measures.

Furthermore, we now recognize that metastatic lesions might share very little 
with their tumors of origin as a myriad of events occurring either at primary or sec-
ondary sites can dramatically alter genotypic and phenotypic features of cancer 
cells during the progression of the disease.

Thus, aiming to the successful treatment of metastatic lesions based on informa-
tion gained from primary tumors should be considered a dangerous overlook. 
Several chapters of this book provide a compelling review of the current knowledge 
on the changes occurring in different organ microenvironments that permit malig-
nant colonization and subsequent progression of clinically overt metastases. These 
changes affect not only epithelial cancer cells, but also the resident cells of the sur-
rounding stroma, immune cells and bone marrow-derived cells that can be locally 
recruited to create a pre-metastatic niche.

A signifi cant percentage of solid tumors are currently diagnosed at their initial 
stages. However, the progress in screening and diagnostic procedures only margin-
ally translates into major survival benefi ts for patients, as too many still succumb to 
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metastatic disease often years after the initial diagnosis. A better understanding of 
the mechanisms and molecular mediators promoting local tumor progression and 
invasion into the circulatory and lymphatic systems will lead to appropriate thera-
peutic strategies aiming to limit the extent and duration of cancer spreading. A 
number of chapters in this book very effectively address these particular issues.

This volume presents the work of scientists at the forefront of the metastasis 
research fi eld and it is a testimony of the power of their intellect, dedication and 
efforts to improve the range of treatment options for cancer patients and effectively 
counteract the most lethal complication of their disease. I knew some of them per-
sonally prior to undertaking this project and learned more about the others because 
of it. It has been a true privilege for me to work on this text with such a group of 
brilliant co-authors. They all have been enthusiastic about this book from the very 
beginning and demonstrated a remarkable willingness to participate, despite the 
variety of academic and clinical commitments they had to attend and the demands 
of their research groups and medical teams. For this, and for their contribution of 
competent writing and effective illustrations, I am extremely grateful. 

I am also indebted to all the staff at Springer, especially Melania Ruiz (Publishing 
Editor), Ilse Hensen (Publishing Assistant) and Sunil Padman (Project Manager). 
Their enthusiasm and knowledgeable assistance during the different phases of this 
project have been very much appreciated.

The ensuing of metastatic disease is too often responsible for the demise of 
patients that would be otherwise successfully treated for their primary tumors. The 
scientists involved in this project, along with many others in the fi eld, intend to 
change this grim scenario forever.

Philadelphia, PA Alessandro Fatatis                      
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 Abstract Local therapies have continued to evolve with advances in surgical and 
radiation therapy techniques. This has contributed to improvements in survivor-
ships in early stage disease. However, survival rates for metastatic disease remain 
poor. There has been increasing evidence that local therapy directly infl uences 
metastatic growth and overall survival. Both clinical and laboratory evidence sup-
port this hypothesis and an increasing understanding of the role of circulating 
tumor cells has further galvanized the idea of crosstalk between distant sites and 
the local disease. The current clinical arena is ripe for new innovations and the 
scientifi c advancements described in the remainder of this text set the stage upon 
which such progress will occur.

Cancer is the second leading cause of death in the United States for both men and 
women  [  1  ] . Currently, there are 1.5 million new cases diagnosed per year with a 
declining cancer-specifi c mortality rate of 600,000 per year due in large part to early 
detection and improved therapeutics. Five-year survivorship is markedly decreased 
between localized and metastatic disease. Regardless of the initial tumor type, 5-year 
overall survival with stage IV malignancy ranges from 2% to 30% in comparison to 
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localized disease where 5-year survival is between 20% and 100%  [  1  ] . Thus, it is 
clear that the development of distant disease portends to patient death. 

 For the vast majority of malignancies, patients are diagnosed when the disease is 
localized. Local control rates continue to improve and have shifted the management 
of cancer from pure palliation into a chronic disease. Local control has greatly 
improved due to advances in surgical technique  [  2  ] , improved understanding of 
pathologic features that are prognostic for further adjuvant  [  3–  5  ] , and more sophis-
ticated planning and delivery of radiation therapy  [  6,   7  ] . 

 In the fi eld of prostate cancer, multiple phase III trials have demonstrated the 
benefi t to radiation dose escalation  [  8–  15  ] . These trials have shown statistically 
signifi cant improvements in biochemical free survival without compromise of 
higher toxicities in either genitourinary, gastrointestinal, or sexual metrics as 
reported by both patients and physicians  [  16–  21  ] . Retrospective series have demon-
strated that increased radiation doses reduced the rate of persistent positive disease 
on post treatment prostate biopsy  [  22  ]  (Fig.  1.1 ). A meta-analysis of these trials 
demonstrated a linear correlation between total dose and biochemical progression 
free survival in all risk groups  [  23  ] . Biochemical progression has been shown to be 
a surrogate endpoint for prostate cancer specifi c mortality  [  24  ] .  

 At the same time, the combination of androgen suppression therapy with radia-
tion therapy has consistently demonstrated improvements in not only local control 
 [  22  ]  and biochemical control, but in overall survival benefi t as well. Multiple  studies 
have shown that even short term (4–6 months) of androgen ablation with radiation 
therapy translates into improved cause-specifi c survival  [  25–  32  ] . Further, in patients 
with high risk or locally advanced disease long-term hormonal suppression 
(2–3 years) in combination with radiotherapy results in improved local control and 
overall survival  [  33–  38  ] . 

  Fig. 1.1    Increasing radiation dose results in both an increase in local control as well as a decrease 
in distant metastatic free survival (Data based on Zelefsky et al.  [  22  ] )       
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 Another primarily hormonally driven tumor, breast cancer, has seen decreased 
rate of in fi eld breast recurrences with increased doses of adjuvant radiation ther-
apy  [  39–  41  ]  and the addition of systemic agents such as tamoxifen  [  42  ] . While 
hormonal manipulation improved local control, it has been demonstrated in mul-
tiple large randomized studies to be insuffi cient to prevent local regional recur-
rences as monotherapy  [  43–  45  ] . Further, local control has been demonstrated to 
lead to improvement in overall survival as demonstrated in the Early Breast Cancer 
Trialists’ Collaborative Group (EBCTCG) most recent meta-analysis  [  46  ] . A 20% 
absolute improvement in local control with the addition of radiation therapy at 
5 years translated into a 5% improvement in overall survival at 15 years. This was 
seen both for women undergoing breast conserving surgery as well as those receiv-
ing post mastectomy radiation therapy. 

 A different approach to improve local therapy was adopted in the fi eld of head and 
neck cancer with regard to radiation therapy. Instead of increasing the dose of radia-
tion, alternative fractionation schemes were used to provide greater biologically 
equivalent doses. There are numerous phase III trials supporting non- standard frac-
tionation for head and neck cancer resulting in a 10% absolute improvement in local 
control  [  47–  49  ] . In addition, the addition of chemotherapy, specifi cally a platinum-
based regimen, has consistently increased both local  control and overall  survival 
 [  50–  53  ] . Further, given the high levels of EGFR seen in head and neck cancers, the 
targeting of this receptor using the monoclonal antibody Cetuximab combined with 
radiation therapy results in improved local  control and survival as well  [  54  ] . 

 While the addition of systemic agents to local therapy (surgery or radiation) 
has clearly shown benefi t in improvement in overall survival, more recently there has 
been increasing evidence that the corollary is true; the addition of local therapy to 
systemic therapy translates into increased overall survival. Two phase III trials within 
prostate cancer have demonstrated the survival benefi t with the addition of radiation 
therapy to androgen suppression therapy  [  55,   56  ] . The SPCG-7/SFUO-3 trial  [  55  ]  
revealed a 12% absolute improvement in cause specifi c survival and a 9% improve-
ment in overall survival with the addition of radiation therapy. The Intergroup trial 
 [  56  ]  showed a similar 8% improvement in cause specifi c survival and a 5% absolute 
improvement in overall survival. These patients with locally advanced and high-risk 
features had previously been thought to have subclinical microscopic metastatic dis-
ease and it was presumed that there was no role for localized therapy. Further, the 
addition of radiation did not adversely impact the quality of life of these patients 
 [  57  ] . A post hoc analysis of SWOG 8894 revealed that amongst patients with meta-
static cancer those who underwent prior radical prostatectomy had a better response 
to androgen ablation and better survival than those with an untreated prostate  [  58  ] . In 
a study of hormone refractory metastatic prostate cancer the patients who underwent 
prior prostatectomy/radiation had better survival than those who had no prior local 
treatment  [  59  ] . These clinical studies suggest that removing the prostate in metastatic 
prostate cancer might result in a more durable response to systemic treatment. 

 The benefi t of local control to improve overall survival even once the disease has 
metastasized is clearly demonstrated in kidney cancer. Cytoreductive nephrectomy is 
well established as a critical component of the management of metastatic renal cell 
carcinoma. This practice is based on results of two large randomized trials  [  60,   61  ]  that 
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compared surgery with interferon to interferon monotherapy. Both trials  [  62  ]  showed 
signifi cant survival advantages with the addition of surgery (median survival 13.6 vs. 
7.8 months) and recently, retrospective data  [  63  ]  suggested the benefi t of nephrectomy 
in the setting of vascular endothelial growth factor targeted therapy, which has become 
the new standard of care for patients with metastatic renal cell carcinoma. 

 Recently, there has been increasing interest in understanding the interplay 
between local disease and metastatic deposits. Historically, cancer cells have been 
thought to possess the ability to leave the primary tumor and seed metastatic depos-
its and a clear temporal relation between local failure and metastasis has been docu-
mented. William Halstead, who posited that breast cancer spread contiguously from 
the primary site through local and regional nodes before reaching metastatic sites, 
pioneered this relationship in the breast cancer literature. 

 Currently, it is unclear whether locally persistent disease results in metastatic for-
mation or is a prognostic factor for more virulent disease. If the former is true, then 
improvement in local therapy should translated into improved distant control (Fig.  1.2 ). 
In a trial randomizing men with advanced prostate cancer following prostatectomy to 
adjuvant radiation therapy or observation not only was there an increase in overall 

Primary
Tumor
Radiation +
Surgery

Distant
metastasis
and primary
tumor
reduced or
eliminated

Primary
Tumor
Radiation +
Surgery

Distant
metastasis
and primary
tumor
reduced or
eliminated

  Fig. 1.2    Treatment of the primary tumor with a localized modality directly impacts sites of 
 metastatic disease resulting in improvements in cancer specifi c and overall survival       
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survival and but in distant metastatic free survival as well  [  64  ] . As well, Kuban et al. 
 [  14  ]  demonstrated that the addition of 4 days of localized treatment corresponded to a 
reduction in the distant metastatic rate of 96% vs. 83% at 8 years. Zelefsky et al.  [  22  ]  
also demonstrated that post treatment biopsy positivity rate was signifi cantly associ-
ated with worse distant metastases free survival (DMFS) and increased prostate can-
cer specifi c death. Coen et al.  [  65  ]  showed a statistically signifi cant difference in 
DMFS between those patients with local control vs. locally persistent disease (87% v 
80%, 77% v 61%, 72% v 37%) at 5, 10, and 15 years respectively. Further, it was 
demonstrated that there was an increasing risk of distant metastasis over time in 
patients who ultimately develop local failure. Thus, through improved treatment of the 
primary site, there is decreased widespread metastatic burden.  

 The identifi cation of circulating tumor cells and the observation that these cells 
can colonize tumors of origin  [  66  ]  has led to the “tumor self seeding” hypothesis 
 [  67  ] . This theory highlights the increasing importance of not only localized thera-
pies, but also improvements in chemotherapy and targeted biologics. 

 There has also been increasing excitement in the use of “local” approaches to 
treat oligometastatic disease. Stereotactic body radiation therapy or surgery has 
been used in the setting of patients with limited distant disease burden with success 
 [  68  ] . Currently, there are phase I trials examining the incorporation of targeted 
agents with radiation therapy in this patient population  [  69  ] . 

 Historical response to single agent chemotherapy and combination therapy has 
poor results  [  70  ] . With increasing understanding of the underlying molecular path-
ways and drivers of cancer, improvements in survival have been demonstrated  [  71  ] . In 
fact, the BATTLE (Biomarker-Integrated Approaches of Targeted Therapy for Lung 
Cancer Elimination) trial presented at the 2009 ASCO meeting  [  72  ]  and updated at the 
2010 AACR Meeting  [  73  ]  demonstrated the ability to select patients based on muta-
tional status to different biologic agents. Further, these fi ndings suggested that this 
approach improves the response rate in patients when compared to historical controls 
treated with traditional chemotherapy. The true benefi t of such an approach is that it 
allows the optimal therapy to be delivered to a patient population which generally has 
overall poor functional status and impaired reserve to tolerate aggressive therapy. 

 Clinically there is great interest in improvements to current treatment options and 
a need for more robust understandings of the molecular drivers of both formation and 
spread of metastases. While improvements in local control have increased greatly 
over the past decade, large breakthroughs in the management of metastatic disease 
have yet to be fully realized. Thus, the scientifi c advancements described in the 
remainder of this work set the stage upon which such progress will occur.     
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 Abstract During development cells of epithelial and mesenchymal origin convert 
between the two phenotypes in what has been described as Epithelial-Mesenchymal 
Transition (EMT) and Mesenchymal-Epithelial Transition (MET). The common 
characteristics exhibited during EMT are a loss of epithelial cell contacts, a reorga-
nization of cytoskeletal components to promote a motile phenotype, and a remodel-
ing of the surrounding extracellular matrix to allow for invasion. These events are 
tightly regulated and required for proper cellular organization and organogenesis 
during development. Studies in cancer models have identifi ed an analogous plastic-
ity of some epithelial cancer cells which acquire mesenchymal features as a means 
to escape the primary tumor mass. During the initial stages of tumor metastasis a 
complex series of events occur in which cancer cells leave the original tumor site 
and migrate to other parts of the body via the bloodstream and/or the lymphatic 
system. All metastatic cells must fi rst acquire the abilities to disseminate, migrate 
and invade the surrounding tissue to allow for metastasis to occur. Thus, a reactiva-
tion of developmental pathways resulting in an EMT-like program is one possible 
mechanism by which cells acquire these capabilities and are able to form distal 
metastasis. Intriguingly, many similarities between developmental and oncogenic 
EMT have been identifi ed and has led to our understanding of common signaling 
pathways (including TGF-beta, Ras and Wnt), transcriptional regulators (including 
the Snail, Zeb and Twist families) and microRNAs (including let-7 and miR-200 
families) which regulate EMT. Aberrant regulation of these pathways and factors is 
associated with increased metastatic potential  in vitro  and in animal models and 
correlate with poor clinical outcomes. This chapter focuses on the EMT program in 
cancer, its regulation, its parallels to developmental EMT and its signifi cance to the 
progression to metastatic disease. 

    M.  D.   Amatangelo   •     M.     E.   Stearns   (*)
     College of Medicine ,  Drexel    University ,   Philadelphia ,  PA ,  USA
e-mail: stearnsm1@aol.com    

    Chapter 2   
 Reactivation    of Epithelial-Mesenchymal 
Transition in Invasive and Metastatic Cancer       

       Michael   D.   Amatangelo    and    Mark      E.   Stearns          



14 M.D. Amatangelo and M.E. Stearns

    2.1   Defi ning EMT and Its Relevance in Cancer 

 Epithelial-mesenchymal transition (EMT) describes the progression of cellular 
 phenotype from an epithelial to mesenchymal state. Within differentiated tissues, 
epithelial cells are rigid and perform surface-barrier and secretory functions, 
whereas mesenchymal cells are highly migratory and perform scaffolding,  anchoring 
and maintenance functions. Normal epithelial cells are constrained in a two dimen-
sional cobblestone sheet and are connected by specialized structures  including tight 
junctions, adherence junctions, desmosomes and gap junctions. Within this sheet, 
epithelial cells exhibit an organized polarity that is maintained by these junctions in 
which the cells have a free apical (luminal) surface and an adhesive basal-lateral 
surface which anchors to the basement membrane (see Fig.  2.1 ). The basement 
membrane serves as a key extracellular partition made of extracellular matrix 
 proteins that separates and impedes the movement of epithelial cells into the sur-
rounding stroma. In contrast, mesenchymal cells exhibit a spindled shaped,  bi-polar 

  Fig. 2.1    Reactivation of the developmental Epithelial-Mesenchymal Transition ( EMT ) program 
promotes progression towards metastatic disease in cancer. During EMT cells lose the rigid ‘cell-cell’ 
junctions characteristic of epithelial tissues, including E-cadherin based adherence junctions, 
which allows for cells to disseminate from the primary tumor mass. Cells also change the composi-
tion of their cytoskeleton, losing epithelial cytokeratins and gaining vimentin and FSP-1 expression, 
changing their morphology and promoting cell motility. Furthermore, cells begin to express 
mesenchymal proteases, such as MMP-2 and MMP-9, and lay down extracellular matrix proteins, 
like fi bronectin ( FN ), which help degrade the basement membrane ( BM ) surrounding epithelial 
tissues and creates tracks in the surrounding stroma to promote local invasion. Such changes allow 
cells access to the lymphatic and circulatory systems to advance the formation of distant metasta-
ses. EMT can be induced by genetic changes (Ras hyperactivity) and factors (such as TGF-beta) 
present in the microenvironment from tumor cells, stromal fi broblasts and tumor associated infl am-
matory cells and is regulated by a variety of oncogenic and developmental transcription factors and 
miRNAs       
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morphology and lack the apical-basal polarity of epithelial cells. They also migrate 
individually and do not create rigid contacts with neighboring cells. This results in 
mesenchymal cells forming loosely organized, fi brotic tissues. The prototypical 
mesenchymal cell is the fi broblast, which is a highly motile cell responsible for 
maintaining connective tissue and the stroma surrounding epithelial tissues. Because 
each of these cell types represents a distinct lineage, each with a unique gene expres-
sion profi le, this transition represents a considerable change in cellular physiology 
and biochemistry.  

 EMT events for the most part have been described as part of germ layer reor-
ganization and tissue remodeling during embryonic development. Specifi cally, 
these EMT events are critical for mesoderm formation during gastrulation, neural 
crest maturation, organ morphogenesis as well as wound healing and tissue repair 
in the adult  [  1–  4  ] . Cellular and embryonic studies of EMT have resulted in three 
observational changes in phenotype which have since defi ned this phenomenon 
 [  5,   6  ] . First, EMT is associated with morphological changes in which epithelial 
cells no longer exhibit the cobblestone network and apical-basal polarity of nor-
mal epithelia. Instead, cells become more dispersed and fi broblast-like in their 
morphology. Second, EMT is associated with changes in protein expression 
wherein cells down regulate the expression of cell-cell junction proteins like 
E-cadherin and epithelial cytokeratin fi laments and begin to express mesenchymal 
associated proteins such as fi bronectin, vimentin and N-cadherin. Last, cells 
change their physiology from a rigid stationary cell to a more motile phenotype 
and begin to express matrix proteins and proteases that aid in their migration and 
invasion through tissues. 

 Most solid human tumors (>90%) are carcinomas which arise from epithelial 
glands. Surgery to remove the primary tumors is an effective treatment for many 
cancers and patients treated prior to metastases are often cured. Unfortunately, treat-
ment of advanced cancer is often complicated by metastatic disease where cancer 
cells have migrated to distant sites. Thus, the majority of cancer deaths are caused 
by the ability of cancer cells to become detached from the neoplastic epithelia and 
form metastases where surgery becomes impossible. It has become increasingly 
apparent that in order for cancer cells to accomplish this, an EMT-like program 
must be activated to prime nodular epithelial cells for the dissemination, movement 
and invasion required for metastatic spread  [  7  ] . The concept that EMT events are 
involved in the formation of metastatic cancer are primarily based on mechanistic 
studies done  in vitro  and in mouse models and observations that loss of epithelial 
characteristics and acquisition of mesenchymal markers within tumors is often 
associated with advanced disease. It must be noted, however, that EMT changes do 
not appear to occur in consistent patterns in cancers nor is the commitment to a 
mesenchymal phenotype always permanent and the reverse process, mesenchymal-
epithelial transition (MET), is also observed  [  8  ] . 

 Although many similarities in the major concepts of developmental and patho-
logical EMTs exists, Kalluri and Weinberg have classifi ed EMT events into three 
separate categories to help clarify key differences in the functional consequences 
and regulation of these events  [  9  ] . Accordingly, EMT events associated with early 
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embryo and organ development are considered type-1 EMT. This type of EMT is 
tightly regulated, does not induce fi brosis or systemic, uncontrolled invasion and 
results from cells which have not fully matured. Type-2 EMT events are associated 
with wound healing, tissue regeneration and fi brosis. This type of EMT is less 
 controlled and occurs in adult tissues in response to infl ammation. Type-3 EMT 
occurs in carcinoma cells in which changes in oncogenes and tumor suppressor 
genes in conjunction with tumor associated infl ammation utilize the EMT 
 machinery to induce a migratory phenotype and invasion. While there are func-
tional differences between tumor progression and normal embryonic development 
it also has become quite clear that many similarities also exist  [  10  ] . Thus, it is lim-
iting to assert that type-1 and type-3 EMT events are distinctly different and it 
should be considered that a type-3 EMT event is a reactivation of developmental 
pathways observed in type-1 EMT resulting from the cellular and environmental 
changes in cancer. This reactivation in the context of cancer consequently enhances 
epithelial cell plasticity and promotes aberrant invasive and migratory activities of 
the cancer cell. 

 Unfortunately, and unlike type-1 and type-2 EMT events, it has been diffi cult for 
pathologists to conclusively document type-3 EMT events associated with tumor 
progression and metastasis in humans  [  11  ] . EMT has, however, been directly 
observed at the leading edge of a spontaneously driven breast cancer model  in vivo  
in mice utilizing stromal and epithelial cell specifi c  cre -transgene markers  [  12  ] . 
Although this study defi nitively showed cells of epithelial origin becoming mesen-
chymal during tumor progression and being associated with increased invasion and 
metastasis, not all tumors that gave rise to metastases exhibited robust EMT. 
Therefore, it could be concluded that EMT is not the only mechanism by which 
tumors become invasive and metastatic. Invasive carcinomas may invade surround-
ing tissues as multicellular epithelial sheets which maintain cell-cell junctions and 
polarity in a process known as collective migration  [  13  ] . However, it has recently 
been demonstrated that cells restricted to collective invasion were only capable of 
lymphatic invasion and metastasis to adjacent organs, but not entry into blood ves-
sels or dissemination to distant organ sites  [  14  ] . Furthermore, while in many tumors 
the presence or absence of local lymph node metastasis is a strong predictor of dis-
tant metastatic disease, in others, as many as 30% of patients free of lymph-node 
metastasis still develop disease at distant sites  [  15  ] . In agreement with these 
 observations, cancers which display clear forms of collective migration, such as 
squamous cell carcinomas, rarely form distant metastases  [  16  ] . Collectively migrat-
ing cells also appear to always follow the tracks of a leading stromal cell but may 
also follow tracks or signals of migrating epithelial cells that have undergone EMT, 
suggesting that a cooperative interaction by cells with each other and the surround-
ing stroma is required for collective invasion  [  17  ] . The overall picture emerging 
from such observations is that collective migration may not be a suffi cient for the 
formation of distant metastases. Regardless, it is clear that changes in the local 
extracellular matrix and adaptation of a motile phenotype are required for metasta-
sis and such changes can occur as a result of EMT. 
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 We suggest that type-3 EMT events play a signifi cant role in the formation of 
distant metastasis. These events may represent transient processes of EMT-MET 
conversions whereby invasive cells which undergo EMT regularly revert back to 
a normal morphology following specifi c interactions with the surrounding 
stroma or to a new environment. Cells which exhibit the plasticity to undergo 
EMT and MET conversions are likely to be highly adaptable, metastatic and 
capable of forming distant metastases. While proof that such events occur dur-
ing metastasis is not conclusive, given the discrete nature in which EMT might 
occur, standard pathological examination is not conducive to observing EMT or 
associating EMT with advanced and metastatic cancer. This is primarily because 
type-3 EMTs occur to different extents and exhibit different phenotypes, with 
some cells retaining more epithelial traits then others. Interestingly, many cells 
undergoing EMT adopt a cancer stem cell-like phenotype and are able to produce 
metastases in mice at very low titer  [  18,   19  ] . These results suggest that cells 
undergoing EMT might not have to en mass in order to promote the formation 
of metastasis. Accordingly, such events might go unobserved during pathologi-
cal observation of tumors and the frequency of cells  displaying EMT markers 
might not correlate with metastatic spread. So, while it is apparent in animal and 
 in vitro  models that different type-3 EMT events are related to metastatic poten-
tial, it is unclear whether the extent which a cell loses epithelial characteristics 
or gains mesenchymal traits or whether the quantity of cells undergoing EMT 
has any correlation to metastasis in humans. Thus, evidence in support of EMT 
will require real-time Imaging since the dynamic nature of such EMTs are dif-
fi cult to capture in fi xed tissues where only a small number of tumor cells might 
exhibit EMT markers at any one time. Furthermore, standard histological exam-
ination of human tumors is observational and not mechanistic in nature and 
therefore limited in its ability to understand the contribution EMT might have to 
metastatic progression. Until experimental techniques are available which 
resolve these issues in humans, the importance of EMT to human cancer metas-
tasis will remain controversial.  

    2.2   EMT Biomarkers and Their Functional Signifi cance 

 In order to generate cells with specifi c functions cells during development must 
exhibit a level of plasticity that allows them to give rise to or morph into other phe-
notypes. As this process proceeds, cells must change the repertoire of proteins they 
express in order to function in their new role. Identifi cation of such changes in pro-
tein expression can be used as biomarkers to identify cells associated with a specifi c 
purpose. A variety of biomarkers specifi c to cells of epithelial and mesenchymal 
origin have been identifi ed to demonstrate the three subtypes of EMT. Indeed, the 
changes in these biomarkers, including changes in ‘cell-cell’ adhesion, cytoskeleton 
dynamics and matrix remodeling, have functional consequences and clinical signifi -
cance as they all play important roles in metastatic progression. 
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    2.2.1   Disruption of Epithelial Cell-Cell Junctions 

 E-cadherin is an adherence junction protein that is expressed at ‘cell-cell’ junctions 
in nearly all epithelial cells but is absent in mesenchymal cells  [  20  ] . Furthermore, 
E-cadherin expression is critical for proper organization and differentiation of 
 epithelial cells during development, as well as for maintaining the apical-basal 
polarity that is a hallmark of epithelial tissues  [  21,   22  ] . Decreases in E-cadherin 
expression are nearly always observed during EMT associated with development, 
tissue fi brosis, wound healing and cancer progression and thus its loss is the major 
biomarker for an EMT event  [  23  ] . The most convincing evidence for EMT being 
associated with invasive and metastatic disease is that loss of E-cadherin-based 
adherence junctions is consistently associated with progression to invasive carci-
noma and poor prognosis in most human epithelial cancers, including carcinomas 
of the breast, colon, prostate, stomach, liver, esophagus, skin, bladder, kidney and 
lung  [  24  ] . The loss of E-cadherin at ‘cell-cell’ junctions promotes metastasis by 
enabling cells to detach in response to the shear forces found in lymphatic vessels, 
venules and arterioles, facilitating their dispersion from the tumor mass  [  25  ] . 

 Impairment of E-cadherin-mediated cell adhesion during tumor progression has 
been shown to occur by deletion, mutation, chromatin rearrangement and hyperm-
ethylation. In addition, loss of E-cadherin promoter activity has been found to occur 
in many metastatic malignancies  [  24,   26  ] . In fact, knockdown of E-cadherin alone 
can induce wide-ranging transcriptional and functional changes which manifest in 
EMT and contributes to metastatic dissemination  [  27  ] . Conversely, several groups 
have demonstrated that forced re-expression of E-cadherin in malignant cells results 
in a reversion of the EMT phenotype and inhibits invasion and metastasis  [  28–  31  ] . 
Additionally, in an  in vivo  model for spontaneous pancreatic cancer, maintenance of 
E-cadherin expression during beta-cell tumorigenesis inhibited invasion and arrested 
tumor development at the adenoma stage  [  30  ] . The implication being that loss of the 
E-cadherin adherence junction complex is one of the rate limiting step in EMT and 
progression to invasive cancer  in vivo  and thus serves as the gatekeeper of the epi-
thelial phenotype  [  32  ] . 

 Critical for maintaining E-cadherin based adherence junctions is its interaction 
with p120 CAS and alpha-, beta-, and gamma-catenin, which link E-cadherin to the 
actin cytoskeleton. Disruption of the intracellular E-cadherin–catenin complex 
alone is suffi cient for a loss of ‘cell-cell’ adhesions and the tissue rigidity character-
istics of epithelial tissues which occurs in tandem with tumor invasion  [  33  ] . In 
 particular, beta-catenin is released from E-cadherin complexes into the cytoplasm 
when these ‘cell-cell’ junctions are disrupted and can act as a signaling molecule. 
The signaling activity of beta-catenin regulates cellular plasticity and type-1 EMT 
during heart cushion development  [  34  ] . Accordingly, beta-catenin localization has 
been used as a biomarker of EMT in both fi brosis and cancer  [  35,   36  ] . In normal 
epithelium, cytoplasmic beta-catenin is degraded by the ubiquitin-proteasome path-
way through a multiprotein destruction complex containing APC and GSK-3beta. 
Upon activation of Wnt signaling pathways within the cell (which regulate 
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 proliferation, morphology, motility, and fate during embryonic development) the 
activity of GSK-3beta is inhibited. This results in the accumulation of beta-catenin 
in the cytoplasm which can translocate into the nucleus where it can regulate gene 
expression. Thus, cytoplasmic or nuclear localization of beta-catenin is indicative of 
and a biomarker for EMT and an invasive phenotype  [  36  ] . For example, in advanced 
colorectal cancers the central region of the tumor exhibits membrane localized beta-
catenin associated with E-cadherin at cell junctions. In contrast, at the invasive front 
membrane staining is lost and beta-catenin is localized in the nucleus  [  36,   37  ] . 
Active Wnt/beta-catenin signaling and nuclear beta-catenin accumulation also cor-
relates with EMT, invasion and a poor prognosis in breast cancers  [  38,   39  ] . 

 During EMT loss of the E-cadherin cell junction complex is often accompanied 
by a concomitant up-regulation of mesenchymal cadherins, such as N-cadherin and 
cadherin-11  [  40  ] . This process is described as “cadherin switching” and readily 
occurs during type-1 EMT when cells separate from the epiblast layer to ingress the 
primitive streak and when epithelial cardiomyocytes migrate toward the endocar-
dium during heart morphogenesis  [  41,   42  ] . N-Cadherin is typically expressed by 
mesenchymal cells, fi broblasts and neuronal cells, however, aberrant expression of 
N-cadherin is also observed in invasive breast, prostate and melanoma cancer cells 
 [  43–  45  ] . During type-3 EMT events, N-cadherin expression promotes loss of 
 epithelial cell polarity and increased cell motility, invasion and metastasis, having 
the opposite effect as E-cadherin expression  [  46,   47  ] . Like N-cadherin, cadherin-11 
is not expressed by normal epithelial cells but is induced during EMT events associ-
ated with development  [  48  ] . In addition, cadherin-11, is also expressed in aggres-
sive melanoma, breast and prostate cancer cell lines and appears to coincide with 
greater cellular invasiveness and a poor clinical prognosis in patients  [  43,   49,   50  ] . 
Expression of these mesenchymal cadherins promotes tumor cell dissemination and 
invasion independent of E-cadherin down-regulation, highlighting their potent 
tumor promoting activities  [  51  ] . It appears that mesenchymal cadherins promote 
local invasion by allowing dynamic interactions with the endothelial and stromal 
components surrounding epithelial tumors  [  44  ] . In sum, loss of E-cadherin, nuclear 
beta-catenin localization and gain of mesenchymal cadherin expression are all cur-
rently recognized as key biomarkers for EMT and metastatic potential.  

    2.2.2   Changes in Cytoskeleton Dynamics 

 Studies of EMT have also revealed that the expression of vimentin and Fibroblast 
Specifi c Protein-1 (FSP1), also known as S100A4, are commonly associated with 
EMT during embryogenesis and highly invasive tumor cells. Vimentin is a mesen-
chymal intermediate fi lament which is known to play a role in maintaining cell 
integrity in response to mechanical stress  [  52  ] . Vimentin also plays a key functional 
role in the migration and contractibility of cells, as vimentin null mice have fi bro-
blasts with a decreased ability to migrate and exhibit impaired wound healing  [  53  ] . 
During embryogenesis vimentin is expressed in mesodermal cells which exhibit a 
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highly motile and invasive phenotype  [  54,   55  ] . Specifi cally, vimentin is turned on at 
the onset of when cells fi rst detach and migrate from the epithelium to form the 
mesoderm, and continues to be expressed in all mesenchymal cells making it an 
excellent biomarker for the mesenchymal phenotype  [  56  ] . Carcinoma progression 
to an invasive phenotype is also often accompanied by increased expression of 
vimentin in a wide range of cancers  [  57–  61  ] . Conversely, knocking down the expres-
sion of vimentin in highly malignant colon, prostate and breast cancer cells inhibits 
their ability to migrate and become invasive  [  62,   63  ] . Vimentin still remains a 
 controversial type-3 EMT marker, however, as pathologists do not always observe 
signifi cant increases in vimentin expression in cancer and it is sometimes associated 
with benign tissue  [  64  ] . However, the limitations in histological examination of 
human tumor sections appear to be part of the problem. Advances in analysis of 
circulating tumor cells have recently associated vimentin expression with metastatic 
disease, thus vimentin positive circulating tumor cells might be indicative of tumor 
associated EMT  [  65,   66  ] . In addition to up-regulation of vimentin, rigid epithelial 
cytokeratins are also down-regulated during EMT and actin fi laments are organized 
into stress fi bers  [  67  ] . The consequence of this dramatic remodeling of the cytoskel-
eton is facilitating pseudopod formation at the leading edge of the cell to promote 
invasion and migration. 

 Fibroblast Specifi c Protien-1 (FSP-1) appears to be another biomarker for EMT 
that is important for the transformation of epithelial cells to a metastatic phenotype. 
FSP-1 is a member of the S100 family of cytoplasmic proteins and is homologous 
to S100A4. Members of this family are calcium binding, low molecular weight 
proteins that function as both homo and heterodimers and are implicated in cytoskel-
etal-membrane interactions, calcium signal transduction, and cellular growth and 
differentiation  [  68  ] . FSP-1 expression was fi rst observed in cells of mesenchymal 
origin during mesoderm formation and during infl ammation induced fi brogenesis 
 [  69  ] . FSP-1 is absent in normal epithelial cells but is prevalent in mesenchymal cells 
including fi broblasts, monocytes, macrophages and lymphocytes, all of which 
exhibit a migratory phenotype  [  69–  71  ] . Transfection studies have shown that FSP-1 
is involved in the stimulation of cellular motility and it has been shown to colocalize 
with myosin IIA and actin fi laments at the leading edge of migrating cells  [  72  ] . 

 FSP-1 expression is commonly observed in cultured epithelial cells undergoing 
growth factor induced EMT as well as in EMT during renal fi brosis in transgenic 
mice  [  73,   74  ] . The FSP1 gene is a direct target of nuclear beta-catenin and is associ-
ated with promoting the progression of invasive and metastatic cancer  [  75  ] . Over-
expression of FSP-1 in non-metastatic breast cancer and bladder cancer cells has 
been shown to promote local tumor invasion and metastasis to lungs and lymph 
nodes  [  76,   77  ] . Conversely, knock down of FSP-1 reduces cell motility, invasiveness 
and metastatic potential  in vivo   [  78  ] . In addition, FSP-1 is expressed by invasive 
tumor cells undergoing EMT in PyV-mT induced mammary tumors in mice and 
mice over-expressing FSP1 crossed into tumorigenic backgrounds have offspring 
which exhibit increased frequency of metastasis even tough primary tumor inci-
dence and size do not change  [  7,   79  ] . Finally, human patient studies have further 
revealed that in a panel of 349 breast cancer patients, FPS-1 expression was the 


