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Preface

As soon as the first eddy covariance networks developed, in the mid-1990s, the
need for standardisation became clear. Standardisation concerned not only material
but also data treatment, corrections, computation. In order to harmonise these
procedures in the frame of the EUROFLUX network, some software intercompar-
ison exercises were developed: “golden files” were circulated between teams and
treated with different software packages with the aim to compare the computation
results. It rapidly appeared that beyond some bugs that appeared in new software
and were corrected immediately, important differences remained between different
computations that were due to the use of different hypotheses. The necessity to
clarify these choices, and to propose a standardised (even if perfectible) eddy
covariance flux computation procedure, led us to publish a first methodological
paper (Aubinet et al. 2000). Eleven years later, this paper remains an often cited
reference in the field.

However, as the theory and measurement techniques progressed since, and since
the eddy covariance techniques is becoming also a monitoring exercise and not
more only a purely scientific activity, the necessity of an update of this paper and of
creating something that could help to install an eddy covariance site and manage it
correctly grew. In December 2008, during a meeting at the Hyytiéld Forestry Field
Station (Finland) celebrating the tenth anniversary of the EUROFLUX network
constitution, the idea was launched (originally by Samuli Launiainen) to produce
such an update. However, it appeared rapidly that if we wanted to produce a self-
standing document, useful to eddy flux practisers, we could not limit its size to those
of a paper.

We thus decided to tackle the edition of a book with the general objective to give
to eddy flux practisers the theoretical and practical information necessary in order
to develop eddy covariance measurements, from site installation to data treatment.
After preparing a book plan, structured in 17 chapters, we chose different first
authors, known for their skills in the field and asked them to constitute a team of
co-authors and prepare their chapters. The present book is the result of the two and
half year long work that followed.



vi Preface

After a first chapter recalling the theoretical bases on which eddy covariance
method relies, Chap. 2 describes technical requirements of the eddy covariance set-
up: tower positioning and dimensioning (height, position, system positioning on the
tower), sonic and gas analysers, dimensioning, calibration and maintenance.

Chapter 3 describes the general procedure used in order to get “uncorrected”
fluxes and to discuss the pros and cons of different computation alternatives. This
implied especially a description of the data acquisition set-ups, and a detailed
discussion on flux computation (fluctuation computation, first quality control on
raw data, time lagging, rotation and flux computation).

Chapter 4 concentrates on the different corrections procedures necessary in order
to get good quality fluxes and on the quality tests on these fluxes.

Chapter 5 focuses on the problem of night flux underestimation, its causes and
its impact on flux measurements. It described different screening or correction
procedures and discussed their pros and cons.

Chapter 6 specifies the conditions when data gap filling is necessary and which
precautions should be taken when performing data gap filling. It presented and
compared the different data gap filling procedures and their (dis)advantages.

Chapter 7 identifies and quantifies the different causes of uncertainty in flux
measurements and analyses how they combine during scaling up.

Chapter 8 describes the main footprint models and the way they could be
combined with vegetation cover maps (in order to identify the sources/sinks of flux)
or with quality tests (in order to evaluate the general quality of data).

Chapter 9 presents the different possibilities to partition eddy flux into ecosystem
respiration and gross ecosystem photosynthesis. Different approaches based on
night-time or on day-time data were described.

Chapter 10 focuses on disjuncted eddy covariance technique, which is especially
adapted to capture tracer gas.

Chapters 11-16 describe the specific requirements for flux measurements in
specific ecosystems like forests, grasslands, croplands, wetlands, lakes or urban
environment.

Finally, Chap. 17 describes the objectives of a data base, the way it should
be maintained and managed. In addition, it proposes some policies for data use,
exchange and publication.

The editors would like to thank the co-authors of the chapters for their enthusiasm
and their involvement in this long (but, hopefully, useful) work that we hope can
contribute to reinforce the links between the different eddy covariance networks in
the world.

Dario Papale and Timo Vesala, although editors of this book, would like to thank
M. Aubinet for taking care of the lion’s share of the editing job.

The book idea and preparation has been also supported by the IMECC EU project
and the ABBA Cost Action.

This book is dedicated to all the field (often anonymous) technicians whose
continuous system care, maintenance and follow up constitute an inestimable
contribution to ecosystem studies and to the Ph.D. students that decide to base their
work on these unique measurements.
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Preface vii

Folks, mark already in your calendars “the 20th Anniversary of EUROFLUX” to
be held around 10 December in 2018, once again in Hyytidld. We do not know yet
what will be the main product of the meeting then.

Marc Aubinet
Dario Papale
Timo Vesala
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Chapter 1
The Eddy Covariance Method

Thomas Foken, Marc Aubinet, and Ray Leuning

1.1 History

The eddy covariance method for measuring exchanges of heat, mass, and mo-
mentum between a flat, horizontally homogeneous surface and the overlying
atmosphere was proposed by Montgomery (1948), Swinbank (1951), and Obukhov
(1951). Under these conditions, net transport between the surface and atmosphere
is one-dimensional and the vertical flux density can be calculated by the co-
variance between turbulent fluctuations of the vertical wind and the quantity of
interest.

Instrumentation limitations hampered early implementation of this approach.
In 1949, Konstantinonov (Obukhov 1951) developed a wind vane with two hot wire
anemometers to measure the shear stress but the full potential of the eddy covariance
method only emerged after the development of sonic anemometers, for which the
basic equations were given by Schotland (1955). After the development of the first
sonic thermometer (Barrett and Suomi 1949), a vertical sonic anemometer with a
1 m path length (Suomi 1957) was used during the O’Neill experiment in 1953
(Lettau and Davidson 1957). The design of today’s anemometers was developed by
Bovscheverov and Voronov (1960) and later by Kaimal and Businger (1963) and
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Mitsuta (1966). These phase shift anemometers have now been replaced by running
time anemometers with delay time measurements (Hanafusa et al. 1982; Coppin and
Taylor 1983).

Early micrometeorological experiments from the 1950s to 1970s were designed
to study fundamental aspects of atmospheric turbulence over homogeneous surfaces,
whereas studies in the 1980s investigated the turbulent fluxes of momentum,
sensible, and latent heat over heterogeneous surfaces. Similar experiments were
conducted in the United States (FIFE, Sellers et al. 1988), in France (HAPEX,
André et al. 1990), and in Russia (KUREX, Tsvang et al. 1991). These experiments
were to become the basis of many further micrometeorological experiments (Foken
2008) that needed researchers who were highly experienced in micrometeorology
and sensor handling.

The possibility of continuous eddy flux measurements arose in the 1990s with
the development of a new generation of sonic anemometers (see reviews by Zhang
et al. 1986; Foken and Oncley 1995) and infrared gas analyzers for water vapor
and carbon dioxide, together with the first comprehensive software packages for the
eddy covariance method (McMillen 1988). In the early 1990s, the eddy covariance
method became more and more widely used by the ecological community for the
measurement of the carbon dioxide and water exchange between an ecosystem and
the atmosphere. The first measuring towers of what later became the international
FLUXNET network (Baldocchi et al. 2001) were installed, and introductions
into techniques new for nonmicrometeorologists were written (Aubinet et al.
2000; Moncrieff et al. 1997a, b). In parallel, the development of new analyzer
types allowed an extension of the investigated trace gas spectrum. In particular,
Tunable Diode Laser and Quantum Cascade Laser spectrometers were used for
the measurement of methane and nitrous oxide (Smith et al. 1994; Laville et al.
1999; Hargreaves et al. 2001; Kroon et al. 2010), Proton Transfer Reaction Mass
Spectrometers for volatile organic compounds (Karl et al. 2002; Spirig et al. 2005),
and Chemiluminescent sensors for Ozone (Giisten and Heinrich 1996; Gerosa et al.
2003; Lamaud et al. 1994, a.o.).

Some milestones in the development of the eddy covariance method are given in
Table 1.1 with the reference to the Chapters of this book.

1.2 Preliminaries

1.2.1 Context of Eddy Covariance Measurements

Eddy covariance measurements are typically made in the surface boundary layer,
which is approximately 20-50 m high in the case of unstable stratification and a few
tens of meters in stable stratification (see Stull 1988; Garratt 1992; Foken 2008;
for complete definitions of layers in the atmosphere). Fluxes are approximately
constant with height in the surface layer; hence measurements taken in this layer
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Table 1.1 History of the development of the eddy covariance method

See chapter/

Historical milestone References section
Theoretical basis of the eddy covariance ~ Montgomery (1948), Swinbank Section 1.2
method (1951), Obukhov (1951)
Three-dimensional sonic anemometer Bovscheverov and Voronov (1960), Chapter 2
Kaimal and Businger (1963),
Mitsuta (1966)
Instrumental requirements McBean (1972) Chapter 2
Gas analyzer for water vapor (UV) Buck (1973), Kretschmer and
Karpovitsch (1973), Martini et al.
(1973)
Gas analyzer for water vapor (IR) Elagina (1962), Hyson and Hicks Chapter 2
(1975), Raupach (1978)
Correction of the effect of the air density ~Webb et al. (1980) Section 4.1
Gas analyzer for carbon dioxide (IR) Ohtaki and Matsui (1982), Elagina Chapter 2
and Lazarev (1984)
Transformation of buoyancy flux into Schotanus et al. (1983) Section 4.1
sensible heat flux
System of transfer functions for spectral ~ Moore (1986) Section 4.1
correction
Fetch conditions Gash (1986) Chapter 8
Real-time data processing software McMillen (1988) Chapter 3
Source regions for fluxes (footprint), Schmid and Oke (1990), Schuepp Chapter 8

based on Gash (1986)
Relaxed eddy accumulation method,
based on Desjardins (1977)

Influence of tubing of closed path sensors

Theoretical basis for flux footprints and

sampling strategies

Addressing the problem of the unclosed

energy balance at the surface
Quality tests for eddy covariance data

Addressing the problem of vertical
advection

Methodology for FLUXNET network
(EuroFlux)

Gap filling in the FLUXNET network

Organization of an international network

(FLUXNET)

et al. (1990)
Businger and Oncley (1990)

Leuning and Moncrieff (1990)

Horst and Weil (1994), Lenschow
et al. (1994)

Foken and Oncley (1995)

Foken and Wichura (1996), Vickers
and Mahrt (1997)

Lee (1998) and many others

Aubinet et al. (2000)

Falge et al. (2001a, b)
Baldocchi et al. (2001)

Section 4.1.3
Chapter 3
Chapter 8

Section 4.2
Section 4.3
Section 1.3,
Chapter 5
All chapters

Chapter 6
All chapters

Foken et al. (1995), Foken (2008), Moncrieff (2004), modified

are representative of the fluxes from the underlying surfaces which are desired
to be known. Here atmospheric turbulence is the dominant transport mechanism,
justifying the use of the eddy covariance approach to measure the fluxes.

Some preliminary definitions are necessary before discussing the eddy covari-

ance approach in detail.
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1.2.2 Reynolds Decomposition

The description of turbulent motions in the following theory sections requires the
decomposition of the time-series of each variable ¢ into a time-mean part, ¢, and
a fluctuating part, ¢’, the so-called Reynolds decomposition (Fig. 1.1). This can be
written as:

¢ =0+0 (I.1a)
where:
_ 1 t+T
= T/z C(t)dt (1.1b)

The application of Reynolds decomposition requires some averaging rules for
the turbulent value ¢’ which are termed Reynolds postulates:

I =0
I gE=CE+ 0%
m iE=7C%
IV al=al
V I+E=C+¢ (12)

where a is a constant.

Stricto sensu, these relations are valid only when averages are by “ensemble”
averaging (i.e., averaging over many realizations under identical conditions, Kaimal
and Finnigan 1994). However, this is never possible in atmospheric measurements,
so averages are most often computed on the basis of time series of statistical
quantities by making use of the ergodic hypothesis which states that time averages
are equivalent to ensemble averages (Brutsaert 1982; Kaimal and Finnigan 1994).
To fulfil this assumption, the fluctuations have to be statistically stationary during

the averaging time chosen (see Chap. 4).
AN _E

Fig. 1.1 Schematic /\
: ~_5
decomposition of the value ¢ \/ \_/ \

presentation of Reynolds
(Foken 2008)
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1.2.3 Scalar Definition

The following variables are commonly used in the literature (and throughout this
book) to define the scalar intensity of an atmospheric constituent s: density (ps,
kg m™) and molar concentration (c; mol m™3) represent the mass and the number
of moles of s per volume of air, respectively. The mole fraction (mole mole™") is the
ratio of the moles of s divided by the total number in the mixture (also equal to the
ratio of the constituent partial pressure to the total pressure), the molar mixing ratio
(Xs.m» mole mole™!) is the ratio of the constituent mole number to those of dry air,
and the mass mixing ratio (xs, kg kg™!) is the ratio of the mass of the constituent
to the mass of dry air. These variables are related by the perfect gas and the
Dalton laws.

However, among these variables, only the molar and mass mixing ratios are
conserved quantities in the presence of changes in temperature, pressure, and
water vapor content (see Kowalski and Serrano-Ortiz (2007) for a more complete
discussion). Unfortunately, the variables that are directly measured in the field by
infrared gas analyzers are rather density and molar concentration, quantities that are
not conserved during heat conduction, air compression/expansion or evaporation,
and water vapor diffusion. Therefore, variations in these quantities may appear
even in the absence of production, absorption, or transport of the component. The
corrections that are necessary to take these effects into account were extensively
discussed by Webb et al. (1980) and reexamined by Leuning (2003, 2007). They
will be presented in Sect. 4.1.4.

The conservation equations developed in the section below are written using the
mass mixing ratio but, for convenience, the other variables will also appear in this
book. Conversion factors of one variable into another are given in Table 1.2.

Table 1.2 Conversion factors between different variables characterizing scalar intensity

Conversion Molar mixing Mass mixing Molar
factor Ratio, ys= Ratio, ysm= concentration, cg— Density, ps=
s T
Molar mixing ratio, ys X 1 —= P MsPd
mq RO RO
.. . mq mdpd mdpd
Mass mixing Ratio, ys,m X — 1 —_— —_—
£ Hom mg mR O RO
RO msR
Molar concentration, ¢y X —_— S 1 mg
Pd mdpd
RO RO 1
Density, psX — 1
s pd mq4 pd LS

Note that pgq corresponds to the dry air pressure (namely p —py). As a result, the exact conversion of
mass or molar mixing ratio into concentration or density needs the knowledge of water vapor pressure
(for details see list of symbols)
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1.3 One Point Conservation Equations

The equation describing the conservation of any scalar or vector quantity ¢ in the
atmosphere may be written as

ad >
018§ ) + Kb D) =S (13)
——— —— ——
— 1 ur v

1

where 7/ is the wind velocity vector, V and A represent the divergence (%, %, 3%)
and Laplacian (% + aa—;z + %) operators, pq is the dry air density, K; is the
molecular diffusivity of the quantity {, and S; represents its source/sink strength.
This equation is instantaneous and applies to an infinitesimal volume of air. It states
that the rate of change of the quantity (I) can be due to its atmospheric transport
(II) to molecular diffusion (III) or to its production by a source/absorption by a
sink into the infinitesimal volume (IV). It can be applied to any scalar or vector
quantity provided source terms are defined accordingly. In particular, if ¢ is 1,
Eq. 1.3 is the continuity equation, if ¢ is air enthalpy, it is the enthalpy conservation
equation, and if ¢ is the mixing ratio of an atmospheric component (water vapor,
carbon dioxide, etc.), it is the scalar conservation equation. If the quantity is a
component of the velocity vector in one given direction, Eq. 1.3 expresses the
conservation of the momentum component in this direction. The three equations
describing the momentum conservation in the three directions constitute the Navier
Stokes equations.

Application of these equations to the surface boundary layer requires application
of the Reynolds decomposition rules: the variables ¢, pq. 4, and S; should each
be decomposed into a mean and a fluctuating part according to Eq. 1.1, followed
by application of the averaging operator, and appropriate rearrangement and
simplification. This procedure will be applied to each equation below.

1.3.1 Dry Air Mass Conservation (Continuity) Equation

By replacing ¢ by 1 in Eq. 1.3, one obtains

Py = -
% + V(ips) =0 (1.4)

as there is neither a source nor sink of dry air in the atmosphere. Application of the
time- averaging operator gives immediately:

e o —
L+ Viipg) = 0 (15)
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1.3.2 Momentum Conservation Equation

By replacing ¢ in Eq. 1.3 with the component of wind velocity in one given
direction, u;, one obtains the momentum conservation equation in this direction:

0pau;

yais V(ipau) = S; (1.6)

In Eq. 1.6, the source/sink terms correspond to momentum source/sink, namely
to forces. Forces that can act on air parcels in the atmospheric boundary layer
are drag, pressure gradient, Coriolis forces, viscous forces, or buoyancy. The
first three forces are considered negligible for a flat, horizontally homogeneous
surface boundary layer above the roughness elements (i.e. not including vegetation)
(Businger 1982; Foken 2008; Stull 1988). Buoyancy appears only in the equation for
vertical momentum. The horizontal component of momentum parallel to the mean
wind is dominant in the surface boundary layer and thus the buoyancy term is not
considered. In a Cartesian coordinate system (x, y, z) where x corresponds to the
horizontal, parallel to the average wind velocity, y to the horizontal, perpendicular
to the average velocity, and z to the vertical; u, v, w are the x, y, and z components
of velocity, respectively, and this equation is written as

dpqu apdu2 dpgvu  dpgwu
o T Tax oy Tz

=0 (1.7)

Application of the Reynolds decomposition to Eq. 1.7 and use of the following
simplifications (Businger 1982; Stull 1988):

1 |p'/p| < |p'a/Pdl

1 |p'/p| < |0'/6].

1 |p's/pa] < 1

v 10'/0] < 1 (1.8)

where p is the pressure and 6 the air temperature, leads to

bu o dn vn ot o v (19)
ar " Max ey T T ax T Ty oz |

Equation 1.8, III corresponds to the Boussinesq-approximation (Boussinesq
1877), which neglects density fluctuations except in the buoyancy (gravitation) term,
because the acceleration of gravity is relatively large in comparison with the other
accelerations in the momentum equation. By choosing a coordinate system such that



