Springer Atmospheric Sciences

Marc Aubinet Timo Vesala Dario Papale *Editors*

Eddy Covariance

A Practical Guide to Measurement and Data Analysis

Eddy Covariance

Springer Atmospheric Sciences

For further volumes: http://www.springer.com/series/10176 Marc Aubinet • Timo Vesala • Dario Papale Editors

Eddy Covariance

A Practical Guide to Measurement and Data Analysis

Editors Prof. Marc Aubinet Université de Liège Gembloux Agro-Bio Tech Unit of Biosystem Physics Passage des Deportés 2 5030 Gembloux Belgium Marc.Aubinet@ulg.ac.be

Dr. Dario Papale University of Tuscia Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) Via Camillo de Lellis 01100 Viterbo Italy darpap@unitus.it Prof. Timo Vesala Department of Physics University of Helsinki PO Box 54 00014 Helsinki Finland tvesala@mappi.helsinki.fi

ISBN 978-94-007-2350-4 e-ISBN 978-94-007-2351-1 DOI 10.1007/978-94-007-2351-1 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011942320

© Springer Science+Business Media B.V. 2012

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

As soon as the first eddy covariance networks developed, in the mid-1990s, the need for standardisation became clear. Standardisation concerned not only material but also data treatment, corrections, computation. In order to harmonise these procedures in the frame of the EUROFLUX network, some software intercomparison exercises were developed: "golden files" were circulated between teams and treated with different software packages with the aim to compare the computation results. It rapidly appeared that beyond some bugs that appeared in new software and were corrected immediately, important differences remained between different computations that were due to the use of different hypotheses. The necessity to clarify these choices, and to propose a standardised (even if perfectible) eddy covariance flux computation procedure, led us to publish a first methodological paper (Aubinet et al. 2000). Eleven years later, this paper remains an often cited reference in the field.

However, as the theory and measurement techniques progressed since, and since the eddy covariance techniques is becoming also a monitoring exercise and not more only a purely scientific activity, the necessity of an update of this paper and of creating something that could help to install an eddy covariance site and manage it correctly grew. In December 2008, during a meeting at the Hyytiälä Forestry Field Station (Finland) celebrating the tenth anniversary of the EUROFLUX network constitution, the idea was launched (originally by Samuli Launiainen) to produce such an update. However, it appeared rapidly that if we wanted to produce a selfstanding document, useful to eddy flux practisers, we could not limit its size to those of a paper.

We thus decided to tackle the edition of a book with the general objective to give to eddy flux practisers the theoretical and practical information necessary in order to develop eddy covariance measurements, from site installation to data treatment. After preparing a book plan, structured in 17 chapters, we chose different first authors, known for their skills in the field and asked them to constitute a team of co-authors and prepare their chapters. The present book is the result of the two and half year long work that followed. After a first chapter recalling the theoretical bases on which eddy covariance method relies, Chap. 2 describes technical requirements of the eddy covariance setup: tower positioning and dimensioning (height, position, system positioning on the tower), sonic and gas analysers, dimensioning, calibration and maintenance.

Chapter 3 describes the general procedure used in order to get "uncorrected" fluxes and to discuss the pros and cons of different computation alternatives. This implied especially a description of the data acquisition set-ups, and a detailed discussion on flux computation (fluctuation computation, first quality control on raw data, time lagging, rotation and flux computation).

Chapter 4 concentrates on the different corrections procedures necessary in order to get good quality fluxes and on the quality tests on these fluxes.

Chapter 5 focuses on the problem of night flux underestimation, its causes and its impact on flux measurements. It described different screening or correction procedures and discussed their pros and cons.

Chapter 6 specifies the conditions when data gap filling is necessary and which precautions should be taken when performing data gap filling. It presented and compared the different data gap filling procedures and their (dis)advantages.

Chapter 7 identifies and quantifies the different causes of uncertainty in flux measurements and analyses how they combine during scaling up.

Chapter 8 describes the main footprint models and the way they could be combined with vegetation cover maps (in order to identify the sources/sinks of flux) or with quality tests (in order to evaluate the general quality of data).

Chapter 9 presents the different possibilities to partition eddy flux into ecosystem respiration and gross ecosystem photosynthesis. Different approaches based on night-time or on day-time data were described.

Chapter 10 focuses on disjuncted eddy covariance technique, which is especially adapted to capture tracer gas.

Chapters 11–16 describe the specific requirements for flux measurements in specific ecosystems like forests, grasslands, croplands, wetlands, lakes or urban environment.

Finally, Chap. 17 describes the objectives of a data base, the way it should be maintained and managed. In addition, it proposes some policies for data use, exchange and publication.

The editors would like to thank the co-authors of the chapters for their enthusiasm and their involvement in this long (but, hopefully, useful) work that we hope can contribute to reinforce the links between the different eddy covariance networks in the world.

Dario Papale and Timo Vesala, although editors of this book, would like to thank M. Aubinet for taking care of the lion's share of the editing job.

The book idea and preparation has been also supported by the IMECC EU project and the ABBA Cost Action.

This book is dedicated to all the field (often anonymous) technicians whose continuous system care, maintenance and follow up constitute an inestimable contribution to ecosystem studies and to the Ph.D. students that decide to base their work on these unique measurements.

Preface

Folks, mark already in your calendars "the 20th Anniversary of EUROFLUX" to be held around 10 December in 2018, once again in Hyytiälä. We do not know yet what will be the main product of the meeting then.

Marc Aubinet Dario Papale Timo Vesala

Contents

1	The	The Eddy Covariance Method					
	Thor	nas Foke	n, Marc Aubinet, and Ray Leuning				
	1.1	Histor	y	1			
	1.2	Prelim	inaries	2			
		1.2.1	Context of Eddy Covariance Measurements	2			
		1.2.2	Reynolds Decomposition	2			
		1.2.3	Scalar Definition	5			
	1.3	One Po	bint Conservation Equations	e			
		1.3.1	Dry Air Mass Conservation (Continuity) Equation	6			
		1.3.2	Momentum Conservation Equation	7			
		1.3.3	Scalar Conservation Equation	8			
		1.3.4	Enthalpy Equation	ç			
	1.4	Integra	ated Relations	9			
		1.4.1	Dry Air Budget Equation	1(
		1.4.2	Scalar Budget Equation (Generalized Eddy				
			Covariance Method)	1(
	1.5	Spectra	al Analysis	12			
		1.5.1	Spectral Analysis of Turbulence	13			
		1.5.2	Spectral Analysis of Atmospheric Turbulence	13			
		1.5.3	Sensor Filtering	14			
		1.5.4	Impacts of Measurement Height and Wind Velocity	1.			
	Refe	rences		16			
2	Mea	suremen	at Tower and Site Design Considerations	2			
-	J. Wi	illiam M	unger, Henry W. Loescher, and Hongyan Luo	2			
	2.1	Introdu	uction	21			
	2.2	Tower	Considerations	22			
		2.2.1	Theoretical Considerations for Tower Design	22			
			2.2.1.1 Diverse Ecosystems and Environments	22			
			2.2.1.2 Physical Effects on Surrounding				
			Flows Due to the Presence of Tower Structure	22			

		2.2.1.3 Size of Horizontal Supporting Boom	26
		2.2.1.4 Tower Deflection and Oscillations	27
		2.2.1.5 Recirculation Zone at the Opening	
		in a Tall Canopy	27
	2.2.2	Tower Design and Science Requirements	28
		2.2.2.1 Tower Location Requirements	28
		2.2.2.2 Tower Structure Requirements	30
		2.2.2.3 Tower Height Requirements	31
		2.2.2.4 Tower Size Requirements	32
		2.2.2.5 Instrument Orientation Requirements	33
		2.2.2.6 Tower Installation and Site Impact	
		Requirements	34
2.3	Sonic	Anemometer	35
	2.3.1	General Principles	35
	2.3.2	Problems and Corrections	36
	2.3.3	Requirements for Sonic Choice, Positioning,	
		and Use	37
2.4	Eddy (CO ₂ /H ₂ O Analyzer	40
	2.4.1	General Description	40
	2.4.2	Closed-Path System	41
		2.4.2.1 Absolute and Differential Mode	41
		2.4.2.2 Tubing Requirements for	
		Closed-Path Sensors	42
		2.4.2.3 Calibration for CO_2	46
		2.4.2.4 Water Vapor Calibration	47
	2.4.3	Open-Path Systems	47
		2.4.3.1 Installation and Maintenance	47
		2.4.3.2 Calibration	48
	2.4.4	Open and Closed Path Advantages and Disadvantages	48
	2.4.5	Narrow-Band Spectroscopic CO ₂ Sensors	50
2.5	Profile	e Measurement	51
	2.5.1	Requirements for Measurement Levels	53
	2.5.2	Requirements for Profile Mixing Ratio Measurement	54
Refe	rences		54
Data	Acquis	ition and Flux Calculations	59
Cori	nna Rehr	mann Olaf Kolle Bernard Heinesch	57
Rong	ald Ouecl	k Andreas Ibrom and Marc Aubinet	
3 1	Data T	Fransfer and Acquisition	60
3.1	Flux C	Salculation from Raw Data	65
5.4	321	Signal Transformation in Meteorological Units	66
	5.4.1	3.2.1.1 Wind Components and Speed of	00
		Sound from the Sonic Anemometer	66
		3.2.1.2 Concentration from a Gas Analyzer	67
	3 7 7	Quality Control of Raw Data	67
	5.4.4		07

3

Contents

		3.2.3	Variance	and Covariance Computation	71
			3.2.3.1	Mean and Fluctuation Computations	71
			3.2.3.2	Time Lag Determination	72
		3.2.4	Coordina	ate Rotation	73
			3.2.4.1	Requirements for the Choice of the	
				Coordinate Frame and Its Orientation	73
			3.2.4.2	Coordinate Transformation Equations	75
			3.2.4.3	Determination of Rotation Angles	76
	3.3	Flux D	eterminati	on	79
		3.3.1	Moment	um Flux	79
		3.3.2	Buovanc	v Flux and Sensible Heat Flux	80
		3.3.3	Latent H	eat Flux and Other Trace Gas Fluxes	80
		3.3.4	Derivatio	on of Additional Parameters	80
	Refe	rences	2011100		82
	1010				02
4	Corr	ections a	and Data (Quality Control	85
	Thor	nas Foke	n, Ray Lei	uning, Steven R. Oncley,	
	Matt	hias Mau	ider, and M	Iarc Aubinet	
	4.1	Flux D	ata Correc	tion	86
		4.1.1	Correctio	ons Already Included into the Raw	
			Data An	alysis (Chap. 3)	86
		4.1.2	Conversi	ion of Buoyancy Flux to Sensible	
			Heat Flu	x (SND-correction)	86
		4.1.3	Spectral	Corrections	87
			4.1.3.1	Introduction	87
			4.1.3.2	High-Frequency Loss Corrections	88
			4.1.3.3	Low-Cut Frequency	96
		4.1.4	WPL Co	rrections	97
			4.1.4.1	Introduction	97
			4.1.4.2	Open-Path Systems	97
			4.1.4.3	WPL and Imperfect Instrumentation	99
			4.1.4.4	Closed-Path Systems	99
		4.1.5	Sensor-S	pecific Corrections	101
			4.1.5.1	Flow Distortion Correction of	
				Sonic Anemometers	101
			4.1.5.2	Correction Due to Sensor Head	
				Heating of the Open-Path Gas	
				Analyzer LiCor 7500	103
			4.1.5.3	Corrections to the Krypton	
				Hygrometer KH20	103
			4.1.5.4	Corrections for CH ₄ and N ₂ O Analyzers	104
		4.1.6	Nonreco	mmended Corrections	105
		4.1.7	Overall I	Data Corrections	106
	4.2	Effect	of the Unc	losed Energy Balance	108
		4.2.1	Reasons	for the Unclosed Energy Balance	108

	4.2.2	Correction of the Unclosed Energy Balance	111
4.3	Data Q	Quality Analysis	112
	4.3.1	Quality Control of Eddy Covariance Measurements	113
	4.3.2	Tests on Fulfilment of Theoretical Requirements	114
		4.3.2.1 Steady State Tests	115
		4.3.2.2 Test on Developed Turbulent Conditions	116
	4.3.3	Overall Quality Flag System	117
4.4	Accura	acy of Turbulent Fluxes After Correction	
	and Qu	ality Control	119
4.5	Overvi	iew of Available Correction Software	125
Refe	rences		125
Nigh	ttime Fl	ux Correction	133
Mar	Aubinet	t Christian Feigenwinter Bernard Heinesch	155
Oue	ntin Laffi	neur Dario Panale Markus Reichstein	
Iann	e Rinne	and Eva Van Gorsel	
5.1	Introdu	uction	133
	5.1.1	History	133
	5.1.2	Signs Substantiating the Night Flux Error	134
	0.112	5.1.2.1 Comparison with Bottom Up Approaches	134
		5.1.2.2 Sensitivity of Flux to Friction Velocity	134
	5.1.3	The Causes of the Problem	135
5.2	Is This	Problem Really Important?	136
0.2	5.2.1	In Which Case Should the Night Flux Error	100
		Be Corrected?	137
	5.2.2	What Is the Role of Storage in This Error?	137
	5.2.3	What Is the Impact of Night Flux Error on	
		Long-Term Carbon Sequestration Estimates?	138
	5.2.4	What Is the Impact of the Night Flux Error on	
		Functional Relationships?	139
	5.2.5	What Is the Impact of the Night Flux Error	
		on Other Fluxes?	139
5.3	How to	D Implement the Filtering Procedure?	143
	5.3.1	General Principle	143
	5.3.2	Choice of the Selection Criterion	145
	5.3.3	Filtering Implementation	145
	5.3.4	Evaluation	147
5.4	Correc	tion Procedures	148
	5.4.1	Filtering + Gap Filling	148
	5.4.2	The ACMB Procedure	149
		5.4.2.1 History	149
		5.4.2.2 Procedure	150
		5.4.2.3 Evaluation	151
Refe	rences		152

6	Data Gap Filling						
	6.1	Introdu	uction		150		
	6.2	Gap Filling: Why and When Is It Needed?					
	6.3	Gap Fi	lling Meth	and when is it ivected?	160		
	0.5	631	Meteoro	logical Data Gan Filling	162		
		632	General	Pules and Strategies (Long Cans)	162		
		0.3.2	6321	Sites with Management and Disturbances	164		
		633	Methods	Description	165		
		0.5.5	6331	Mean Diurnal Variation	165		
			6332	Look Up Tables	165		
			6333	Artificial Neural Networks	167		
			6334	Nonlinear Degressions	169		
			6335	Process Models	168		
	6.4	Uncort	ointy and (Photoss Models	160		
	6.5	Einal E	anny anu (Somorko		109		
	0.J Dafa	i man r	cillarks		170		
	Kelei	ences	•••••		1/1		
7	Unce	rtainty	Quantifica	ntion	173		
	Andr	ew D. Ri	chardson,	Marc Aubinet, Alan G. Barr,			
	Davio	d Y. Holl	inger, And	lreas Ibrom, Gitta Lasslop,			
	and M	/larkus R	leichstein				
	7.1	Introdu	iction		173		
		7.1.1	Definition	ons	175		
		7.1.2	Types of	Errors	175		
		7.1.3	Characte	erizing Uncertainty	177		
		7.1.4	Objectiv	es	177		
	7.2	Rando	m Errors in	n Flux Measurements	178		
		7.2.1	Turbuler	ce Sampling Error	179		
		7.2.2	Instrume	ent Errors	179		
		7.2.3	Footprin	t Variability	180		
		7.2.4	Quantify	ring the Total Random Uncertainty	180		
		7.2.5	Overall I	Patterns of the Random Uncertainty	182		
		7.2.6	Random	Uncertainties at Longer Time Scales	187		
	7.3	System	natic Errors	s in Flux Measurements	188		
		7.3.1	Systema	tic Errors Resulting from Unmet			
			Assumpt	tions and Methodological Challenges	188		
		7.3.2	Systema	tic Errors Resulting from Instrument			
			Calibrati	on and Design	190		
			7.3.2.1	Calibration Uncertainties	190		
			7.3.2.2	Spikes	194		
			7.3.2.3	Sonic Anemometer Errors	194		
			7.3.2.4	Infrared Gas Analyzer Errors	194		
			7.3.2.5	High-Frequency Losses	195		
			7.3.2.6	Density Fluctuations	195		

			7.3.2.7 Instrument Surface Heat Exchange	197
		7.3.3	Systematic Errors Associated with Data Processing	197
			7.3.3.1 Detrending and High-Pass Filtering	198
			7.3.3.2 Coordinate Rotation	201
			7.3.3.3 Gap Filling	201
			7.3.3.4 Flux Partitioning	202
	7.4	Closing	g Ecosystem Carbon Budgets	203
	7.5	Conclu	ision	203
	Refe	rences		204
0	D a a 4		a landa	211
0	FOOL Üller	print An	Andrey Secondary Thomas Falson	211
	Moth	Kannik,	Andrey Sogachev, Thomas Foken,	
	and 7	lias Gock	ala	
		Concer	ala et of Footprint	211
	8.1 8.2	Footpr	int Models for Atmospheric Boundary Laver	211
	0.2	e 2 1	A neluticel Ecotorint Models	214
		0.2.1 8.2.2	Analytical Poolphilt Models	214
		0.2.2 8 2 3	Eagrangian Stochastic Approach by LS Models	210
		0.2.5	Forward and Backward Approach by LS Models	217
		0.2.4 8 2 5	Large Eddy Simulations for ABI	219
	83	6.2.J	int Models for High Vegetation	223
	0.5	2 2 1	Feetprints for Ferest Canopy	224
		832	Footprint Dependence on Sensor and Source Heights	224
		833	Influence of Higher Order Moments	220
	8 /	Compl	icated Landscapes and Inhomogeneous Canopies	227
	0.4	8 / 1	Closure Model Approach	229
		842	Model Validation	229
		8/3	Footprint Estimation by Closure Models	231
		844	Footprint Estimation by Closure Models	233
		8/15	Modeling over Urban Areas	237
	85	Ouality	Assessment Using Footprint Models	241
	0.5	Quanty 8 5 1	Quality Assessment Methodology	243
		852	Site Evaluation with Analytical and I S	244
		0.5.2	Footprint Models	240
		853	Applicability and Limitations	249
	86	Validat	tion of Footprint Models	250
	0.0 Refe	vanua		252
	Refe	rences		233
9	Part	itioning	of Net Fluxes	263
	Mark	cus Reich	istein, Paul C. Stoy, Ankur R. Desai,	
	Gitta	Lasslop,	, and Andrew D. Richardson	
	9.1	Motiva	ition	263
	9.2	Definit	ions	264
	9.3	Standa	rd Methods	266
		9.3.1	Overview	266

Contents

		9.3.2	Nighttim	e Data-Based Methods	266
			9.3.2.1	Model Formulation: Temperature –	
				Measurements	269
			9.3.2.2	<i>R</i> _{eco} Model Formulation	269
			9.3.2.3	Challenges: Additional Drivers of Respiration	270
			9.3.2.4	Challenges: Photosynthesis	
				– Respiration Coupling	
				and Within-Ecosystem Transport	271
		9.3.3	Daytime	Data-Based Methods	273
			9.3.3.1	Model Formulation: The NEE	
				Light Response	273
			9.3.3.2	Challenges: Additional Drivers and	
				the FLUXNET Database Approach	275
			9.3.3.3	Unresolved Issues and Future Work	277
	9.4	Additio	onal Consid	derations and New Approaches	278
		9.4.1	Oscillato	bry Patterns	278
		9.4.2	Model Pa	arameterization	278
		9.4.3	Flux Par	titioning Using High-Frequency Data	279
		9.4.4	Flux Par	titioning Using Stable Isotopes	279
		9.4.5	Chamber	r-Based Approaches	281
		9.4.6	Partition	ing Water Vapor Fluxes	281
	9.5	Recom	mendation	S	282
	Refer	ences			283
10	D'		C		20.1
10	Disju	Dimension	y Covaria		291
	Janne	Introdu	nd Christo	I Ammann	201
	10.1	Theory			291
	10.2	10.2.1	Sampla I	ntomal	291
		10.2.1	Deepopor		292
		10.2.2	Definitio	n of DEC	292
	10.2	Droatio		tions of DEC	293
	10.5	10.3.1	DEC by	Grab Sampling	294
		10.3.1	DEC by	Mass Scopping	294
		10.3.2	Use of D	PEC to Peduce the Burden on Data	291
		10.5.5	Transfer	and Storage	300
	10.4	DEC in	Spectral		300
	10.4	Uncert	i Special v	to DEC	303
	10.5	On the	History of	the DEC Approach	305
	Dofor	oncos	Thistory of		305
	Kelei	ences			300
11	Eddy	Covaria	ance Meas	surements over Forests	309
	Berna	ard Long	doz and A	ndré Granier	
	11.1	Introdu	ction		309
	11.2	Flux Co	omputation	n, Selection, and Dependence	310

		11.2.2 Rotation Method	310
		11.2.3 Friction Velocity Threshold	311
		11.2.4 Selection Based on Footprint	311
	11.3	Additional Measurements	311
		11.3.1 Vertical Profile of Concentration in Canopy Air	312
		11.3.2 Leaf Area Index	312
		11.3.3 Biomass Estimates	313
		11.3.4 Sap Flow	315
		11.3.5 Extractable Soil Water, Throughfall, and Stem Flow	315
		11.3.6 Heat Storage	316
	11.4	Impact of Ecosystem Management and Manipulation	317
	Refer	ences	317
12	Eddy	Covariance Measurements over Crops	319
	Chris	tine Moureaux. Eric Ceschia. Nicola Arriga.	
	Pierre	e Béziat, Werner Eugster, Werner L. Kutsch.	
	and E	lizabeth Pattev	
	12.1	Introduction	319
	12.2	Measurement System	322
		12.2.1 Choice of the Site and Communication with	
		the Farmer	322
		12.2.2 Flux Tower and Meteorological Station Configuration	323
		12.2.3 Measurement Height	324
		12.2.4 Maintenance	325
	12.3	Flux Calculation	326
	12.4	Flux Corrections	326
		12.4.1 Storage Term	326
		12.4.2 Nighttime Flux Data Screening	327
	12.5	Data Gap Filling and Footprint Evaluation	327
	12.6	Cumulated Carbon Exchange	327
	12.7	Additional Measurements	328
	12.8	Future Experimentations	329
	Refer	ences	330
13	Eddy	Covariance Measurements over Grasslands	333
	Georg	g Wohlfahrt, Katja Klumpp, and Jean-François Soussana	
	13.1	Historic Overview of Grassland Eddy Covariance Flux	
		Measurements	333
	13.2	Peculiarities of Eddy Covariance Flux Measurements	
		over Grasslands	334
	13.3	Estimating Grassland Carbon Sequestration from Flux	
		Measurements	337
	13.4	Additional Measurements	339
	13.5	Other Greenhouse Gases	340
	Refer	ences	341

5

14	Eddy	Covaria	ance Measurements over Wetlands	345
	Tuon	nas Lauri	la, Mika Aurela, and Juha-Pekka Tuovinen	
	14.1	Introdu	ction	345
	14.2	Historie	c Overview	346
	14.3	Ecosys	tem-Specific Considerations	352
	14.4	Comple	ementary Measurements	354
	14.5	EC Me	asurements in the Wintertime	356
	14.6	Carbon	Balances and Climate Effects	358
	14.7	Conclu	ding Remarks	360
	Refer	ences		360
15	Eddy	Covaria	ance Measurements over Lakes	365
	Timo	Vesala,	Werner Eugster, and Anne Ojala	
	15.1	Introdu	ction	365
	15.2	Existin	g Studies	367
	15.3	Surface	-Specific Siting Problems	368
		15.3.1	Stratification of Lakes	369
		15.3.2	Aqueous Chemistry of CO ₂	369
		15.3.3	Land-Lake Interactions	370
		15.3.4	Quality Control Procedures	372
		15.3.5	Mounting Instruments	373
	Refer	ences		374
16	Eddy	Coverie	ance Measurements Over Urban Areas	377
10	Chris	Covaria tion Foig	ance Measurements Over Orban Areas	511
	16.1	Introdu	etion	277
	10.1	16 1 1	Scales in Urban Climatology	371
		16.1.1	The Urban Atmosphere	370
		16.1.2	Fyshanga Processes in the Urban Atmosphere	200
		16.1.5	Characterization of the Urban Surface	300
		10.1.4	A trace where Later free.	201
	16.2	C	Atmosphere Interface	202
	10.2	Concep	The lange Characteristics	382
		16.2.1	Turbulence Characteristics	384
		16.2.2	The volume Balance Approach	384
			16.2.2.1 Turbulent Heat Fluxes in the	205
			Context of Urban Energy Balance Studies	385
			16.2.2.2 Evapotranspiration in the Context	
			of Urban Water Balance Studies	386
			16.2.2.3 CO_2 Fluxes in the Context of	
			Urban Metabolism Studies	386
		16.2.3	Other Trace Gases and Aerosols	387
	16.3	Challer	iges in the Siting of Urban EC Stations	388
	16.4	Implica	tions of the Peculiarities of the Urban	
		Bounda	ary Layer on EC Measurements	389
		16.4.1	Advection and Storage	389
		16.4.2	Flow Distortion	391

		16.4.3	Night Flu	x Problem, Gap Filling, and QC/QA	393
		16.4.4	Service a	nd Maintenance of Instruments	393
	16.5	Summa	ry and Cor	nclusions	394
	Refer	ences			395
17	Data	base Ma	intenance.	Data Sharing Policy, Collaboration	399
	Dario	Papale.	Deborah A	Agarwal, Dennis Baldocchi.	
	Robe	rt B. Coo	k. Joshua I	B. Fisher, and Catharine van Ingen	
	17.1	Data M	anagement	t	400
		17.1.1	Function	5	401
		17.1.2	Flux Tow	er Repositories	403
		17.1.3	Regional	Repositories	404
			17.1.3.1	One Example: The European Eddy	
				Covariance Flux Database System	404
		17.1.4	The FLU	XNET Initiative and Database	406
	17.2	Data Pr	actices		408
		17.2.1	Contribut	ing Data and Reporting Protocols	408
		17.2.2	Common	Naming/Units/Reporting/Versioning	409
			17.2.2.1	Enabling Cross-site Analysis: Site	
				Identifier, Variables, and Units	409
			17.2.2.2	Data Releases	410
			17.2.2.3	File Naming	411
		17.2.3	Ancillary	Data Collection	412
	17.3	Data U	ser Service	s	413
		17.3.1	Data Proc	lucts: The Example of fluxdata.org	413
			17.3.1.1	Users and Use Cases	413
			17.3.1.2	The Public Access Area	415
			17.3.1.3	The Authorized User Support Area	415
			17.3.1.4	Measurement Site Scientist Support Functions	417
	17.4	Data Sł	naring and	Policy of Uses	417
		17.4.1	Data Shar	ring Motivation	417
		17.4.2	Data Poli	cy of Use	419
		17.4.3	Additiona	al Credit Possibilities	422
	Refer	ences			423
Syn	nbol Ir	ndex			425
411		.			421
AD	oreviat	lions and	ACFONYM		431
Ind	OV				122
mu	сл	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	433

Contributors

Deborah A. Agarwal Lawrence Berkeley National Laboratory, Berkeley, CA, USA, DAAgarwal@lbl.gov

Christof Ammann Agrosocope Reckenholz Tanikon Res Stn ART, CH-8046 Zurich, Switzerland, christof.ammann@art.admin.ch

Nicola Arriga DIBAF, University of Tuscia, Viterbo, Italy, arriga@unitus.it

Marc Aubinet Unit of Biosystem Physics, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium, Marc.Aubinet@ulg.ac.be

Mika Aurela Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland, Mika.Aurela@fmi.fi

Dennis Baldocchi Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA, baldocchi@berkeley.edu

Alan G. Barr Environment Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5 Canada, Alan.Barr@ec.gc.ca

Pierre Béziat Centre d'Etudes Spatiales de la BIOsphère (CESBIO), Toulouse, France

Eric Ceschia Centre d'Etudes Spatiales de la BIOsphère (CESBIO), Toulouse, France, Eric.ceschia@cesbio.cnes.fr

Andreas Christen Department of Geography and Atmospheric Science Program, University of British Columbia, Vancouver, Canada, andreas.christen@ubc.ca

Robert B. Cook Oak Ridge National Laboratory, Oak Ridge, TN, USA, cookrb@ornl.gov

Ankur R. Desai Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, USA, desai@aos.wisc.edu

Werner Eugster Department of Agricultural and Food Sciences, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland, werner.eugster@agrl.ethz.ch

Christian Feigenwinter Institute of Meteorology, Climatology and Remote Sensing, University of Basel, Basel, Switzerland, feigenwinter@metinform.ch

Joshua B. Fisher Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Thomas Foken Department of Micrometeorology, University of Bayreuth, 95440 Bayreuth, Germany, thomas.foken@uni-bayreuth.de

Mathias Göckede Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA, mathias.goeckede@oregonstate.edu

André Granier UMR1137 Ecologie et Ecophysiologie Forestières, Centre de Nancy, INRA, F-54280 Champenoux, France, agranier@nancy.inra.fr

Bernard Heinesch Unit of Biosystem Physics, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium, bernard.heinesch@ulg.ac.be

David Y. Hollinger USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH 03824 USA, dhollinger@fs.fed.us

Andreas Ibrom Risø National Laboratory, Biosystems Department, Technical University of Denmark (DTU), Roskilde, Denmark

Risø National Laboratory for Sustainable Energy, Technical University of Denmark (DTU), Frederiksborgvej 399, 4000, Roskilde, Denmark, anib@risoe.dtu.dk

Catharine van Ingen Microsoft Research, San Francisco, CA, USA, vaningen@microsoft.com

Natascha Kljun Department of Geography, Swansea University, Swansea, UK, n.kljun@swansea.ac.uk

Katja Klumpp INRA, Grassland Ecosystem Research (UREP), Clermont-Ferrand, France, katja.klumpp@clermont.inra.fr

Olaf Kolle Max-Planck Institute for Biogeochemistry, Jena, Germany, olaf.kolle@bgc-jena.mpg.de

Werner L. Kutsch Institute for Agricultural Climate Research, Johann Heinrich von Thünen Institute (vTI), Braunschweig, Germany, werner.kutsch@vti.bund.de

Quentin Laffineur Unit of Biosystem Physics, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium

Gitta Lasslop Max-Planck Institute for Biogeochemistry, 07745 Jena, Germany, gitta.lasslop@zmaw.de

Tuomas Laurila Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland, tuomas.laurila@fmi.fi

Monique Y. Leclerc Laboratory for Environmental Physics, The University of Georgia, Griffin, GA, USA, mleclerc@uga.edu

Ray Leuning Marine and Atmospheric Research, CSIRO, PO Box 3023, Canberra, ACT 2601 Australia, ray.leuning@csiro.au

Henry W. Loescher National Ecological Observatory Network, Boulder, CO 80301, USA

Institute of Alpine and Arctic Research (INSTAAR), University of Colorado, Boulder, CO 80303, USA, hloescher@neoninc.org

Bernard Longdoz UMR1137 Ecologie et Ecophysiologie Forestières, Centre de Nancy, INRA, F-54280 Champenoux, France, longdoz@nancy.inra.fr

Hongyan Luo National Ecological Observatory Network, Boulder, CO 80301, USA

Institute of Alpine and Arctic Research (INSTAAR), University of Colorado, Boulder, CO 80303, USA, hluo@neoninc.org

Matthias Mauder Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany, matthias.mauder@kit.edu

Christine Moureaux Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium, christine.moureaux@ulg.ac.be

J. William Munger School of Engineering and Applied Science, and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, jwmunger@seas.harvard.edu

Anne Ojala Department of Environmental Sciences, University of Helsinki, Helsinki, Finland, Anne.Ojala@helsinki.fi

Steven R. Oncley Earth Observing Laboratory, NCAR, P.O. Box 3000, Boulder, CO, 80307-3000, USA, oncley@ucar.edu

Dario Papale DIBAF, University of Tuscia, Viterbo, Italy, darpap@unitus.it

Elizabeth Pattey ECORC, Agriculture and Agri-Food Canada, Ottawa, Canada, elizabeth.pattey@agr.gc.ca

Ronald Queck Department of Meteorology, Institute of Hydrology and Meteorology, TU Dresden (TUD), Dresden, Germany, ronald.queck@tu-dresden.de

Üllar Rannik Department of Physics, University of Helsinki, Helsinki, Finland, ullar.rannik@heuristica.ee

Corinna Rebmann Department Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany, corinna.rebmann@ufz.de

Markus Reichstein Max Planck Institute für Biogeochemistry, Jena, Germany, mreichstein@bgc-jena.mpg.de

Andrew D. Richardson Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138 USA, arichardson@oeb.harvard.edu

Janne Rinne Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland, Janne.Rinne@helsinki.fi

Andrey Sogachev Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde, Denmark, anso@risoe.dtu.dk

Jean-François Soussana INRA, Grassland Ecosystem Research (UREP), Clermont-Ferrand, France, Jean-Francois.Soussana@clermont.inra.fr

Paul C. Stoy Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT, 59717-3120 USA, paul.stoy@montana.edu

Juha-Pekka Tuovinen Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland, Juha-Pekka.Tuovinen@fmi.fi

Timo Vesala Department of Physics, University of Helsinki, Helsinki, Finland, timo.vesala@helsinki.fi

Eva Van Gorsel CSIRO, Canberra, Australia

Roland Vogt Institute of Meteorology, Climatology and Remote Sensing, University of Basel, Basel, Switzerland, Roland.Vogt@unibas.ch

Georg Wohlfahrt Institute of Ecology, University of Innsbruck, Innsbruck, Austria, Georg.Wohlfahrt@uibk.ac.at

Chapter 1 The Eddy Covariance Method

Thomas Foken, Marc Aubinet, and Ray Leuning

1.1 History

The eddy covariance method for measuring exchanges of heat, mass, and momentum between a flat, horizontally homogeneous surface and the overlying atmosphere was proposed by Montgomery (1948), Swinbank (1951), and Obukhov (1951). Under these conditions, net transport between the surface and atmosphere is one-dimensional and the vertical flux density can be calculated by the covariance between turbulent fluctuations of the vertical wind and the quantity of interest.

Instrumentation limitations hampered early implementation of this approach. In 1949, Konstantinonov (Obukhov 1951) developed a wind vane with two hot wire anemometers to measure the shear stress but the full potential of the eddy covariance method only emerged after the development of sonic anemometers, for which the basic equations were given by Schotland (1955). After the development of the first sonic thermometer (Barrett and Suomi 1949), a vertical sonic anemometer with a 1 m path length (Suomi 1957) was used during the O'Neill experiment in 1953 (Lettau and Davidson 1957). The design of today's anemometers was developed by Bovscheverov and Voronov (1960) and later by Kaimal and Businger (1963) and

T. Foken (🖂)

M. Aubinet

e-mail: Marc.Aubinet@ulg.ac.be

R. Leuning

Department of Micrometeorology, University of Bayreuth, 95440 Bayreuth, Germany e-mail: thomas.foken@uni-bayreuth.de

Gembloux Agro-Bio Tech, Unit of Biosystem Physics, University of Liege, 5030 Gembloux, Belgium

Marine and Atmospheric Research, CSIRO, PO Box 3023, Canberra, ACT 2601, Australia e-mail: ray.leuning@csiro.au

Mitsuta (1966). These phase shift anemometers have now been replaced by running time anemometers with delay time measurements (Hanafusa et al. 1982; Coppin and Taylor 1983).

Early micrometeorological experiments from the 1950s to 1970s were designed to study fundamental aspects of atmospheric turbulence over homogeneous surfaces, whereas studies in the 1980s investigated the turbulent fluxes of momentum, sensible, and latent heat over heterogeneous surfaces. Similar experiments were conducted in the United States (FIFE, Sellers et al. 1988), in France (HAPEX, André et al. 1990), and in Russia (KUREX, Tsvang et al. 1991). These experiments were to become the basis of many further micrometeorological experiments (Foken 2008) that needed researchers who were highly experienced in micrometeorology and sensor handling.

The possibility of continuous eddy flux measurements arose in the 1990s with the development of a new generation of sonic anemometers (see reviews by Zhang et al. 1986; Foken and Oncley 1995) and infrared gas analyzers for water vapor and carbon dioxide, together with the first comprehensive software packages for the eddy covariance method (McMillen 1988). In the early 1990s, the eddy covariance method became more and more widely used by the ecological community for the measurement of the carbon dioxide and water exchange between an ecosystem and the atmosphere. The first measuring towers of what later became the international FLUXNET network (Baldocchi et al. 2001) were installed, and introductions into techniques new for nonmicrometeorologists were written (Aubinet et al. 2000; Moncrieff et al. 1997a, b). In parallel, the development of new analyzer types allowed an extension of the investigated trace gas spectrum. In particular, Tunable Diode Laser and Quantum Cascade Laser spectrometers were used for the measurement of methane and nitrous oxide (Smith et al. 1994; Laville et al. 1999; Hargreaves et al. 2001; Kroon et al. 2010), Proton Transfer Reaction Mass Spectrometers for volatile organic compounds (Karl et al. 2002; Spirig et al. 2005), and Chemiluminescent sensors for Ozone (Güsten and Heinrich 1996; Gerosa et al. 2003: Lamaud et al. 1994, a.o.).

Some milestones in the development of the eddy covariance method are given in Table 1.1 with the reference to the Chapters of this book.

1.2 Preliminaries

1.2.1 Context of Eddy Covariance Measurements

Eddy covariance measurements are typically made in the surface boundary layer, which is approximately 20–50 m high in the case of unstable stratification and a few tens of meters in stable stratification (see Stull 1988; Garratt 1992; Foken 2008; for complete definitions of layers in the atmosphere). Fluxes are approximately constant with height in the surface layer; hence measurements taken in this layer

Historical milestone	References	See chapter/ section
Theoretical basis of the eddy covariance method	Montgomery (1948), Swinbank (1951), Obukhov (1951)	Section 1.2
Three-dimensional sonic anemometer	Bovscheverov and Voronov (1960), Kaimal and Businger (1963), Mitsuta (1966)	Chapter 2
Instrumental requirements	McBean (1972)	Chapter 2
Gas analyzer for water vapor (UV)	Buck (1973), Kretschmer and Karpovitsch (1973), Martini et al. (1973)	
Gas analyzer for water vapor (IR)	Elagina (1962), Hyson and Hicks (1975), Raupach (1978)	Chapter 2
Correction of the effect of the air density	Webb et al. (1980)	Section 4.1
Gas analyzer for carbon dioxide (IR)	Ohtaki and Matsui (1982), Elagina and Lazarev (1984)	Chapter 2
Transformation of buoyancy flux into sensible heat flux	Schotanus et al. (1983)	Section 4.1
System of transfer functions for spectral correction	Moore (1986)	Section 4.1
Fetch conditions	Gash (1986)	Chapter 8
Real-time data processing software	McMillen (1988)	Chapter 3
Source regions for fluxes (footprint), based on Gash (1986)	Schmid and Oke (1990), Schuepp et al. (1990)	Chapter 8
Relaxed eddy accumulation method, based on Desjardins (1977)	Businger and Oncley (1990)	
Influence of tubing of closed path sensors	Leuning and Moncrieff (1990)	Section 4.1.3 Chapter 3
Theoretical basis for flux footprints and sampling strategies	Horst and Weil (1994), Lenschow et al. (1994)	Chapter 8
Addressing the problem of the unclosed energy balance at the surface	Foken and Oncley (1995)	Section 4.2
Quality tests for eddy covariance data	Foken and Wichura (1996), Vickers and Mahrt (1997)	Section 4.3
Addressing the problem of vertical advection	Lee (1998) and many others	Section 1.3, Chapter 5
Methodology for FLUXNET network (EuroFlux)	Aubinet et al. (2000)	All chapters
Gap filling in the FLUXNET network	Falge et al. (2001a, b)	Chapter 6
Organization of an international network (FLUXNET)	Baldocchi et al. (2001)	All chapters

Table 1.1 History of the development of the eddy covariance method

Foken et al. (1995), Foken (2008), Moncrieff (2004), modified

are representative of the fluxes from the underlying surfaces which are desired to be known. Here atmospheric turbulence is the dominant transport mechanism, justifying the use of the eddy covariance approach to measure the fluxes.

Some preliminary definitions are necessary before discussing the eddy covariance approach in detail.

1.2.2 Reynolds Decomposition

The description of turbulent motions in the following theory sections requires the decomposition of the time-series of each variable ζ into a time-mean part, $\overline{\zeta}$, and a fluctuating part, ζ' , the so-called Reynolds decomposition (Fig. 1.1). This can be written as:

$$\zeta = \bar{\zeta} + \zeta' \tag{1.1a}$$

where:

$$\bar{\zeta} = \frac{1}{T} \int_{t}^{t+T} \zeta(t) dt \tag{1.1b}$$

The application of Reynolds decomposition requires some averaging rules for the turbulent value ζ ' which are termed Reynolds postulates:

$$I \quad \overline{\zeta'} = 0$$

$$II \quad \overline{\zeta\xi} = \overline{\zeta} \,\overline{\xi} + \overline{\zeta'\xi'}$$

$$III \quad \overline{\overline{\zeta\xi}} = \overline{\zeta} \,\overline{\overline{\xi}}$$

$$IV \quad \overline{a\zeta} = a\overline{\zeta}$$

$$V \quad \overline{\zeta + \xi} = \overline{\zeta} + \overline{\xi}$$
(1.2)

where *a* is a constant.

Stricto sensu, these relations are valid only when averages are by "ensemble" averaging (i.e., averaging over many realizations under identical conditions, Kaimal and Finnigan 1994). However, this is never possible in atmospheric measurements, so averages are most often computed on the basis of time series of statistical quantities by making use of the ergodic hypothesis which states that time averages are equivalent to ensemble averages (Brutsaert 1982; Kaimal and Finnigan 1994). To fulfil this assumption, the fluctuations have to be statistically stationary during the averaging time chosen (see Chap. 4).

Fig. 1.1 Schematic presentation of Reynolds decomposition of the value ζ (Foken 2008)

1.2.3 Scalar Definition

The following variables are commonly used in the literature (and throughout this book) to define the scalar intensity of an atmospheric constituent *s*: *density* (ρ_s , kg m⁻³) and *molar concentration* ($c_s \mod m^{-3}$) represent the mass and the number of moles of *s* per volume of air, respectively. The *mole fraction* (mole mole⁻¹) is the ratio of the moles of *s* divided by the total number in the mixture (also equal to the ratio of the constituent partial pressure to the total pressure), the *molar mixing ratio* ($\chi_{s,m}$, mole mole⁻¹) is the ratio of the constituent mole number to those of dry air, and the *mass mixing ratio* (χ_s , kg kg⁻¹) is the ratio of the mass of the constituent to the mass of dry air. These variables are related by the perfect gas and the Dalton laws.

However, among these variables, only the molar and mass mixing ratios are conserved quantities in the presence of changes in temperature, pressure, and water vapor content (see Kowalski and Serrano-Ortiz (2007) for a more complete discussion). Unfortunately, the variables that are directly measured in the field by infrared gas analyzers are rather density and molar concentration, quantities that are not conserved during heat conduction, air compression/expansion or evaporation, and water vapor diffusion. Therefore, variations in these quantities may appear even in the absence of production, absorption, or transport of the component. The corrections that are necessary to take these effects into account were extensively discussed by Webb et al. (1980) and reexamined by Leuning (2003, 2007). They will be presented in Sect. 4.1.4.

The conservation equations developed in the section below are written using the mass mixing ratio but, for convenience, the other variables will also appear in this book. Conversion factors of one variable into another are given in Table 1.2.

			-	
Conversion	Molar mixing	Mass mixing	Molar	
factor	Ratio, $\chi_{s=}$	Ratio, χ_{sm} =	concentration, $c_s =$	Density, $\rho_s =$
Molar mixing ratio, $\chi_s X$	1	$\frac{m_s}{m_A}$	$\frac{p_{\rm d}}{R\overline{\theta}}$	$\frac{m_{\rm s}p_{\rm d}}{R\overline{A}}$
Mass mixing Ratio, $\chi_{sm} X$	$\frac{m_{\rm d}}{m_{\rm s}}$	1	$\frac{m_{\rm d} p_{\rm d}}{m_{\rm s} R \overline{\theta}}$	$\frac{m_{\rm d} p_{\rm d}}{R \overline{\theta}}$
Molar concentration, c _s X	$\frac{R \overline{\theta}}{p_{\rm d}}$	$\frac{m_{\rm s}R\overline{\theta}}{m_{\rm d}p_{\rm d}}$	1	ms
Density, $\rho_s X$	$\frac{R \overline{\theta}}{m_{\rm s} p_{\rm d}}$	$\frac{R \overline{\theta}}{m_{\rm d} p_{\rm d}}$	$\frac{1}{m_s}$	1

Table 1.2 Conversion factors between different variables characterizing scalar intensity

Note that p_d corresponds to the dry air pressure (namely $p - p_v$). As a result, the exact conversion of mass or molar mixing ratio into concentration or density needs the knowledge of water vapor pressure (for details see list of symbols)

1.3 One Point Conservation Equations

The equation describing the conservation of any scalar or vector quantity ζ in the atmosphere may be written as

$$\underbrace{\frac{\partial \rho_d \zeta}{\partial t}}_{I} + \underbrace{\vec{\nabla}(\vec{u}\rho_d \zeta)}_{II} + \underbrace{K_{\zeta}\Delta(\rho_d \zeta)}_{III} = \underbrace{S_{\zeta}}_{IV}$$
(1.3)

where \vec{u} is the wind velocity vector, $\vec{\nabla}$ and Δ represent the divergence $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ and Laplacian $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$ operators, ρ_d is the dry air density, K_{ζ} is the molecular diffusivity of the quantity ζ , and S_{ζ} represents its source/sink strength. This equation is instantaneous and applies to an infinitesimal volume of air. It states that the *rate of change of the quantity* (I) can be due to its *atmospheric transport* (II) to *molecular diffusion* (III) or to its *production by a source/absorption by a sink* into the infinitesimal volume (IV). It can be applied to any scalar or vector quantity provided source terms are defined accordingly. In particular, if ζ is 1, Eq. 1.3 is the continuity equation, if ζ is air enthalpy, it is the enthalpy conservation equation, and if ζ is the mixing ratio of an atmospheric component (water vapor, carbon dioxide, etc.), it is the scalar conservation equation. If the quantity is a component of the velocity vector in one given direction, Eq. 1.3 expresses the conservation of the momentum component in this direction. The three equations describing the momentum conservation in the three directions constitute the Navier Stokes equations.

Application of these equations to the surface boundary layer requires application of the Reynolds decomposition rules: the variables ζ , ρ_d , \vec{u} , and S_{ζ} should each be decomposed into a mean and a fluctuating part according to Eq. 1.1, followed by application of the averaging operator, and appropriate rearrangement and simplification. This procedure will be applied to each equation below.

1.3.1 Dry Air Mass Conservation (Continuity) Equation

By replacing ζ by 1 in Eq. 1.3, one obtains

$$\frac{\partial \rho_{\rm d}}{\partial t} + \vec{\nabla}(\vec{u}\rho_{\rm d}) = 0 \tag{1.4}$$

as there is neither a source nor sink of dry air in the atmosphere. Application of the time- averaging operator gives immediately:

$$\frac{\overline{\partial \rho_{\rm d}}}{\partial t} + \vec{\nabla}(\overline{\vec{u}\rho_{\rm d}}) = 0 \tag{1.5}$$

1.3.2 Momentum Conservation Equation

By replacing ζ in Eq. 1.3 with the component of wind velocity in one given direction, u_i , one obtains the momentum conservation equation in this direction:

$$\frac{\partial \rho_{\rm d} u_{\rm i}}{\partial t} + \vec{\nabla} (\vec{u} \rho_{\rm d} u_{\rm i}) = S_{\rm i}$$
(1.6)

In Eq. 1.6, the source/sink terms correspond to momentum source/sink, namely to forces. Forces that can act on air parcels in the atmospheric boundary layer are drag, pressure gradient, Coriolis forces, viscous forces, or buoyancy. The first three forces are considered negligible for a flat, horizontally homogeneous surface boundary layer above the roughness elements (i.e. not including vegetation) (Businger 1982; Foken 2008; Stull 1988). Buoyancy appears only in the equation for vertical momentum. The horizontal component of momentum parallel to the mean wind is dominant in the surface boundary layer and thus the buoyancy term is not considered. In a Cartesian coordinate system (x, y, z) where x corresponds to the horizontal, parallel to the average wind velocity, y to the horizontal, perpendicular to the average velocity, and z to the vertical; u, v, w are the x, y, and z components of velocity, respectively, and this equation is written as

$$\frac{\partial \rho_{\rm d} u}{\partial t} + \frac{\partial \rho_{\rm d} u^2}{\partial x} + \frac{\partial \rho_{\rm d} v u}{\partial y} + \frac{\partial \rho_{\rm d} w u}{\partial z} = 0$$
(1.7)

Application of the Reynolds decomposition to Eq. 1.7 and use of the following simplifications (Businger 1982; Stull 1988):

$$I |p'/\bar{p}| \ll |\rho'_{\rm d}/\overline{\rho_{\rm d}}|$$

$$II |p'/\bar{p}| \ll |\theta'/\bar{\theta}|,$$

$$III |\rho'_{\rm d}/\overline{\rho_{\rm d}}| \ll 1$$

$$IV |\theta'/\bar{\theta}| \ll 1$$
(1.8)

where p is the pressure and θ the air temperature, leads to

$$\frac{\overline{\partial u}}{\partial t} + \bar{u}\frac{\partial \bar{u}}{\partial x} + \bar{v}\frac{\partial \bar{u}}{\partial y} + \bar{w}\frac{\partial \bar{u}}{\partial z} + \frac{\partial {u'}^2}{\partial x} + \frac{\partial \overline{v'u'}}{\partial y} + \frac{\partial \overline{w'u'}}{\partial z} = 0$$
(1.9)

Equation 1.8, III corresponds to the *Boussinesq-approximation* (Boussinesq 1877), which neglects density fluctuations except in the buoyancy (gravitation) term, because the acceleration of gravity is relatively large in comparison with the other accelerations in the momentum equation. By choosing a coordinate system such that