Theory and Applications of Transport in Porous Media

Vyacheslav G. Rumynin

Subsurface Solute Transport Models and Case Histories

With Applications to Radionuclide Migration

Subsurface Solute Transport Models and Case Histories

Theory and Applications of Transport in Porous Media

Series Editor: Jacob Bear, Department of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa, and School of Engineering, Kinneret College on the Sea of Galilee, Israel

Volume 25

Vyacheslav G. Rumynin

Subsurface Solute Transport Models and Case Histories

With Applications to Radionuclide Migration

Vyacheslav G. Rumynin The Russian Academy of Sciences Institute of Environmental Geology Saint Petersburg Division Saint Petersburg State University Geological Department Sredniy Ave., 41, of 519 199004 St. Petersburg Russian Federation rumynin@hge.pu.ru

This book is a revised and updated version of the book in Russian Геомиграционные модели в гидрогеологии (Geomigration Models with Application to Groundwater Hydrology), by Vyacheslav G. Rumynin, published by "Nauka" ("Science") Publisher, St. Petersburg, 2009, ISBN 978-5-02-025140-3.

ISBN 978-94-007-1305-5 e-ISBN 978-94-007-1306-2 DOI 10.1007/978-94-007-1306-2 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011930258

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Studies of solute fate and transport in the subsurface environment have been playing a significant role in hydrogeology over the past half century. The problem directly relates to the quality of natural water resources, which are essential to all kinds of life, and are a basic element in many sectors of human society. Most migration studies of both natural and anthropogenically derived species have considered the motion of a fluid (groundwater) accompanied by diffusion–dispersion phenomena, physicochemical interactions, as well as microbiological transformations, known to be the dominant factors providing the impact of contaminants upon groundwater supplies.

Over the last decades, essential progress in the migration process description has been achieved due to the development of mathematical background and numerical methods and laboratory and field investigations of particular transport mechanisms and physicochemical interactions. However, in many real situations, the subsurface material heterogeneity and variations in fluid properties, resulting in nonlinear contaminant plume behavior, make the prediction accuracy of the transfer processes too low to satisfy the practical needs. The lack of comprehensive field studies of solute movement is often cited as a major impediment to our understanding of solute transport in such systems.

Therefore, this work is aimed at the development of the basic knowledge of the subsurface solute transfer with a particular emphasis on field data collection and analysis coupled with modeling (analytical and numerical) tool application. The book is based mostly on field materials from author's long-standing, recent, and current experience in the study of groundwater quality related problems. The diversity of these problems is concerned with the variety of geological settings as well as the anthropogenic effects and processes caused by human activity. Some problems encountered in practice looked as challenge-like and, thus, the author was encouraged to search for new solutions and approaches. The relevant theoretical developments are concerned mainly with the formulation and solution of deterministic mass-transport equations for a wide range of engineering issues in groundwater quality assessment and forecasting that can be of some interest for bridging the gaps still existing in our knowledge of contaminant hydrogeology.

The book gives many computation examples and case studies drawn from the conducted field investigations. Those examples show the applicability of the theory

and methods for solving various practical problems and making decisions in contaminant hydrology to explain the observed and to forecast the future groundwater quality. The analyzed problems are as follows:

- investigation and prediction of groundwater contamination by industrial contaminants and solutions (radionuclides, chloride and nitrate brine) with special focus on the effect of (a) aquifer heterogeneity, anisotropy, and dual porosity,
 (b) density contrast between industrial waste and groundwater, (c) physicochemical interactions that play a major role in retarding (e.g., adsorption) or enhancing (e.g., interactions between dissolved species and mobile colloids) contaminant transport;
- (2) prediction of the effects of pumping on groundwater quality at wellfields:
 (a) the displacement of stratified initial concentration in artesian and coastal (off-shore) groundwater systems due to water pumping, (b) downward movement of mineral-weathering products in the vadoze zone (above the lowering water table) with water recharge to the producing aquifers;
- (3) groundwater dating using stable and radioactive isotopes for prediction and assessment of contamination potential and the time that would be needed to displace contaminants from the groundwater system;
- (4) field and laboratory tests' design and analysis, and monitoring data interpretation;
- (5) partitioning of surface and subsurface flows using isotope technique;
- (6) formation of evaporated salt deposits in closed surface water reservoirs having a hydraulic connection with the surrounding groundwater systems.

Several parts of the book demonstrate the potential for using numerical groundwater flow and transport models in environmental risk assessment of subsurface contamination by dense or light miscible liquid waste. Environmental isotope data were utilized for defining the groundwater systems and modeling data analysis. However, numerical modeling emerged in the book mostly as one of the primary tools used to understand the most important physical and physicochemical processes that occur in groundwater systems, as well as for getting analytical approximations for some coupled problems, which do not necessarily have exact solutions in closed analytical forms or cannot be treated with the classical methods.

One of the most essential topics addressed in the book is the migration and fate of radionuclides. Model development is motivated by field data analysis from a number of radioactively contaminated sites in the Russian Federation: near-surface radioactive waste (RW) disposal sites in northwestern Russia and the Southern Urals, and two deep-well RW injection sites in Western Siberia. These sites are part of huge nuclear industry enterprises licensed to possess radioactive materials and also involved in hazardous-waste operations, which are supervised by RosAtom, the State Nuclear Energy Corporation, Russian Federation.

The total activity of radionuclides that were released (accidentally or intentionally) in aquifers at many sites reaches hundred thousands to hundred millions Ci. Any of the three RW disposal sites out of the four mentioned here (located in Southern Urals and Western Siberia) probably contains more radioactive contamination in the subsurface than any other site in the world. Additionally, detailed information on physical, mechanical, and solute transfer properties of clay formation (which is considered as a host medium for the engineered underground RW repository in the northwestern part of the Russian Federation) is also analyzed.

Those sites play a unique role in the advancement of knowledge of the subsurface behavior and fate of many hazardous radionuclides and can be considered as fieldscale laboratories. The book is focused on the modeling and analytical assessments of a range of physical and chemical processes and interactions of concern. Some of the key issues needed to be addressed included:

- study of the behavior of a broad spectrum of radionuclides (fission products and actinides) in waste (with low content of dissolved solids and brine) based on long-term (up to 50 years) monitoring data in shallow and deep aquifer systems;
- (2) study of the spatial variability of migration properties of aquifer materials and clayey semipervious formations;
- (3) assessment of the role of brine-induced advection in redistribution of radioactive components at waste disposal sites;
- (4) study of adsorption hysteresis implying isotherm nonsingularity and other nonideal sorption phenomena, as well as the assessment of their role in natural attenuation of radioactively contaminated sites;
- (5) analysis of transient hydrogeochemical-barrier effects, facilitating radionuclide transport, and some other mechanisms responsible for "fast" radionuclide transport in aquifers;
- (6) experimental evidence for colloid-facilitated radionuclide (actinide) transport, and mathematical description of the phenomena.

The model developments were accompanied by laboratory studies into natural attenuation, radionuclide adsorption and desorption kinetics and equilibrium (including when colloidal particles are involved). Batch tests were conducted with different radioactive solutions under different temperature and pressure conditions. Anomalous behavior of radionuclides was observed and modeled.

This study can be regarded as the continuation of a series of works started by the author in the 1970s in cooperation with the outstanding Russian scientist, hydrogeologist, V.A. Mironenko, whose contribution to the development of several lines of studies in hydrogeology and hydrogeomechanics is difficult to overestimate. At the same time, this book could not appeared were it not for the all-round support from colleagues – researchers from E.M. Sergeev Institute of Environmental Geology, St. Petersburg Division, RAS, and St. Petersburg State University, who rendered assistance in the preparation of parts of the book. In this connection, the author very much appreciates the help of Leonid Sindalovsky in implementation of many numerical algorithms considered in the book, the contribution of Pavel Konosavsky to the joint studies of adsorption hysteresis and the development of some models of solute transfer in the porous media under disturbed flow conditions. The author also appreciates Igor Tokarev's willingness to share his data on regional isotope study of a groundwater system in the area of RW disposal at Tomsk-7 site.

The study discusses experiments carried out in laboratories of A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, and A.P. Alexandrov Technical Institute under supervision of Drs. Elena Zakharova, Elena Kaimin, and Elena Pankina. The author expresses his sincere gratitude to these groups for cooperation that have yielded new results.

The author appreciates the cooperation of Aretech Solutions and TIHGSA Enterprises allowing him to learn new hydrogeological aspects related to the formation of groundwater resources and quality in arid regions.

The author also much appreciates the attention to his work and fruitfull discussions with Profs. Vsevolod Shestakov and Sergey Pozdniakov, Moscow State University, and Dr. Andrei Zubkov, the head of the Environmental Protection Division (Siberian Chemical Plant), and many other brilliant experts–hydrogeologists, whose talent and enthusiasm in scientific and production work allows the author to believe in the future of the Russian hydrogeological school.

Many efforts were made by Dr. Chin-Fu Tsang and Prof. Jacob Bear to organize this work in a proper way in order to prepare the book in a format acceptable for the international publishing company, Springer. Discussions and exchange of information, ideas, and opinions with them was a great support to this work.

Finally, the author very much appreciates the help of Dr. Gennady Krichevets in professional translation of the book and many useful comments from him allowing the author to make certain improvements to the book. The author would also like to acknowledge the help of Ekaterina Kaplan for her editorial assistance and technical support of the work.

Thus, the book, along with theoretical findings, contains field information, which will facilitate the understanding of subsurface solute transport and the development of a methodology for practical application to groundwater hydrology. This book addresses scientists and engineers who are interested in the quantitative approach to studying groundwater migration processes. The book can also be profitably read by students.

December 28, 2010

Vyacheslav G. Rumynin

Part I The Essentials of Dissolved Species Transport in the Subsurface Environment: Basic Definitions, Fundamental Mechanisms and Mathematical Formulation

1	Adve	ection ar	nd Dispersion of Dissolved Species in Aquifers	3
	1.1	Govern	ning Equations and Solute Transport Parameters	3
		1.1.1	Advection of Conservative Components	
			in Porous and Fractured Media	4
		1.1.2	Molecular Diffusion and Hydrodynamic	
			Dispersion (Microdispersion)	11
		1.1.3	Initial and Boundary Conditions; Definitions	
			of Concentration Functions	18
	1.2	Model	s for Advective Transport in Homogeneous	
		Isotrop	pic Media	20
		1.2.1	A Characteristics-Based Method for Solving	
			the Transport Equations	20
		1.2.2	Solute Transport Process Analysis	
			in Curvilinear Coordinates	24
	1.3	A One	-Dimensional Model of Microdispersion	33
		1.3.1	Solutions for Infinite Porous Domain	34
		1.3.2	A Basic (Fundamental) Solution	
			for Semi-Infinite Porous Domain	36
		1.3.3	On the Solution and Analysis of Solute	
			Transport Problems by Applying the Laplace Transform	38
		1.3.4	Quasi-One-Dimensional Solution	
			of Microdispersion Problems in Deformed	
			Flows in Porous Media	45
	1.4	Spatial	l (2D and 3D) Models of Microdispersion	
		in Uni	directional Steady-State Flow	46
		1.4.1	Basic Solutions for a Point Source	47
		1.4.2	Approximate Solutions for 2D and 3D Solute	
			Transport Problems	50
		1.4.3	Steady-State Asymptotics	52

		1.4.4	Approximate Solutions for a Finite-Size Source	54
		1.4.5	Exact Solutions for 3D Problem	57
		1.4.6	The Influence of Geological Boundaries	58
	1.5	Equati	ons for Simplest Chemical Reactions and Transformation	s 60
		1.5.1	Sorption	60
		1.5.2	Decay	64
	Refe	rences		70
2	Wat	Marra	mont and Calute Transmost in Hasstored	
2	wate	er Movel	ment and Solute Transport in Unsaturated	
	Poro	us Medi	a	//
	2.1	Basic S	Soil-Water Movement and Infiltration Models	78
		2.1.1	Governing Functions and Parameters	79
		2.1.2	Continuity Equation and its Major Representations	85
		2.1.3	Particular Solutions for Moisture Migration	
			and Their Analysis	88
	2.2	On Mo	dels Coupling Water Infiltration and Solute Transport	106
		2.2.1	Advection: A Characteristic Solution	107
		2.2.2	Dispersion During Adsorption of Water by Soil	111
		2.2.3	Advection–Dispersion Transport	114
	Refe	rences	-	116

Part II Conceptual Models for Regional Assessment of Solute Transport (Under Homogeneous Liquid Flow Conditions)

3	One	Dimens	ional Hydrodynamic Mixing Models for	
	Regi	onal Flo	w Systems Under Areal Recharge Conditions	
	and	Their Aj	oplication to the Interpretation of Isotopic Data	123
	3.1	Stable	Component Migration	124
		3.1.1	Flow and Mass Balance Under Confined Flow	
			Conditions	124
		3.1.2	Basic Analytical Solutions	125
		3.1.3	Correspondence with a Reservoir Model:	
			Transit Time and Transit Time Distribution	128
	3.2	Transp	ort of a Solute Subject to First-Order Single-Stage Decay	131
		3.2.1	Basic Analytical Solutions	131
		3.2.2	Variable Boundary Conditions	132
	3.3	Migrat	ion of a Solute Subject to Chain Decay	135
		3.3.1	Two-Stage Chain Decay of an Unstable	
			Isotope Coming into an Aquifer with	
			Infiltration Recharge	136
		3.3.2	Two-Stage Chain Decay in Aquifer with	
			a Radioactive Element in Solids as the Only	
			Source of Radioactivity	139
		3.3.3	Two-Member Chain Decay in Aquifer Solids	
			Containing Several Radioactive Elements	141

		3.3.4	Basic Concept and Model Development	1/13
		335	Converting Physical Units	143 146
	3 /	Hydrov	dynamic Interpretation of Isotonic Groundwater	140
	5.4	Monito	bring Data: Case Studies	140
		2 / 1	On Groundwater Dating Using Clobal Isotones	149
		3.4.1	Calculated Distributions of Atmospheric ³ H	
		3.4.2	and Its Decay Product ³ He in Croundwater	
			(Turical Curves)	150
		2 1 2	(Typical Curves)	132
		5.4.5	A Case History of "H-"He Groundwater Analysis and Data	
			Interpretation (Jahara Distant) Laningrad	
			Interpretation (Iznora Plateau, Leningrad	157
		2 4 4	Region, Russia)	
		3.4.4	Hydrodynamic Interpretation of Groundwater	
			Isotopic Data from a Site of Deep Liquid	
			Radioactive Waste Disposal, Siberia Chemical	150
	DC		Combine, Russian Federation	159
	Refe	rences		
	D	·	Dimensional in Martinel Course Continue)	
4	Pron	lle (1wo-	-Dimensional in vertical Cross-Section)	172
		els for S	olute Transport in Regional Flow Systems	1/3
	4.1	Proble	m Statement	1/3
	4.2	Homog	Ele Vileite E' 11	1/3
		4.2.1	Flow velocity Field	1/5
		4.2.2	Flow Kinematic Equations and Concentration	177
		4.0.0		1//
		4.2.3	Semi-Analytical Solution for the Distribution	
			of Global Iritium over the Aquifer Depth	101
	1.2		(Typical Curves)	
	4.3	Two-L	ayer Confined Aquifer	
		4.3.1	Model	
		4.3.2	An Illustrative Example	
	4.4	Multı-	Layer (Stratified) Aquifer	
		4.4.1	Hydrodynamic Features of Flow	
	-	4.4.2	Characteristic-Based Relations	
	Refe	rences		
5	Mod	als for A	accomment of Transverse Diffusive and	
3		ective Tr	assessment of fransverse Diffusive and	100
	5.1	Diffusi	ion-Dispersion Interlayer Exchange	200
	5.1	5 1 1	Balance Estimation for Laver by Laver Moss	200
		5.1.1	Transport Scheme	201
		510	A Case of Two I aver Stratum with Sharp	
		5.1.2	A Case of 100-Layer Stratum with Sharp	202
			renneatinty Contrast Detween Layers	202

		5.1.3	The Case of a Reservoir Consisting of Two	207
	5.0	C 1	Permeable Layers	207
	5.2	Combi	ned influence of vertical Advection and	200
		Diffusi	ion in a Two-Layer Leaky System on Solute Transport	208
		5.2.1	Derivation of Analytical Solution	208
		5.2.2	A Case Study: The Formation and	
			Degradation of a Subsurface Iodine-Water	
			Deposit (Paleohydrogeology Reconstruction)	213
	Refe	rences		217
6	Ana	lytical M	lodels for Solute Transport in Saturated	
	Frac	tured-Po	prous Media	219
	6.1	Govern	ning Parameters and Conceptual Model Formulation	220
		6.1.1	Parameters and Topological Presentation	
			of Fractured Rock Continuum	220
		6.1.2	Mass Transfer Functions	222
		6.1.3	Basic Analytical Solutions (for Asymptotic Models)	228
	6.2	Genera	alized Solutions	237
		6.2.1	A Streamline-Based Approach	237
		6.2.2	Application of the Convolution Property	
			of the Laplace Transform for Solving the	
			Problem of Solute Advective Dispersion	
			in Dual Porosity Systems	238
	6.3	Solute	Transport in Heterogeneous Dual Porosity	
		Media	(Qualitative Analysis)	243
	6.4	Adsorp	otion and Decay	245
		6.4.1	Adsorption	245
		6.4.2	Decay	246
		6.4.3	Migration of Unstable Components Under	
			Areal Recharge	253
	Refe	rences	-	255
_		1.00		
7	Flow	and Tra	ansport Through Unsaturated	250
	7 1	Droble	m Conceptualization	239
	7.1	Soturot	tion Profile at Standy, State	239
	7.2	Salura	Transport Under Steady State Moisture	202
	1.5	Distrib	Mainsport Olider Steady-State Moisture	264
	7 4	Distrit	with the second second the second sec	204
	1.4		Model Desed Approaches	200
		7.4.1	A Solution Describing the Early Stage	207
		1.4.2	A Solution Describing the Early Stage	260
		742	The Integral Mass Delance Approach	209
		1.4.5	The integral Mass Balance Approach	

7.4.4	A Solution for Leading Front Propagation	
	Under Exponentially Damped Regime	
	of Water Imbibition into a Gas-Saturated	
	Matrix Block	
7.4.5	A Generalized Solution	
7.4.6	Kinematic Wave Approximation	
7.4.7	Solute Transport Problem Formulation	
References		

Part III Solute Transport Processes Induced by Recharge and Discharge Wells

8 Mo	dels for T	racer Test Analysis and Interpretation	
8.1	Tracer	Migration in a Radially Divergent Flow Field	
	8.1.1	Mathematical Background	
	8.1.2	Microdispersion: A Full Analytical Solution	
	8.1.3	Approximate Solutions	
	8.1.4	Tracer Tests in Fractured-Porous Aquifers	
8.2	Tracer	Migration in a Radially Convergent Flow Field	
	8.2.1	On the Application of Approximated Models	
		with Linear Geometry and the Assessment	
		of Distorting Factors	
	8.2.2	Microdispersion of Tracer in a Homogeneous	
		Single Porosity Aquifer	
	8.2.3	Tracer Transport in a Fractured-Porous Aquifer	
8.3	The Ti	ime Lag for Breakthrough Curves and Tracer	
	Dilutio	on in a Source Well	
	8.3.1	The Time Lag for Breakthrough Curves	
		Detected in an Observation Well	
	8.3.2	Effect of Tracer Dilution in the Source Well	
8.4	Analyt	tical Models for Doublet Tracer Testing	
	8.4.1	Flow Field and Travel Time Between	
		Recharge and Discharge Wells	
	8.4.2	Piston-Like Tracer Displacement	
		in a Homogeneous Single Porosity Aquifer	
	8.4.3	An Approximate Solution for Microdispersion	
		in a Homogeneous Aquifer	
	8.4.4	Solutions for Mass Transfer in a Fractured-	
		Porous Aquifer	
8.5	Proble	ms Related to the Subvertical Migration	
	of Trac	cers in a Field of Recharge and Discharge Wells	
	8.5.1	Problem Conceptualization	
	8.5.2	Partially-Penetrating Well Operation	
		Under the Condition of Nonuniform Initial	
		Concentration Profile	

		8.5.3	Plots and Formulas for the Analysis	
			of Vertical Dipole Tests	329
	Refe	rences		335
9	Mod	lels for I	Prediction of Effects of Pumping	
	on G	roundw	ater Quality at Well-Fields	339
	9.1	Chang	e in the Groundwater Quality in Leaky Aquifer Systems	339
		9.1.1	Flow and Mass Balance Equations	340
		9.1.2	Solutions of Radial Flow Problems	342
		9.1.3	Solution of Solute Transport Problems	344
	9.2	Change	e in the Water Quality of Unconfined Producing	
		Aquife	r Under the Influence of Weathering Sulphide	
		Minera	al Products in Vadoze Zone	351
		9.2.1	Governing Factors and the Scale of the Process	351
		9.2.2	Thermodynamics of Chemical Weathering Process	354
		9.2.3	Sulfide Oxidation Kinetics	355
		9.2.4	Distribution of Oxygen and Sulfates	
			in the Vadoze Zone	356
		9.2.5	Sulfate Migration in an Aquifer	359
	Refe	rences		365

Part IV Lumped-Parameter Models for Flow and Solute Balance in Coupled Surface-Water/Groundwater Systems

10	Conc	ceptual Lumped-Parameter Models for Coupled			
	Tran	sient Flow and Solute Transport in Catchments			
	10.1	Basic Concepts and Definitions	369		
	10.2	A Two-Layer Model with Lumped Parameters			
		for Lateral Subsurface Flow and Base Flow	372		
	10.3	Basic Analytical Functions	375		
		10.3.1 Steady-State Flow	375		
		10.3.2 Unsteady-State Flow	375		
	10.4	Time-Varying Infiltration	377		
		10.4.1 Computation Algorithm	377		
		10.4.2 An Illustrative (Synthesized) Example	378		
	10.5	A Coupled Solution of Fluid Flow and Solute			
		Transport Equations for Time-Independent Boundary Conditions	379		
		10.5.1 Steady-State Flow Field	379		
		10.5.2 Transient Flow Field	380		
	10.6	A Coupled Solution of Fluid Flow and Solute			
		Transport Equations for Time-Variable Input Functions	383		
		10.6.1 Numerical–Analytical Solution Algorithm	383		
		10.6.2 An Illustrative (Synthesized) Example	384		
	10.7	Runoff, Infiltration, and Groundwater Recharge	385		
		10.7.1 Water Budget	386		

		10.7.2	for Runoff Generation	.388
	10.8	A Modi	ified SCS-CN Model	.390
		10.8.1	A Basic Semi-Empirical Formula for Runoff Calculation.	
		10.8.2	Basic Relationships for Flow Characteristics	.392
		10.8.3	Concentration Response Function	.393
		10.8.4	Illustrative Examples	.394
	Refer	ences	-	.402
11	Unste	ady-Sta	te Hydrogeological Model of Evaporation-	

Indu	ced Sedimentation in a Surface Reservoir	
11.1	Problem Formulation	
11.2	Basic Balance Equation	
	11.2.1 The Case of $C_1 < C_1^*$	
	11.2.2 The Case of $C_1 \ge C_1^*$	
11.3	Numerical Solutions of the Problem and Their Analysis	410
Refer	ences	

Part V Variable-Density Flow and Solute Transport: Physical Phenomena and Mathematical Formulation

12	Dyna	mic Equ	ilibrium of Freshwater–Saltwater Interface	417
	12.1	Basic S	teady-State Models	417
		12.1.1	Interface Between Two Immiscible Liquids	
			in Equilibrium	417
		12.1.2	Ghyben–Herzberg Relation (Approximation)	419
	12.2	Approx	imate Solutions of the Problem of the Shape	
		of the S	eawater–Fresh Groundwater Interface	421
		12.2.1	A Confined Coastal Aquifer	421
		12.2.2	A Leaky Confined Coastal Aquifer	423
		12.2.3	A Phreatic Coastal Aquifer Under Recharge Conditions	426
		12.2.4	Freshwater Lens on an Elongated Oceanic Island	427
	12.3	Equilibrium for Saltwater Upconing Beneath		
		a Partia	lly Penetrating Well	429
		12.3.1	Problem Setting and Analysis of Existing	
			Approaches and Solutions	430
		12.3.2	Analytical Solutions for the Critical Pumping	
			Rate and the Critical Interface Rise	432
	Refer	ences		436
13	Dyna	mics of S	Saltwater–Freshwater Interface	439
	13.1	Two-Di	mensional Profile Models for Immiscible	
		Fluids l	Interface Displacement	439
		13.1.1	Linear Displacement	440
		13.1.2	Radial Displacement	447

	13.2	Applica	ation of Two-Phase Flow Approach for Brine	
		Transpo	ort in Porous Media Description	453
		13.2.1	Physical and Mathematical Basis	453
		13.2.2	Properties of Particular Solutions	
	Refer	ences	-	460
14	Study	ying Sub	surface Density-Induced Phenomena Using	
	Num	erical M	odeling	
	14.1	On Phy	vsical Approaches to Mathematical	
		Program	nming Formalism	
	14.2	Brine N	Aigration in Idealized Aquifer Systems	
		14.2.1	Numerical Simulators' Performance	
			Capabilities and Their Testing	
		14.2.2	Physical Phenomena Analysis for Migration	
			of a Brine Released from a Surface Reservoir	
		14.2.3	Solute Concentration in a Pumping Well	
			Affected by Saltwater-Freshwater Interface Upconi	ng481
	Refer	ences		

Part VI Case Histories of Subsurface Contamination by Industrial and Environmental Brines: Field Data Analysis and Modeling of Migration Processes

Radioactive Brine Migration at the Lake Karachai Site			
(Sout	h Urals,	Russian Federation)	
15.1	Introdu	ction Remarks	
15.2	Hydrog	eological Setting and General Description	
	of the M	Aigration Process	
15.3	Ground	water Contamination Plume	500
	15.3.1	A Structure of Groundwater Flow at the Site	
	15.3.2	The Distribution of the Radionuclides and	
		Principal Ions Within Contamination Plume	501
15.4	Overvie	ew of Modeling Analysis Approach	
15.5	Model Setup and Calibration		
	15.5.1	Model Design	
	15.5.2	Sharp-Interface Approach	
	15.5.3	Fully Miscible Transport Modeling Approach	513
	15.5.4	Brine Plume Simulation and Prediction	515
Refer	ences		517
Mode	eling of S	Seawater Intrusion in Coastal Area of River	
Anda	rax Delt	a (Almeria, Spain)	
16.1	Study A	Area	519
	16.1.1	Brief Geological Description of the Site	
	16.1.2	Hydrogeological Setting	
	Radio (Sout 15.1 15.2 15.3 15.4 15.5 Refer Mode Anda 16.1	Radioactive E (South Urals, 15.1 Introdu 15.2 Hydrog of the N 15.3 Ground 15.3 I 15.5.3 I 15.5.4 References Modeling of S Andarax Delt 16.1 Study A 16.1.1 16.1.2	 Radioactive Brine Migration at the Lake Karachai Site (South Urals, Russian Federation). 15.1 Introduction Remarks

	16.2	Groundwater Salinization 16.2.1 Spatial and Temporal Changes in Groundwater Qu 16.2.2 Major Results of Vertical Electrical Soundings	
	163	Concentualization and Model Design of Seawater	
	10.5	Intrusion Process	527
	16.4	Modeling Results	530
	Refer	rences	
17	Study	ying and Modeling of Uncontrolled Discharge of Deep	
	Brine	e into Mine Drainage Systems at the Korshunovsky	
	Iron	Ore Mine (Eastern Siberia, Russian Federation)	535
	17.1	A Brief Description of the Geological and	
		Hydrological Structure of the Site, Drainage Measures	
		and Groundwater Regime Disturbed by Mining Operations	536
		17.1.1 Hydrogeological Units	537
		17.1.2 Drainage of the Open Pit Mine	537
		17.1.3 Vertical Hydrogeochemical Stratification	
		of the Groundwater System and Temporal	
		Changes in Groundwater Quality	538
	17.2	Analytical Assessments	539
	17.3	Numerical Modeling	541
		17.3.1 Process Conceptualization and Model Design	
		17.3.2 Modeling Results	
		17.3.3 Experimental Verification	543
	Refer	rences	544
10	Link	t Wastewater Injection into a Deen Coolecies	
10	Ligit	notion Containing Pring ("Walabalay Organistar"	
	FOrn	nation Containing Drine ("volziisky Orgsintez"	E 1 E
		- wen Disposal Site, Central Russia Region)	
	18.1	Hydrogeological Characteristics and Setting	545
		of the Geological Environment	
		18.1.1 Available Field Data	
		18.1.2 Conceptualization of the Hydrogeological	
		Setting and Model Description	
	18.2	The Concept and Technique of Numerical Analysis	
	18.3	Numerical Solution of a Groundwater Transport Problem	554
	Refer	rences	556
_			

Part VII Physicochemical Description and Mathematical Formulation of Sorption Processes

19	Conc	eptual Models for Sorption Under Batch Conditions	
	19.1	Sorption Equilibrium	
		19.1.1 Principal Sorption Isotherms	

		19.1.2	Principal Factors Affecting the Experimental	
			Isotherm Data	
		19.1.3	Hysteresis Phenomenon in Sorption	
	19.2	Models	s of Sorption/Desorption Kinetics	
		19.2.1	Sorption Kinetics	
		19.2.2	A Generalized Nonequilibrium Sorption Model	
	19.3	Models	s for Static (Batch) Sorption Experiments	
		19.3.1	Mass Balance in a Batch Experiment	
		19.3.2	One-Site Kinetic Model of Sorption	
			with Concomitant Mineral Dissolution	
	Refer	ences		
20	Conc	eptual T	ransport Models for Adsorbable Solutes	
	20.1	Equilib	rium Sorption in Groundwater Flow	
		20.1.1	Effective Transfer Parameters for Equilibrium	
			Reversible Sorption	
		20.1.2	The Influence of Nonlinear Sorption	
			on Advective–Dispersive Solute Transport	
		20.1.3	The Influence of Nonlinear Sorption	
			on Advective Transport of a Decaved Component	
		20.1.4	The Influence of Sorption Hysteresis	
			on Concentration Front Displacement	
		20.1.5	On Incorporation of a Geochemical	
			Phenomenon into a Radionuclide Transport Model	
	20.2	Nonea	ilibrium Sorption	
		20.2.1	A Fundamental Solution for Linear Sorption	
		20.2.2	Asymptotic Solution of the Problem	
			of Nonlinear Sorption Kinetics	
		20.2.3	A Numerical Model of an Adsorbable	
		20.2.0	Component Transport in Porous Media	
			with Discrete Sorption Sites	612
	Refer	ences		613
	110101		•••••••••••••••••••••••••••••••••••••••	

Part VIII Experimental and Modeling Study of Sorption–Desorption Processes

21	Radon Site for Near-Surface Disposal of Solid RW			617
	21.1	A Gene	eral Description of the Groundwater	
		Contam	ination Process	617
		21.1.1	Hydrogeological Setting	617
		21.1.2	The Causes and Extent of Groundwater Contamination.	618
		21.1.3	Dynamics of Groundwater Contamination	620
	21.2	Variatio	on in Sorption Coefficients and Controlling Factors	622
		21.2.1	Distribution Coefficients (Linear Model)	622
		21.2.2	Nonlinear Freundlich Sorption of Co-60	626

	21.3	Hystere	esis in Sorption	627
		21.3.1	Experiments with Reference Samples	
			of Cambrian Sands	627
		21.3.2	Model Estimates of the Formation	
			of Concentration Fronts	633
	21.4	Spatial	Variability of Sorption Parameters	634
		21.4.1	A Review of Published Materials	634
		21.4.2	Spatial Variability of Nonlinear Sorption	
			Parameters for Sr-90	636
	Refer	ences		644
		_		
22	Study	y of Phys	sical, Mechanical, Flow, and Solute Transfer	
	Prop	erties of	Clay Formations with Respect to the Design	(17
	of Ur	Idergrou	ind Storage Facilities for KW Disposal	647
	22.1	Introdu	iction Remarks	647
	22.2	The Str	ructure, Chemical and Mineral Composition,	
		and the	Physical Properties of the Clays	649
	22.3	Rock M	Iechanical and Hydraulic Properties	652
	22.4	Variatio	ons in Physical and Mechanical Properties over Depth .	653
	22.5	A Com	parative Analysis of the Clay Formations	657
	22.6	Sorptio	n–Desorption Experiments (Vkt Clay)	658
		22.6.1	Sorption	658
		22.6.2	Desorption	660
	22.7	Diffusi	on Experiments	662
		22.7.1	Single-Chamber Diffusion Cell	
			(In/Out-Diffusion) Tests with Packing Cambrian Clay	662
		22.7.2	Single-Chamber Diffusion Cell Tests	
			with Undisturbed Vendian Clay Samples	669
		22.7.3	A 3D Diffusion Test with a Cambrian Clay	
			Sample of Natural Structure	672
		22.7.4	A Comparative Analysis	677
	Refer	ences	· · · · · · · · · · · · · · · · · · ·	679
23	Toms	sk-7 and	Krasnoyarsk-26 Sites for Deep-Well	

-3	Injection Radioactive Waste Disposal, and Lake Karachai				
	Site of	of Near-S	Surface Disposal of Radioactive Brine		
	23.1	Nonide	al Behavior of Sorption Curves Observed		
		in Bate	h Tests with Core Material from the Tomsk-7 Site		
		23.1.1	Materials, Methods, and Experimental Series		
		23.1.2	Results: Qualitative Analysis		
		23.1.3	Modeling Results and Discussion	694	
		23.1.4	On the Direction of Processes Under		
			Extremely High Temperatures	698	

	23.2	The Inf	luence of Mineral Transformation of Aquifer	
		Matrix	on Radionuclide Sorption in Batch Tests	
		with Co	ore Material from the Krasnoyarsk-26 Site	701
		23.2.1	General Information	701
		23.2.2	Experimental Setup and Analysis of the Major Results	702
	23.3	Radion	uclide Sorption onto Fresh Fractures	
		of Volc	anogenic Metamorphized Rocks from the Lake	
		Karach	ai Site	
		23 3 1	Samples and Experimental Setup	707
		23.3.1	Sorption Parameters	708
		23.3.2	Hysteresis in Sorption	700
	Dofor	23.3.3		710
	Kelei	ences		/10
Par	t IX	Colloid-	Facilitated Solute Transport in Aquifers	
1	• 121	Conora	rumateu solute transport in Aquiters	
24	Collo	idal Syst	tems and Equilibrium in Such Systems	715
	24.1	Genera	Views on Colloids and Their Genesis	715
	24.2	Propert	ies of Colloidal Systems	719
	27.2	24.2.1	Stability of Colloidal System	710
		24.2.1	Mability and A saumulation of Calloida	/19
		24.2.2	Mobility and Accumulation of Conoids	700
	24.2	a	in the Porous Media	122
	24.3	Sorptio	n of Chemical Species onto Colloids	
		(Under	Batch Conditions)	724
		24.3.1	Basic Reactions	724
		24.3.2	Governing Equations for Sorption Equilibrium	726
		24.3.3	Sorption Kinetics and Some Experimental Data	727
	24.4	Subsurf	Face Behavior of Actinides at Existing	
		and Pro	posed RW Disposal Sites	731
		24.4.1	Sites Where Pu and Some Other Actinides	
			Have Been Detected in the Environment	731
		24.4.2	Designed and Engineered Repositories	
			for RW Disposal	733
	Refer	ences	T	735
25	Expe	rimental	Study of Radionuclide Interaction	
	with	Colloids	with Respect to Tomsk-7 Deen-Well RW	
	Dispe	osal in a	Geological Formation	739
	25.1	A Stud	v of Sorption of Plutonium on Colloids	
	23.1	in Ultra	filtration Experiments with Synthesized Solutions	730
		25 1 1	Experimental Setup	730
		25.1.1	Interpretation of Experimental Deculta	93، مەت
	25.2	23.1.2	interpretation of Experimental Results	/43
	25.2	A Study	y of Colloidal Forms of Kadionuclide Migration	750
		at a Rad	noactive waste Disposal Site	750
		25.2.1	Experimental Setup	750
		25.2.2	Calculation Algorithm and Obtained	
			Parameter Values	752

26	Mode	els of Soi	rption Type for Colloid-Facilitated Transport	
	in Aq	uifers		755
	26.1	The Go	verning Equations for Migration of Colloidal Solutions	755
		26.1.1	A Dual-Species Model	755
		26.1.2	Transport of a Polydisperse Colloidal Solution	757
	26.2	A Mod	el with Effective Parameters	758
		26.2.1	Equilibrium Reversible Sorption	758
		26.2.2	Irreversible Sorption	760
	26.3	Numeri	ical Modeling and Illustrative Examples	761
	20.0	26.3.1	Introduction Comments	
		26.3.2	Equilibrium Sorption	
		2633	The Influence of Sorption Kinetics	767
	Refer	ences		769
	Refer	ences		
27	A Th	ermody	namics-Based Conceptual Model for	
	Collo	id-Facili	itated Solute Transport	771
	27.1	Surface	Complexation Models (Static Formulation)	771
	27.2	On Mo	deling Approach for Multicomponent Solute Transport	
	27.2	27.2.1	Tests and Illustrative Examples	779
		27.2.1	Sample Problems and Analysis of Migration Process	781
	27.3	$\Delta Conc$	pentual Model for the Subsurface Transport	/01
	21.5	of Plute	onium on Colloidal Particles Involving Surface	
		Comple	evotion Reactions	784
		27 2 1	The Basic Chemistry of Plutonium	784
		27.3.1	Fremples of Modeling Assessments	/04
		21.3.2	for Migration of the Sodium Nitrate Solution	
			Containing Dr(IV) and Colloide	702
	DC		Containing Pu(IV) and Colloids	
	Refer	ences		797
C	l i .			0.01
	nciusio	n		801
Ind	0.77			002
IUU	ex			

Part I The Essentials of Dissolved Species Transport in the Subsurface Environment: Basic Definitions, Fundamental Mechanisms and Mathematical Formulation

The theory of solute migration in groundwater originates from studies devoted to the description of elementary pore-scale mechanisms (processes) of the movement of dissolved species in a single fluid phase, including advection, molecular diffusion, and hydrodynamic dispersion, which are accompanied by acts of simplest sorptiontype physicochemical interactions and solute decay (destruction) reactions. Those studies were mostly based on the classical theory of fluid motion in idealized porous media (Muskat 1937; Scheidegger 1957), as well as on chemical kinetics and reaction engineering. However, it has become clear that there exist some specific features in the application of conventional hydrodynamics methods to the formulation, solution, and analysis of many practically significant hydrogeological problems. In particular, the relative significance of those mechanisms and interactions in the general migration process was soon found to depend on the spatial and temporal scale of their analysis, the lithological and genetic type of geological sections, and the spatial correlation structure of their physical parameters, the structure of water flows, and the conditions on their inner and outer boundaries. This, as well as the specific features of the application of physico-mathematical apparatus to the solution of appropriate boundary problems regarding dissolved species transport in single-phase constant-density groundwater flows, will be the focus of the first part of this book.

Mathematical models used to describe solute transport in the unsaturated zone of the subsurface are also included in this part of the book. As will be shown, for accurate prediction of contaminant transport through the unsaturated zone, field equations for transport of moisture and chemicals must be coupled.

The equations given here represent a deterministic approach to describing the subsurface transport phenomena, and have been assembled from a considerable collection of previous works and investigations conducted by many recognized

authorities in the field of subsurface fluid dynamics. More generalized fluid flow and transport models, accounting for the stochastic nature of aquifers and soil materials are subject of high profile, well-publicized special investigations.

The proposed material forms a bridge to the understanding of solute transport under near-natural conditions and the analysis of migration of complex-composition solutions (liquids) whose properties differ from those of formation waters. Besides, the approaches developed here will be used to assess the contributions of various physicochemical processes, which in many cases control the potential of anthropogenic impact on groundwater quality under natural conditions.

Chapter 1 Advection and Dispersion of Dissolved Species in Aquifers

The transfer of chemical components that, when in solutions, have no effect on the physical properties of aquifer materials and groundwater, is inseparable from the groundwater flow. Their advective transport involves micro- and macrodispersion processes, which control the extent of solute dispersion in homogeneous and heterogeneous aquifers. In this chapter, we will consider the migration models that describe the motion of solutions miscible with groundwater in homogeneous aquifers. The solute migration processes in heterogeneous (stratified and fracturedporous) systems will be discussed in separate chapters.

1.1 Governing Equations and Solute Transport Parameters

The traditional description of flow and solute transport in natural porous and fractured media (soils, sediments, rocks), as well as the solution of the majority of subsurface hydrology problems, are based on the continuum mechanics approach (Bear 1972; Shestakov 1995; Bear and Cheng 2010). The continuum assumption considers the fluid and solid phase as a continuous medium with flow and solute (mass) transport parameters taken to be well-defined at the REV (representative elementary volume) scale. The appropriate level of statistical averaging of medium properties is a priori attained in complexes of weakly lithified porous sediments. The construction of solute migration models in fractured rocks requires the validity of medium's continuity assumption, REV, to be analyzed more thoroughly and the possible scale effects associated with the "structuring" of groundwater flows in fracture space to be taken into account in the models (Schwartz et al. 1983; Berkowitz 2002; Kosakowski 2004; Neuman 2005; Reeves et al. 2008a, b). Effective (or equivalent) continuum models utilizing REV approach may not be applicable for real fractured rocks (see below).

The mathematical formalization of the subsurface migration is based on the groundwater flow continuity equation (which is equation of conservation of mass), Darcy's law and the solute transfer equation together with an appropriate set of boundary and/or initial conditions. This section is devoted to analysis of such models.

1.1.1 Advection of Conservative Components in Porous and Fractured Media

Advection of particles or heat, from the classical fluid-dynamical point of view, is the transfer of matter or heat by the flow of a fluid. Advection due to the fluid's bulk motion in pores or fractures is among the major mechanisms governing solute transport in aquifers lying in the hydrodynamic zone of active water exchange. The driving force for advection is the gradient in the hydraulic head.

In unconsolidated granular porous media, this process proceeds in practically nonstructured void space; whereas liquid motion in fractured rocks, consisting of an assemblage of intact rock blocks (matrix) separated by intersecting sets of joints, proceeds in the space which generally has a distinct structure. In some cases (primarily, when the process is considered at a local scale), these distinctions require differentiation of the computation schemes (models) used to describe solute migration in two types of rock formations with different nature of void space.

1.1.1.1 Flow Field and Actual Fluid Velocity

In subsurface fluid dynamics, flow velocity field, creating potential for advection of dissolved solutes is a vector field. This field can be mathematically described by a continuity equation written in the most general form for compressible pore-fluid mixtures as follows

$$\frac{\partial \phi \rho}{\partial t} + \nabla \cdot (\rho \,\mathbf{q}) = 0, \tag{1.1}$$

where **q** is the specific discharge or *Darcy velocity* (a vector with 3 components) $[LT^{-1}]$,

$$\mathbf{q} = -\frac{\mathbf{K}}{\mu} \left(\nabla P - \rho \mathbf{g} \right); \tag{1.2}$$

ρ is the liquid density [ML⁻³]; φ is the porosity defined as the void space between grains (in porous-type formations) or fracture walls (in consolidated rocks) filled with water [L³L⁻³]; *P* is the hydraulic pressure; **K** is the permeability [L²] (second-order tensor with 9 components, three of which are K_x , K_y , K_z); µ is the dynamic viscosity [ML⁻¹T⁻¹]; **g** is the gravity vector [LT⁻²]. The term $\nabla \cdot (ρ\mathbf{q})$ is called the divergence of fluid flux, representing the net fluid influx/efflux through the element and sometimes is written as div(ρq). Equation 1.1 does not include the inflow/outflow source-terms.

The first chapters of this book deal with calculating the motion of components whose concentration *C* has no effect on the density ($\rho = \text{const}$) and viscosity ($\mu = \text{const}$) of liquid in the pores (fractures). The possible initial (t = 0) variations of groundwater density are also neglected. The pores are assumed to be filled with

water alone: no other liquids or gas phase are present. In such case, Eqs. 1.1 and 1.2 can be rewritten in terms of hydraulic head, h (Bear 1972, p. 207),

$$S_s \frac{\partial h}{\partial t} + \nabla \cdot \mathbf{q} = 0, \tag{1.3}$$

$$\mathbf{q} = -\mathbf{k}\nabla h,\tag{1.4}$$

where S_s is the specific storage of the porous medium $[L^{-1}]$, which is the volume of water, dV_w , that a volume of an aquifer, dW_a , releases from storage under a unit decline in hydraulic head, dh; **k** is the hydraulic conductivity $[LT^{-1}]$. Hydraulic heads provide a measure of the total mechanical fluid potential, and Eq. 1.3, formulated on the principle of conservation of fluid volume, conserves fluid mass.

To determine the specific discharge the gradient-based Darcy law can be written in the more convenient, indicial notation, form which is valid for the general case of groundwater flow in an anisotropic medium

$$q_i = -k_{ij} \frac{\partial h}{\partial x_i},\tag{1.4a}$$

where q_i are the components of specific discharge $[LT^{-1}]$, h is the hydraulic head [L], $k_{ij}(i = 1, 2, 3, j = 1, 2, 3)$ are the components of symmetrical matrix (tensor) of hydraulic conductivity $[LT^{-1}]$; coefficient k_{ij} is connected with the permeability, K_{ij} , by the relationship $k_{ij} = K_{ij}\rho g/\mu$. Formula (1.4a) implies the assumption that summation over the same indices is carried out. In the general three-dimensional case $\partial/\partial x_j \equiv \nabla = \partial/\partial x + \partial/\partial y + \partial/\partial z$ is the *Cartesian* coordinate system, ∇ is gradient operator (\equiv grad), sometimes referred to as *Hamiltonian* operator.

Now dissolved passive species will move with the same velocity as water particles (average water velocity) $u_i(\mathbf{u})$

$$\frac{\partial x_i}{\partial t}\Big|_C = u_i = \frac{q_i}{\phi}, \text{ or } \frac{\partial \mathbf{x}}{\partial t}\Big|_C = \mathbf{u} = \frac{\mathbf{q}}{\phi}.$$
(1.5)

Equation (1.5) specify relationship between the specific discharge, which is used to determine the volumes of fluid passing through given surfaces, and *the actual (advective) fluid velocity* controlling the front of solute movement in the porous space. Actual fluid velocity varies over the pore space, due to the connectivity and geometric complexity of that space. This variable velocity can be characterized by its mean or average value. The average fluid velocity depends on what part of the cross-section area is made up of pores, and to what extent the pore space is connected. Therefore ϕ is the *effective porosity (fracture porosity* in fractured rocks) also called kinematic, advective and open porosity.

Taking *C* as the volumetric concentration of a chemical component (ML⁻³, M is the amount of the species), the advective flux (ML⁻²T⁻¹) can be expressed in terms of specific discharge (q_i):

$$J_i^a = q_i C = \phi \ u_i C, \text{ or } \mathbf{J}^a = \mathbf{q} C = \phi \mathbf{u} C.$$
(1.6)

Here, J_i^a (\mathbf{J}^a) is the mass of a component carried across a unit area, oriented normal to *i* direction, per unit time. Direction $C\mathbf{q}$ coincides with the direction of fluid motion.

In the cases where solute transport causes the appearance of density gradients or where such gradients originally exist in groundwater systems, the use of hydraulic head as only dependent variable in the analysis neglecting buoyancy component of the flow-driving force is not acceptable (Bachu and Michael 2002; Post et al. 2007). Darcy's specific discharge in such systems should be expressed in terms of a pressure function with allowance made for the space and time variations in the physical characteristics ρ and μ (1.2). Thus, a fluid pressure-based formulation is generally preferable in modeling variable density problems. Such problems, which belong to the class of coupled problems, are considered in the following parts of this book (Chaps. 12–18). The coupling of flow and transport phenomena is caused by the dependence of the water density on the salt concentration.

Strictly speaking, the use of relationship (1.5) implies that the scales and dimensions of the flow and solute migration problems are consistent. Thus, the effective value of the hydraulic conductivity, derived from pumping tests of heterogeneous aquifers, reflects the three-dimensional flow conditions. This value is always greater than the hydraulic conductivity, which governs the migration of components under constrained conditions of a one-dimensional or two-dimensional groundwater flow (Rovey and Niemann 2005). This fact follows from the analysis of basic stochastic models (Gelhar 1993; Neuman 1994), demonstrating the effect of the groundwater flow dimensions on the effective hydraulic conductivity. The ratio of calculated to actual migration velocity values can be as large as two or three, meaning that the rate of aquifer pollution will be considerably overestimated.

1.1.1.2 Effective Porosity (Fracture Porosity)

The characteristic values of active porosity for loose (not cemented, sandy) sediments commonly varies within a relatively narrow range ($\phi \approx 0.2 - 0.4$). In sand type of sediments that have not experienced cementation, the value of ϕ is commonly near the total porosity value ϕ^0 . Silt, loam and clay types of sediments also feature sufficiently high ϕ values ($\phi \approx 0.3 - 0.45$). However, in argillite-like clays, where molecular diffusion dominates, a considerable portion of voids ($\phi^0 - \phi$) is inaccessible for dissolved species (Sect. 1.1.2.1). This is due to the presence of cement "walls" in the pore space. The confirmation is the radical difference between molecular diffusion coefficients obtained in experiments with undisturbed rock samples and with packing clay prepared from the same samples (García-Gutiérrez et al. 2006). Moreover, the diffusion-accessible porosity depends on the type of the migrating ion (Huysmans and Dassargues 2006).

In fractured crystalline rocks and hard sedimentary rocks such as sandstone, limestone and chalk, conceptualized as nonuniform continua with bulk properties, the scatter of parameter ϕ is much wider, while its absolute values are much less

(the average interval is 0.005–0.03). Whence, it follows that the macroscopic transport in fractured rocks, all other conditions being the same, should be much faster than in porous ones.

Clearly, the errors in advection velocity estimates in porous sedimentary deposits are primarily determined by errors in the description of permeability field and the structure of groundwater flows. Variations in the porosity, ϕ , are less significant than the space variations in sediment permeability (hydraulic conductivity), so expert estimates of porosity can be used in some cases, while the hydraulic conductivity no doubt requires detailed experimental studies. Conversely, as it can be seen later, the values of ϕ in fractured type of rock formations are hardly predictable at the intuitive level. Therefore, we have to accept the fact that the results of predicting groundwater pollution in fractured rock complexes, because of their heterogeneity and anisotropism in terms of permeability and advective porosity, are often unreliable.

1.1.1.3 Anisotropy of Sediment and Rock Properties

The form of Darcy's law (1.4a) corresponds to the general case of fluid flow in an anisotropic medium. The hydraulic anisotropy of a bed is the governing factor in the advection in heavily deformed groundwater flow that form, for example, due to concentrated water withdrawal or when density advection develops in the aquifer. Of major importance in sedimentary (porous type) complexes is the anisotropy of permeability in the profile, which is due to the lithologic and facies variability. The anisotropy in fractured-rock complexes is mostly due to the presence of several systems of subvertical fractures (planar anisotropy) and the existence of bedding joints (profile anisotropy). Large tectonic fractures with distinct unidirectional orientation in a medium with primary lithogenetic jointing are most often responsible for planar anisotropy. Therefore, one of the principal anisotropy directions commonly lies in the plane of the water-bearing bed (aquifer), while the other is perpendicular to it.

1.1.1.4 On the Microstructure of Flows in Porous and Fractured Rocks

Active porosity, ϕ , for *unconsolidated or weakly consolidated* (sand–clay) *sediments* is a conventional characteristic, since, in addition to flow-through (active) zones, there always exist stagnant zones not involved in the flow but still playing a considerable role in the formation of the general mass flow (Coats and Smith 1964; van Genuchten and Wierenga 1976; Rose 1977; Golubev 1981): by accumulating the dissolved species via molecular diffusion, such dead-end zones enhance the overall "salt-related" capacity of the system as compared to the active porosity. Therefore, more appropriate characteristic for long-term forecasts would be the value of the total "connected" porosity of rocks (ϕ^0).

Taking into account the interaction between individual elements of flowbearing media is of fundamental importance for *fractured rocks* (Tsang et al. 1991; Gelhar 1993; Berkowitz 2002; Park et al. 2003; Kosakowski 2004;