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Preface

Studies of solute fate and transport in the subsurface environment have been playing
a significant role in hydrogeology over the past half century. The problem directly
relates to the quality of natural water resources, which are essential to all kinds
of life, and are a basic element in many sectors of human society. Most migration
studies of both natural and anthropogenically derived species have considered the
motion of a fluid (groundwater) accompanied by diffusion—dispersion phenomena,
physicochemical interactions, as well as microbiological transformations, known to
be the dominant factors providing the impact of contaminants upon groundwater
supplies.

Over the last decades, essential progress in the migration process description has
been achieved due to the development of mathematical background and numerical
methods and laboratory and field investigations of particular transport mechanisms
and physicochemical interactions. However, in many real situations, the subsurface
material heterogeneity and variations in fluid properties, resulting in nonlinear con-
taminant plume behavior, make the prediction accuracy of the transfer processes
too low to satisfy the practical needs. The lack of comprehensive field studies of so-
lute movement is often cited as a major impediment to our understanding of solute
transport in such systems.

Therefore, this work is aimed at the development of the basic knowledge of the
subsurface solute transfer with a particular emphasis on field data collection and
analysis coupled with modeling (analytical and numerical) tool application. The
book is based mostly on field materials from author’s long-standing, recent, and
current experience in the study of groundwater quality related problems. The di-
versity of these problems is concerned with the variety of geological settings as
well as the anthropogenic effects and processes caused by human activity. Some
problems encountered in practice looked as challenge-like and, thus, the author was
encouraged to search for new solutions and approaches. The relevant theoretical
developments are concerned mainly with the formulation and solution of determin-
istic mass-transport equations for a wide range of engineering issues in groundwater
quality assessment and forecasting that can be of some interest for bridging the gaps
still existing in our knowledge of contaminant hydrogeology.

The book gives many computation examples and case studies drawn from the
conducted field investigations. Those examples show the applicability of the theory
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and methods for solving various practical problems and making decisions in con-
taminant hydrology to explain the observed and to forecast the future groundwater
quality. The analyzed problems are as follows:

(1) investigation and prediction of groundwater contamination by industrial con-
taminants and solutions (radionuclides, chloride and nitrate brine) with special
focus on the effect of (a) aquifer heterogeneity, anisotropy, and dual porosity,
(b) density contrast between industrial waste and groundwater, (c) physico-
chemical interactions that play a major role in retarding (e.g., adsorption) or
enhancing (e.g., interactions between dissolved species and mobile colloids)
contaminant transport;

(2) prediction of the effects of pumping on groundwater quality at wellfields:
(a) the displacement of stratified initial concentration in artesian and coastal
(off-shore) groundwater systems due to water pumping, (b) downward move-
ment of mineral-weathering products in the vadoze zone (above the lowering
water table) with water recharge to the producing aquifers;

(3) groundwater dating using stable and radioactive isotopes for prediction and
assessment of contamination potential and the time that would be needed to
displace contaminants from the groundwater system;

(4) field and laboratory tests’ design and analysis, and monitoring data interpreta-
tion;

(5) partitioning of surface and subsurface flows using isotope technique;

(6) formation of evaporated salt deposits in closed surface water reservoirs having
a hydraulic connection with the surrounding groundwater systems.

Several parts of the book demonstrate the potential for using numerical ground-
water flow and transport models in environmental risk assessment of subsurface
contamination by dense or light miscible liquid waste. Environmental isotope data
were utilized for defining the groundwater systems and modeling data analysis.
However, numerical modeling emerged in the book mostly as one of the primary
tools used to understand the most important physical and physicochemical processes
that occur in groundwater systems, as well as for getting analytical approximations
for some coupled problems, which do not necessarily have exact solutions in closed
analytical forms or cannot be treated with the classical methods.

One of the most essential topics addressed in the book is the migration and fate of
radionuclides. Model development is motivated by field data analysis from a number
of radioactively contaminated sites in the Russian Federation: near-surface radioac-
tive waste (RW) disposal sites in northwestern Russia and the Southern Urals, and
two deep-well RW injection sites in Western Siberia. These sites are part of huge
nuclear industry enterprises licensed to possess radioactive materials and also in-
volved in hazardous-waste operations, which are supervised by RosAtom, the State
Nuclear Energy Corporation, Russian Federation.

The total activity of radionuclides that were released (accidentally or intention-
ally) in aquifers at many sites reaches hundred thousands to hundred millions Ci.
Any of the three RW disposal sites out of the four mentioned here (located in South-
ern Urals and Western Siberia) probably contains more radioactive contamination
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in the subsurface than any other site in the world. Additionally, detailed information
on physical, mechanical, and solute transfer properties of clay formation (which is
considered as a host medium for the engineered underground RW repository in the
northwestern part of the Russian Federation) is also analyzed.

Those sites play a unique role in the advancement of knowledge of the subsurface
behavior and fate of many hazardous radionuclides and can be considered as field-
scale laboratories. The book is focused on the modeling and analytical assessments
of a range of physical and chemical processes and interactions of concern. Some of
the key issues needed to be addressed included:

(1) study of the behavior of a broad spectrum of radionuclides (fission products and
actinides) in waste (with low content of dissolved solids and brine) based on
long-term (up to 50 years) monitoring data in shallow and deep aquifer systems;

(2) study of the spatial variability of migration properties of aquifer materials and
clayey semipervious formations;

(3) assessment of the role of brine-induced advection in redistribution of radioactive
components at waste disposal sites;

(4) study of adsorption hysteresis implying isotherm nonsingularity and other non-
ideal sorption phenomena, as well as the assessment of their role in natural
attenuation of radioactively contaminated sites;

(5) analysis of transient hydrogeochemical-barrier effects, facilitating radionuclide
transport, and some other mechanisms responsible for “fast” radionuclide trans-
port in aquifers;

(6) experimental evidence for colloid-facilitated radionuclide (actinide) transport,
and mathematical description of the phenomena.

The model developments were accompanied by laboratory studies into natural
attenuation, radionuclide adsorption and desorption kinetics and equilibrium (in-
cluding when colloidal particles are involved). Batch tests were conducted with
different radioactive solutions under different temperature and pressure conditions.
Anomalous behavior of radionuclides was observed and modeled.

This study can be regarded as the continuation of a series of works started by the
author in the 1970s in cooperation with the outstanding Russian scientist, hydroge-
ologist, V.A. Mironenko, whose contribution to the development of several lines of
studies in hydrogeology and hydrogeomechanics is difficult to overestimate. At the
same time, this book could not appeared were it not for the all-round support from
colleagues — researchers from E.M. Sergeev Institute of Environmental Geology, St.
Petersburg Division, RAS, and St. Petersburg State University, who rendered assis-
tance in the preparation of parts of the book. In this connection, the author very
much appreciates the help of Leonid Sindalovsky in implementation of many nu-
merical algorithms considered in the book, the contribution of Pavel Konosavsky to
the joint studies of adsorption hysteresis and the development of some models of
solute transfer in the porous media under disturbed flow conditions. The author also
appreciates Igor Tokarev’s willingness to share his data on regional isotope study of
a groundwater system in the area of RW disposal at Tomsk-7 site.



viii Preface

The study discusses experiments carried out in laboratories of A.N. Frumkin
Institute of Physical Chemistry and Electrochemistry, RAS, and A.P. Alexandrov
Technical Institute under supervision of Drs. Elena Zakharova, Elena Kaimin, and
Elena Pankina. The author expresses his sincere gratitude to these groups for coop-
eration that have yielded new results.

The author appreciates the cooperation of Aretech Solutions and TIHGSA En-
terprises allowing him to learn new hydrogeological aspects related to the formation
of groundwater resources and quality in arid regions.

The author also much appreciates the attention to his work and fruitfull dis-
cussions with Profs. Vsevolod Shestakov and Sergey Pozdniakov, Moscow State
University, and Dr. Andrei Zubkov, the head of the Environmental Protection Di-
vision (Siberian Chemical Plant), and many other brilliant experts—hydrogeologists,
whose talent and enthusiasm in scientific and production work allows the author to
believe in the future of the Russian hydrogeological school.

Many efforts were made by Dr. Chin-Fu Tsang and Prof. Jacob Bear to organize
this work in a proper way in order to prepare the book in a format acceptable for the
international publishing company, Springer. Discussions and exchange of informa-
tion, ideas, and opinions with them was a great support to this work.

Finally, the author very much appreciates the help of Dr. Gennady Krichevets in
professional translation of the book and many useful comments from him allowing
the author to make certain improvements to the book. The author would also like to
acknowledge the help of Ekaterina Kaplan for her editorial assistance and technical
support of the work.

Thus, the book, along with theoretical findings, contains field information, which
will facilitate the understanding of subsurface solute transport and the development
of a methodology for practical application to groundwater hydrology. This book
addresses scientists and engineers who are interested in the quantitative approach to
studying groundwater migration processes. The book can also be profitably read by
students.

December 28, 2010 Vyacheslav G. Rumynin
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Part I

The Essentials of Dissolved Species
Transport in the Subsurface Environment:
Basic Definitions, Fundamental
Mechanisms and Mathematical
Formulation

The theory of solute migration in groundwater originates from studies devoted to
the description of elementary pore-scale mechanisms (processes) of the movement
of dissolved species in a single fluid phase, including advection, molecular diffusion,
and hydrodynamic dispersion, which are accompanied by acts of simplest sorption-
type physicochemical interactions and solute decay (destruction) reactions. Those
studies were mostly based on the classical theory of fluid motion in idealized porous
media (Muskat 1937; Scheidegger 1957), as well as on chemical kinetics and reac-
tion engineering. However, it has become clear that there exist some specific features
in the application of conventional hydrodynamics methods to the formulation, so-
lution, and analysis of many practically significant hydrogeological problems. In
particular, the relative significance of those mechanisms and interactions in the gen-
eral migration process was soon found to depend on the spatial and temporal scale of
their analysis, the lithological and genetic type of geological sections, and the spa-
tial correlation structure of their physical parameters, the structure of water flows,
and the conditions on their inner and outer boundaries. This, as well as the specific
features of the application of physico-mathematical apparatus to the solution of ap-
propriate boundary problems regarding dissolved species transport in single-phase
constant-density groundwater flows, will be the focus of the first part of this book.

Mathematical models used to describe solute transport in the unsaturated zone
of the subsurface are also included in this part of the book. As will be shown,
for accurate prediction of contaminant transport through the unsaturated zone, field
equations for transport of moisture and chemicals must be coupled.

The equations given here represent a deterministic approach to describing the
subsurface transport phenomena, and have been assembled from a considerable
collection of previous works and investigations conducted by many recognized
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authorities in the field of subsurface fluid dynamics. More generalized fluid flow
and transport models, accounting for the stochastic nature of aquifers and soil ma-
terials are subject of high profile, well-publicized special investigations.

The proposed material forms a bridge to the understanding of solute transport un-
der near-natural conditions and the analysis of migration of complex-composition
solutions (liquids) whose properties differ from those of formation waters. Besides,
the approaches developed here will be used to assess the contributions of various
physicochemical processes, which in many cases control the potential of anthro-
pogenic impact on groundwater quality under natural conditions.



Chapter 1
Advection and Dispersion of Dissolved Species
in Aquifers

The transfer of chemical components that, when in solutions, have no effect on
the physical properties of aquifer materials and groundwater, is inseparable from
the groundwater flow. Their advective transport involves micro- and macrodisper-
sion processes, which control the extent of solute dispersion in homogeneous and
heterogeneous aquifers. In this chapter, we will consider the migration models
that describe the motion of solutions miscible with groundwater in homogeneous
aquifers. The solute migration processes in heterogeneous (stratified and fractured-
porous) systems will be discussed in separate chapters.

1.1 Governing Equations and Solute Transport Parameters

The traditional description of flow and solute transport in natural porous and frac-
tured media (soils, sediments, rocks), as well as the solution of the majority of
subsurface hydrology problems, are based on the continuum mechanics approach
(Bear 1972; Shestakov 1995; Bear and Cheng 2010). The continuum assumption
considers the fluid and solid phase as a continuous medium with flow and solute
(mass) transport parameters taken to be well-defined at the REV (representative
elementary volume) scale. The appropriate level of statistical averaging of medium
properties is a priori attained in complexes of weakly lithified porous sediments. The
construction of solute migration models in fractured rocks requires the validity of
medium’s continuity assumption, REV, to be analyzed more thoroughly and the pos-
sible scale effects associated with the “structuring” of groundwater flows in fracture
space to be taken into account in the models (Schwartz et al. 1983; Berkowitz 2002;
Kosakowski 2004; Neuman 2005; Reeves et al. 2008a, b). Effective (or equivalent)
continuum models utilizing REV approach may not be applicable for real fractured
rocks (see below).

The mathematical formalization of the subsurface migration is based on the
groundwater flow continuity equation (which is equation of conservation of mass),
Darcy’s law and the solute transfer equation together with an appropriate set of
boundary and/or initial conditions. This section is devoted to analysis of such
models.

V.G. Rumynin, Subsurface Solute Transport Models and Case Histories, 3
Theory and Applications of Transport in Porous Media 25,
DOI 10.1007/978-94-007-1306-2_1, © Springer Science+Business Media B.V. 2011
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1.1.1 Advection of Conservative Components in Porous
and Fractured Media

Advection of particles or heat, from the classical fluid-dynamical point of view, is
the transfer of matter or heat by the flow of a fluid. Advection due to the fluid’s
bulk motion in pores or fractures is among the major mechanisms governing solute
transport in aquifers lying in the hydrodynamic zone of active water exchange. The
driving force for advection is the gradient in the hydraulic head.

In unconsolidated granular porous media, this process proceeds in practically
nonstructured void space; whereas liquid motion in fractured rocks, consisting of
an assemblage of intact rock blocks (matrix) separated by intersecting sets of joints,
proceeds in the space which generally has a distinct structure. In some cases (pri-
marily, when the process is considered at a local scale), these distinctions require
differentiation of the computation schemes (models) used to describe solute migra-
tion in two types of rock formations with different nature of void space.

1.1.1.1 Flow Field and Actual Fluid Velocity

In subsurface fluid dynamics, flow velocity field, creating potential for advection
of dissolved solutes is a vector field. This field can be mathematically described by
a continuity equation written in the most general form for compressible pore-fluid
mixtures as follows

—, +V-(pa) =0, (L.1)

dpp
d
where q is the specific discharge or Darcy velocity (a vector with 3 components)
[T,
K
==

q . VP —pg); (1.2)

p is the liquid density [ML™3]; ¢ is the porosity defined as the void space be-
tween grains (in porous-type formations) or fracture walls (in consolidated rocks)
filled with water [L3L~3]; P is the hydraulic pressure; K is the permeability [L?]
(second-order tensor with 9 components, three of which are K, K,, K;); w is the
dynamic viscosity [ML~!T~!]; g is the gravity vector [LT~2]. The term V - (pq) is
called the divergence of fluid flux, representing the net fluid influx/efflux through
the element and sometimes is written as div(pg). Equation 1.1 does not include the
inflow/outflow source-terms.

The first chapters of this book deal with calculating the motion of components
whose concentration C has no effect on the density (p = const) and viscosity (i =
const) of liquid in the pores (fractures). The possible initial (+ = 0) variations of
groundwater density are also neglected. The pores are assumed to be filled with
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water alone: no other liquids or gas phase are present. In such case, Eqs. 1.1 and 1.2
can be rewritten in terms of hydraulic head, 4 (Bear 1972, p. 207),

oh
Sy +V 4 =0, (1.3)
q=—kVh, (1.4)

where S is the specific storage of the porous medium [L~'], which is the volume of
water, dV,,, that a volume of an aquifer, dW,, releases from storage under a unit de-
cline in hydraulic head, dh; k is the hydraulic conductivity [LT~!]. Hydraulic heads
provide a measure of the total mechanical fluid potential, and Eq. 1.3, formulated on
the principle of conservation of fluid volume, conserves fluid mass.

To determine the specific discharge the gradient-based Darcy law can be written
in the more convenient, indicial notation, form which is valid for the general case of
groundwater flow in an anisotropic medium

dh

qi = —k

where g; are the components of specific discharge [LT~'], 4 is the hydraulic head
[L], kj(i = 1,2,3,j = 1,2,3) are the components of symmetrical matrix (tensor)
of hydraulic conductivity [LT~']; coefficient ki is connected with the permeability,
Kijj, by the relationship k; = Kjjpg/u. Formula (1.4a) implies the assumption that
summation over the same indices is carried out. In the general three-dimensional
case d/dxj =V =0 /dx+d/dy+d/dz is the Cartesian coordinate system, V is
gradient operator (= grad), sometimes referred to as Hamiltonian operator.

Now dissolved passive species will move with the same velocity as water parti-
cles (average water velocity) u; (u)

dx; g ax . q
Ec—ul—d),ormc u—(b. (1.5)

Equation (1.5) specify relationship between the specific discharge, which is used
to determine the volumes of fluid passing through given surfaces, and the actual
(advective) fluid velocity controlling the front of solute movement in the porous
space. Actual fluid velocity varies over the pore space, due to the connectivity and
geometric complexity of that space. This variable velocity can be characterized by
its mean or average value. The average fluid velocity depends on what part of the
cross-section area is made up of pores, and to what extent the pore space is con-
nected. Therefore ¢ is the effective porosity (fracture porosity in fractured rocks)
also called kinematic, advective and open porosity.

Taking C as the volumetric concentration of a chemical component (ML ™3, M is
the amount of the species), the advective flux (ML 2T ~!) can be expressed in terms
of specific discharge (g;):

J¢=¢qiC=¢ uC, or J*=qC = dpuC. (1.6)
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Here, J¢ (J¢) is the mass of a component carried across a unit area, oriented normal
to i direction, per unit time. Direction Cq coincides with the direction of fluid
motion.

In the cases where solute transport causes the appearance of density gradients or
where such gradients originally exist in groundwater systems, the use of hydraulic
head as only dependent variable in the analysis neglecting buoyancy component
of the flow-driving force is not acceptable (Bachu and Michael 2002; Post et al.
2007). Darcy’s specific discharge in such systems should be expressed in terms of
a pressure function with allowance made for the space and time variations in the
physical characteristics p and p (1.2). Thus, a fluid pressure-based formulation is
generally preferable in modeling variable density problems. Such problems, which
belong to the class of coupled problems, are considered in the following parts of this
book (Chaps. 12—18). The coupling of flow and transport phenomena is caused by
the dependence of the water density on the salt concentration.

Strictly speaking, the use of relationship (1.5) implies that the scales and dimen-
sions of the flow and solute migration problems are consistent. Thus, the effective
value of the hydraulic conductivity, derived from pumping tests of heterogeneous
aquifers, reflects the three-dimensional flow conditions. This value is always greater
than the hydraulic conductivity, which governs the migration of components under
constrained conditions of a one-dimensional or two-dimensional groundwater flow
(Rovey and Niemann 2005). This fact follows from the analysis of basic stochastic
models (Gelhar 1993; Neuman 1994), demonstrating the effect of the groundwater
flow dimensions on the effective hydraulic conductivity. The ratio of calculated to
actual migration velocity values can be as large as two or three, meaning that the
rate of aquifer pollution will be considerably overestimated.

1.1.1.2 Effective Porosity (Fracture Porosity)

The characteristic values of active porosity for loose (not cemented, sandy) sedi-
ments commonly varies within a relatively narrow range (¢ ~ 0.2 —0.4). In sand
type of sediments that have not experienced cementation, the value of ¢ is com-
monly near the total porosity value ¢°. Silt, loam and clay types of sediments also
feature sufficiently high ¢ values ($ = 0.3 — 0.45). However, in argillite-like clays,
where molecular diffusion dominates, a considerable portion of voids (¢? — o) is
inaccessible for dissolved species (Sect. 1.1.2.1). This is due to the presence of ce-
ment “walls” in the pore space. The confirmation is the radical difference between
molecular diffusion coefficients obtained in experiments with undisturbed rock sam-
ples and with packing clay prepared from the same samples (Garcia-Gutiérrez
et al. 2006). Moreover, the diffusion-accessible porosity depends on the type of the
migrating ion (Huysmans and Dassargues 2006).

In fractured crystalline rocks and hard sedimentary rocks such as sandstone,
limestone and chalk, conceptualized as nonuniform continua with bulk properties,
the scatter of parameter ¢ is much wider, while its absolute values are much less
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(the average interval is 0.005-0.03). Whence, it follows that the macroscopic
transport in fractured rocks, all other conditions being the same, should be much
faster than in porous ones.

Clearly, the errors in advection velocity estimates in porous sedimentary deposits
are primarily determined by errors in the description of permeability field and the
structure of groundwater flows. Variations in the porosity, ¢, are less significant than
the space variations in sediment permeability (hydraulic conductivity), so expert es-
timates of porosity can be used in some cases, while the hydraulic conductivity no
doubt requires detailed experimental studies. Conversely, as it can be seen later, the
values of ¢ in fractured type of rock formations are hardly predictable at the intuitive
level. Therefore, we have to accept the fact that the results of predicting ground-
water pollution in fractured rock complexes, because of their heterogeneity and
anisotropism in terms of permeability and advective porosity, are often unreliable.

1.1.1.3 Anisotropy of Sediment and Rock Properties

The form of Darcy’s law (1.4a) corresponds to the general case of fluid flow in an
anisotropic medium. The hydraulic anisotropy of a bed is the governing factor in
the advection in heavily deformed groundwater flow that form, for example, due to
concentrated water withdrawal or when density advection develops in the aquifer.
Of major importance in sedimentary (porous type) complexes is the anisotropy of
permeability in the profile, which is due to the lithologic and facies variability. The
anisotropy in fractured-rock complexes is mostly due to the presence of several sys-
tems of subvertical fractures (planar anisotropy) and the existence of bedding joints
(profile anisotropy). Large tectonic fractures with distinct unidirectional orientation
in a medium with primary lithogenetic jointing are most often responsible for planar
anisotropy. Therefore, one of the principal anisotropy directions commonly lies in
the plane of the water-bearing bed (aquifer), while the other is perpendicular to it.

1.1.1.4 On the Microstructure of Flows in Porous and Fractured Rocks

Active porosity, ¢, for unconsolidated or weakly consolidated (sand—clay) sedi-
ments is a conventional characteristic, since, in addition to flow-through (active)
zones, there always exist stagnant zones not involved in the flow but still playing
a considerable role in the formation of the general mass flow (Coats and Smith
1964; van Genuchten and Wierenga 1976; Rose 1977; Golubev 1981): by accumu-
lating the dissolved species via molecular diffusion, such dead-end zones enhance
the overall “salt-related” capacity of the system as compared to the active poros-
ity. Therefore, more appropriate characteristic for long-term forecasts would be the
value of the total “connected” porosity of rocks (¢?).

Taking into account the interaction between individual elements of flow-
bearing media is of fundamental importance for fractured rocks (Tsang et al.
1991; Gelhar 1993; Berkowitz 2002; Park et al. 2003; Kosakowski 2004;



