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Preface

The origin of dual tableaux goes back to the paper by Helena Rasiowa and Roman
Sikorski ‘On the Gentzen theorem’ published in Fundamenta Mathematicae in 1960.
The authors presented a cut free deduction system for the classical first-order logic
without identity. Since then the deduction systems in the Rasiowa–Sikorski style
have been constructed for a great variety of theories, ranging from well established
non-classical logics such as intuitionistic, modal, relevant, and multiple-valued log-
ics, to important applied theories such as, among others, temporal, in particular
interval temporal logics, various logics of programs, fuzzy logics, logics of rough
sets, theories of spatial reasoning including region connection calculus, theories of
order of magnitude reasoning, and formal concept analysis.

Specific methodological principles of construction of dual tableaux which make
possible such a broad applicability of these systems are:

� First, given a theory, a truth preserving translation is defined of the language of
the theory into an appropriate language of relations (most often binary);

� Second, a dual tableau is constructed for this relational language so that it pro-
vides a deduction system for the original theory.

This methodology, reflecting the paradigm ‘Formulas are Relations’, enables us to
represent within a uniform formalism the three basic components of formal sys-
tems: syntax, semantics, and deduction apparatus. The essential observation, leading
to a relational formalization of theories, is that a standard relational structure (i.e.,
a Boolean algebra together with a monoid) constitutes a common core of a great
variety of theories. Exhibiting this common core on all the three levels of syntax,
semantics and deduction, enables us to create a general framework for representa-
tion, investigation and implementation of theories.

The relational approach enables us to build dual tableaux in a systematic, mod-
ular way. First, deduction rules are defined for the common relational core of the
theories. These rules constitute a basis of all the relational dual tableau proof sys-
tems. Next, for any particular theory specific rules are added to the basic set of rules.
They reflect the semantic constraints assumed in the models of the theory. As a con-
sequence, we need not implement each deduction system from scratch, we should
only extend the basic system with a module corresponding to the specific part of a
theory under consideration.
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viii Preface

Relational dual tableaux are powerful tools which perform not only verification
of validity (i.e., verification of truth of the statements in all the models of a theory)
but often they can also be used for proving entailment (i.e., verification that truth of a
finite number of statements implies truth of some other statement), model checking
(i.e., verification of truth of a statement in a particular fixed model), and satisfaction
(i.e., verification that a statement is satisfied by some fixed objects of a model).

Part I of the book is concerned with the two systems which provide a foundation
for all of the dual tableau systems presented in this book. In Chap. 1 we recall the
original Rasiowa–Sikorski system and we extend it to the system for first-order logic
with identity. We discuss relationships of dual tableaux with other deduction sys-
tems, namely, tableau systems, Hilbert-style systems, Gentzen-style systems, and
resolution. In Chaps. 2 and 3 classical theories of binary relations and their dual
tableaux are presented. It is shown how dual tableaux of these theories perform the
above mentioned tasks of verification of validity, entailment, model checking, and
verification of satisfaction. Some decidable classes of relational formulas are pre-
sented in this part together with dual tableau decision procedures.

Part II is concerned with some non-classical theories of relations. In Chap. 4
we present a theory of Peirce algebras and its dual tableau. Peirce algebras pro-
vide a means for representation of interactions between binary relations and sets.
In Chap. 5 a theory of fork algebras and its dual tableau are presented. Fork al-
gebras are the algebras of binary relations which, together with all the classical
relational operations, have a special operation, referred to as fork of relations. While
the relational theories of Chap. 2 serve as means of representation for propositional
languages, the fork operation enables us a translation of first-order languages into a
language of binary relations. In Chap. 6 we present a theory of typed relations and
its dual tableau. The theory enables us to represent relations as they are understood
in relational databases. The theory deals with relations of various finite arities and,
moreover, each relation has its type which is meant to be a representation of a subset
of attributes on which the relation is defined.

In Parts III–V relational formalizations of various theories are presented. In
Part III relational dual tableaux are constructed for modal (Chap. 7), intuitionistic
(Chap. 8), relevant (Chap. 9), and finitely many-valued (Chap. 10) logics.

Part IV is concerned with the major theories of reasoning with incomplete infor-
mation. In Chaps. 11 and 12 we deal with logics of rough sets and their relational
dual tableaux. Chapter 13 presents a relational treatment of formal concept analy-
sis. In Chap. 14 a monoidal t-norm fuzzy logic is considered and a relational dual
tableau for this logic is constructed. In this system ternary relations are needed for
representation of the monoid product operation. Next, in Chap. 15 theories of order
of magnitude reasoning are considered and their dual tableaux are presented.

Part V is concerned with dual tableaux for temporal reasoning, spatial reason-
ing, and for logics of programs. The first two chapters of that part refer to temporal
logics. In Chap. 16 some classical temporal logics are dealt with and in Chap. 17
relational dual tableaux for a class of interval temporal logics are presented. In
Chap. 18 dual tableaux for theories of spatial reasoning are constructed, including
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a system for the region connection calculus. Chapter 19 includes dual tableaux for
various versions of propositional dynamic logic and for an event structure logic.

In Part VI we consider some theories for which dual tableau systems are con-
structed directly within the theory, without translation into any relational theory.
In Chap. 20 we present a class of threshold logics where both weights of formulas
and thresholds are elements of a commutative group. In Chap. 21 we present a con-
struction of a signed dual tableau which is a decision procedure for a well known
intermediate logic. Chapter 22 includes dual tableaux for a class of first-order Post
logics. The reduct of this dual tableau for the propositional part of the logic is a
decision procedure. Chapter 23 presents a propositional logic endowed with iden-
tity treated as a propositional operation and some theories based on this logic. Dual
tableaux for all of these theories are presented. In Chap. 24 logics and algebras of
conditional decisions are considered together with their dual tableau decision pro-
cedures.

The book concludes with Part VII. In the single Chap. 25 of this part we make
a synthesis of what we learned in the process of developing dual tableaux in the
preceding chapters. We collect observations on how the dual tableaux rules should
be designed once the constraints on the models of the theories or definitions of some
specific constants are given. We also discuss some useful strategies for construction
of dual tableaux proofs.

All the dual tableau systems considered in the book are proved to be sound and
complete. We present a general method of proving completeness of dual tableaux
which is shown to be broadly applicable to many theories.

Researchers working in any of the theories mentioned in the titles of the chapters
will receive in the book a formal tool of specification and verification of those prob-
lems in their theories which involve checking validity, satisfaction, or entailment.
Every theory whose dual tableau is presented in a chapter of the book is briefly in-
troduced at the beginning of the chapter and a bibliography is indicated where an
interested reader could trace developments, major results, and applications of the
theory.

To get an idea of what dual tableaux are and how they are related to the other ma-
jor types of deduction systems, reading Chap. 1 is recommended. After reading the
introductory material from Sects. 1.1, . . . , 1.4, and Sects. 2.1, . . . , 2.8, each chapter
in Parts III, IV, and V may be read independently. The material of Chap. 7 may be
helpful in reading Chapters 11, 12, 16, 17, and 19, since they are concerned with
modal-style logics.

Readers interested in the formal methods of deduction and their application to
specification and verification will find in the book an exhaustive exposition and dis-
cussion of dual tableaux and their methodology illustrated with several case studies.
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Chapter 1
Dual Tableau for Classical First-Order Logic

1.1 Introduction

In [RS60] Rasiowa and Sikorski developed a deduction system for classical
first-order logic without identity. Their aim was to present a system which is a
realization of the Beth idea of the analytic tableau [Bet59] and, in contrast with the
Gentzen system [Gen34] which required the cut rule in the proof of completeness,
was cut free. In this chapter we present an extension of the dual tableau of Rasiowa
and Sikorski to first-order logic with the identity predicate. This deduction system
is an implicit foundation of all the dual tableaux presented in this book.

In this chapter the notions and terminology which will be used throughout the
book for presentation of dual tableaux is established. In particular, we discuss vari-
ous types of dual tableaux rules, the notion of correctness of a rule in a proof system,
and a form of dual tableaux proofs. We present a detailed proof of completeness of
the dual tableau for first-order logic with identity. The main steps of this proof deter-
mine a paradigm which will be relevant to all the dual tableaux completeness proofs
in the subsequent chapters of the book.

Next, we recall the tableau system for first-order logic introduced in [Smu68]
and we discuss how it is related to the Rasiowa and Sikorski system. Following
[GPO07b] and some ideas from [SOH04] we show that the two systems are dual
to each other. We present a principle of this duality and we show how proofs in
one of those systems can be transformed into proofs in the other system. We also
discuss a relationship between dual tableaux and Hilbert-style systems, Gentzen-
style systems, and resolution. Following [Kon02], we show that the dual tableau may
be seen as Gentzen system with the rules where sequents have the empty precedents.
We also compare dual tableaux proofs with resolution proofs in a similar way as
tableaux and resolution are compared in [OdS93, Sch06]. A section of this chapter is
devoted to a discussion of various ways the identity predicate may be treated in dual
tableaux. We compare the dual tableaux rules for identity with the corresponding
rules from some other deduction systems.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 1,
c� Springer Science+Business Media B.V. 2011
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4 1 Dual Tableau for Classical First-Order Logic

1.2 Classical First-Order Logic with Identity

In this section we recall the language and the semantics of the classical first-order
logic with identity. We consider the first-order logic without function symbols. It is
known that these symbols are definable in terms of predicate symbols, therefore this
is not a severe limitation. Throughout the book, this logic will be denoted by F.

The vocabulary of the logic F consists of the following pairwise disjoint sets of
symbols:

� OV F – a countable infinite set of individual variables (also referred to as object
variables);

� PF – a countable set of predicate symbols; we assume that the identity predicate
‘D’ belongs to PF;

� f:;^;_g – the set of propositional operations of negation, conjunction and dis-
junction, respectively;

� f8; 9g – the set of the universal and existential quantifier, respectively.

The set of atomic formulas of the logic F is the smallest set such that:

� x D y is an atomic formula for all x; y 2 OV F;
� P.x1; : : : ; xk/ is an atomic formula, for every k-ary predicate P 2 PF, k � 1,

and for all x1; : : : ; xk 2 OV F.

The set of F-formulas is the smallest set including the set of atomic formulas and
closed on propositional operations and quantifiers. Throughout the book, a formula
of the form :.x D y/ will be denoted by x ¤ y. A literal is an atomic formula or
a negated atomic formula.

As usual, propositional operations of implication,!, and equivalence,$, are
definable:

For all F-formulas ' and  ,

' !  
dfD :' _  ;

' $  
dfD .' !  / ^ . ! '/:

Let ' be an F-formula and let x be an individual variable occurring in '. A variable
x is said to be free in ' whenever at least one of its occurrences in ' is not in the
scope of any quantifier, and it is said to be bound if it is not free. We write '.x/ to
say that a variable x is free in '.

An F-model is a pair M D .U;m/ satisfying the following conditions:

� U is a non-empty set;
� m is a meaning function assigning relations on U to predicates, i.e., for every
k-ary predicate P , m.P / � U k ;

� m.D/ is an equivalence relation on U ;
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� The extensionality property (also referred to as a congruence property) is sat-
isfied: for all ai ; bi 2 U; i D 1; : : : ; k, and for every k-ary predicate symbol
P , if .a1; b1/ 2 m.D/; : : : ; .ak ; bk/ 2 m.D/, and .a1; : : : ; ak/ 2 m.P /, then
.b1; : : : ; bk/ 2 m.P /.

An F-model is standard whenever the meaning of the predicate D is the identity,
i.e., m.D/ D f.a; a/ W a 2 U g.

Let M be an F-model. A valuation in M is a mapping vWOV F ! U . We write
M; v ˆ ' to denote that ' is satisfied in M by v. The relation ˆ is defined induc-
tively as follows:

� M; v ˆ .x D y/ iff .v.x/; v.y// 2 m.D/;
� M; v ˆ P.x1; : : : ; xk/ iff .v.x1/; : : : ; v.xk// 2 m.P /;
� M; v ˆ :' iff not M; v ˆ ';
� M; v ˆ ' ^  iff M; v ˆ ' and M; v ˆ  ;
� M; v ˆ ' _  iff M; v ˆ ' or M; v ˆ  ;
� M; v ˆ 8x' iff for every valuation v0 in M such that v and v0 coincide on

OV F n fxg, M; v0 ˆ ';
� M; v ˆ 9x' iff for some valuation v0 in M such that v and v0 coincide on

OV F n fxg, M; v0 ˆ '.

A formula ' is true in M if and only if M; v ˆ ' for every valuation v in M. An
F-formula is F-valid whenever it is true in all F-models. Throughout the book, ‘not
M; v ˆ '’ will be written as M; v 6ˆ '.

Clearly, F-validity of a formula implies its truth in all standard F-models. The
following fact is well known.

Proposition 1.2.1. For every F-model M and for every valuation v in M, there
exist a standard F-model M0 and a valuation v0 in M0 such that for every F-formula
', M; v ˆ ' iff M0; v0 ˆ '.

1.3 Rasiowa–Sikorski Proof System for Classical First-Order
Logic with Identity

In this section we present the Rasiowa–Sikorski system (RS for short) for the logic
F as presented in [RS63] and we expand it with a rule for identity. The rules of
RS-system preserve and reflect validity of the sets of formulas, which are their con-
clusions and premises. Validity of a finite set of formulas is defined as validity of
the disjunction of its elements.

The rules of dual tableau for logic F are of the forms:

.rule1/
˚.x/

˚0.x0; z/
.rule2/

˚.x/

˚0.x0; z/ j˚1.x1; z/
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where ˚.x/ is a finite set of formulas whose individual variables are among the
elements of set.x/, where x is a finite sequence of individual variables and set.x/ is
the set of elements of sequence x; every ˚j .xj ; z/, j D 0; 1, is a finite non-empty
set of formulas, whose individual variables are among the elements of set.xj / [
fzg, where z is either instantiated to arbitrary individual variable (usually to the
individual variable that appears in the set of formulas to which the rule is being
applied) or z must be instantiated to a new variable (not appearing as a free variable
in the formulas of the set to which the rule is being applied). A rule of the form
(rule2) is a branching rule. In a rule, the set above the line is referred to as its premise
and the set(s) below the line is (are) its conclusion(s). A rule of the form (rule1)
(resp. (rule2)) is said to be applicable to a finite setX of formulas whenever˚.x/ �
X . As a result of an application of a rule of the form (rule1) (resp. (rule2)) to a setX ,
we obtain the set .X n˚.x//[˚0.x0; z/ (resp. the sets .X n˚.x//[˚i .xi ; z/, i 2
f0; 1g). As usual, we will write premises and conclusions of the rules as sequences
of formulas rather than sets.

Let ' and  be F-formulas. RS-dual tableau consists of decomposition rules of
the following forms:

(RS_)
' _  
'; 

(RS:_)
:.' _  /
:' j : 

(RS^)
' ^  
' j  

(RS:^)
:.' ^  /
:';: 

(RS:)
::'
'

(RS8)
8x'.x/
'.z/

(RS:8)
:8x'.x/

:'.z/;:8x'.x/
z is a new variable z is any variable

(RS9) 9x'.x/
'.z/; 9x'.x/ (RS:9) :9x'.x/

:'.z/
z is any variable z is a new variable

and the specific rule of the following form:

.RS D/ '.x/

x D z; '.x/ j '.z/; '.x/

where z is any variable, '.x/ is an atomic formula, and '.z/ is obtained from '.x/

by replacing all the occurrences of x in '.x/ with z.

A finite set of formulas is RS-axiomatic whenever it includes a subset of the form
(RSAx1) or (RSAx2):

(RSAx1) fx D xg, where x is any variable;
(RSAx2) f';:'g, where ' is any formula.
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A finite set of formulas f'1; '2; : : : ; 'ng, n � 1, is said to be an RS-set whenever
the disjunction of its elements is F-valid. It follows that comma (;) in the rules is
interpreted as disjunction.

A rule of the form (rule1) (resp. (rule2)) is RS-correct whenever for every finite
set X of F-formulas, X [ ˚.x/ is an RS-set iff X [ ˚0.x0; z/ is an RS-set(resp.
X [ ˚0.x0; z/ and X [ ˚1.x1; z/ are RS-sets). It follows that branching (j) in
the rules is interpreted as conjunction. Note that, as mentioned earlier, the defini-
tion of correctness establishes preservation and reflection of validity by the rules.
It is a characteristic feature of all Rasiowa–Sikorski style deduction systems (see
[RS63, GPO07b]). A transfer of validity from the conclusion of a rule to the premise
is used for proving soundness of the system and the other direction for proving com-
pleteness.

According to the semantics of propositional operations and quantifiers we obtain:

Proposition 1.3.1.

1. The RS-rules are RS-correct;
2. The RS-axiomatic sets are RS-sets.

Proof. By way of example, we prove the proposition for rules (RS8/, (RS9/, and
(RSD/. Let X be a finite set of F-formulas and let '.x/ be an F-formula with a free
variable x.

(RS8) Let z be a variable that does not occur as a free variable in the formulas
of the set X [ f8x'.x/g. Then X [ f'.z/g is an RS-set if and only if for every
F-model M and for every valuation v in M, either there exists  2 X such that
M; v ˆ  or for every valuation v0 in M such that v and v0 coincide on OV F n fzg,
M; v0 ˆ '.z/. The latter is equivalent to F-validity of disjunction of formulas of the
set X [ f8x'.x/g, from which RS-correctness of the rule (RS8) follows.

(RS9) Let z be any variable. Clearly, if the premise of the rule is an RS-set, then
also the conclusion of the rule is an RS-set. Now, assume X [ f'.z/; 9x'.x/g is an
RS-set and suppose X [ f9x'.x/g is not an RS-set. Then there exist an F-model
M and a valuation v in M such that M; v 6ˆ 9x'.x/. However, by the assumption,
M; v ˆ '.z/. Let v0 be a valuation in M such that v0.x/ D v.z/ and for every
y 2 OV F n fxg, v0.y/ D v.y/. Thus, M; v ˆ 9x'.x/, a contradiction.

(RSD) Let '.x/ be an atomic formula. Clearly, if X [ f'.x/g is an RS-set, then
so areX [fx D z; '.x/g andX[f'.z/; '.x/g. Assume thatX [fx D z; '.x/g and
X[f'.z/; '.x/g are RS-sets. SupposeX[f'.x/g is not an RS-set. Then there exist
an F-model M and a valuation v in M such that for every formula # 2 X [f'.x/g,
M; v 6ˆ # . By the assumption, M; v ˆ x D z and M; v ˆ '.z/. Then by the
extensionality property M; v ˆ '.x/, a contradiction. ut
Given a formula, successive applications of the rules result in a tree whose nodes
consist of finite sets of formulas.
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Let ' be an F-formula. An RS-proof tree for ' is a tree with the following
properties:

� The formula ' is at the root of this tree;
� Each node except the root is obtained by the application of an RS rule to its

predecessor node;
� A node does not have successors whenever its set of formulas is an RS-axiomatic

set or none of the rules is applicable to its set of formulas.

A branch of an RS-proof tree is said to be closed whenever it contains a node
with an RS-axiomatic set of formulas. An RS-proof tree is closed whenever all
of its branches are closed. Note that every closed branch is finite. A formula ' is
RS-provable whenever there is a closed RS-proof tree for ' which is then referred
to as its RS-proof.

From Proposition 1.3.1 we get soundness of RS-system.

Proposition 1.3.2. If an F-formula ' is RS-provable, then ' is F-valid.

Corollary 1.3.1. If an F-formula ' is RS-provable, then ' is true in all standard
F-models.

As usual in proof theory a concept of completeness of a proof tree is needed. Intu-
itively, completeness of a tree means that all the rules that can be applied have been
applied. By abusing the notation, for a branch b and a formula ', we write ' 2 b if
' belongs to the set of formulas of a node of branch b.

A branch b of an RS-proof tree is said to be complete whenever it is closed or it
satisfies the following completion conditions:

Cpl(RS_) (resp. Cpl(RS:^)) If .' _  / 2 b (resp. :.' ^  / 2 b), then both
' 2 b (resp. :' 2 b) and  2 b (resp. : 2 b), obtained by an application of
the rule (RS_) (resp. (RS:^));

Cpl(RS^) (resp. Cpl(RS:_)) If .' ^  / 2 b (resp. :.' _  / 2 b), then either
' 2 b (resp. :' 2 b) or  2 b (resp. : 2 b), obtained by an application of
the rule (RS^) (resp. (RS:_));

Cpl(RS:) If .::'/ 2 b, then ' 2 b, obtained by an application of the rule (RS:);
Cpl(RS8) (resp. Cpl(RS:9)) If 8x'.x/ 2 b (resp. :9x'.x/ 2 b), then for some

individual variable z, '.z/ 2 b (resp. :'.z/ 2 b), obtained by an application of
the rule (RS8) (resp. (RS:9));

Cpl(RS9) (resp. Cpl(RS:8)) If 9x'.x/ 2 b (resp. :8x'.x/ 2 b), then for every
individual variable z, '.z/ 2 b (resp. :'.z/ 2 b), obtained by an application of
the rule (RS9) (resp. (RS:8));

Cpl(RSD) If '.x/ 2 b and '.x/ is an atomic formula, then for every individual
variable z, either .x D z/ 2 b or '.z/ 2 b, obtained by an application of the
rule (RSD).

An RS-proof tree is said to be complete if and only if all of its branches are complete.
A complete non-closed branch is said to be open. Note that the rules guarantee that
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every RS-proof tree can be extended to a complete RS-proof tree. A procedure for
constructing a complete proof tree can be found in [DO96]. Observe also that every
open branch of an F-proof tree that contains an atomic formula is infinite, since the
specific rule (RSD) can be applied infinitely many times to any atomic formula.

Observe that the rules of RS-dual tableau preserve the literals, that is any appli-
cation of a rule transfers the literals from the premises to the conclusions. Hence,
we have:

Fact 1.3.1 (Preservation of literals). If a node of an RS-proof tree contains a lit-
eral, then all of its successors contain this literal as well.

Proposition 1.3.3. For any branch of an RS-proof tree, if the literals ' and :'
belong to the branch, then the branch is closed.

Proof. Let b be a branch of an RS-proof tree. Fact 1.3.1 implies that if ' 2 b and
:' 2 b, for an atomic formula ', then eventually both of these formulas appear in
a node of branch b. Since the set containing a subset f';:'g is F-axiomatic, b is
closed. ut
Let b be an open branch of an RS-proof tree. We define a branch structure Mb D
.U b; mb/ as follows:

� U b D OV F;
� mb.P / D f.x1; : : : ; xk/ 2 .U b/k W P.x1; : : : ; xk/ 62 bg, for every k-ary predi-

cate symbol P 2 PF; k � 1.

Proposition 1.3.4. For every open branch b of an RS-proof tree, Mb is an F-model.

Proof. First, we show that mb.D/ is an equivalence relation on the set U b . If for
some x 2 OV F, .x; x/ 62 mb.D/, then .x D x/ 2 b, which means that b is closed, a
contradiction. Let .x; y/ 2 mb.D/ and suppose .y; x/ 62 mb.D/. Then .x D y/ 62 b
and .y D x/ 2 b. By completion condition Cpl(RSD), either .x D y/ 2 b or
.y D y/ 2 b. In the first case we have a contradiction, in the second case the
branch b is closed, which contradicts the assumption. Let .x; y/ 2 mb.D/ and
.y; z/ 2 mb.D/, which means that .x D y/; .y D z/ 62 b. Suppose .x; z/ 62 mb.D/,
that is .x D z/ 2 b. By the completion condition Cpl(RSD), either .x D y/ 2 b or
.y D z/ 2 b, a contradiction.

Now, we show that Mb satisfies the extensionality property. We prove it for
k D 1. In the general case the proof is similar. Let .x; y/ 2 mb.D/ and let x 2
mb.P /, for some x; y 2 U b and some unary predicate symbol P . Suppose y 62
mb.P /. By the definition of Mb, we obtain .x D y/ 62 b, P.x/ 62 b, and P.y/ 2 b.
By the completion condition Cpl(RSD), either .y D x/ 2 b or P.x/ 2 b. Applying
once again the completion condition Cpl(RSD) with '.x/ being .y D x/, we get
either .x D y/ 2 b or P.x/ 2 b, a contradiction. ut
Any such model Mb is referred to as a branch model. It is constructed from the
syntactic resources of the tree built during the proof search process.

Let vb WOV F ! U b be a valuation in Mb such that vb.x/ D x, for every
x 2 OV F.
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Proposition 1.3.5. For every open branch b of an RS-proof tree and for every
F-formula ', if Mb; vb ˆ ', then ' 62 b.

Proof. The proof is by induction on the complexity of formulas. For atomic
formulas the proposition holds by the definitions of Mb and vb . If ' is a negated
atomic formula, then the proposition follows from the definition of Mb and
Proposition 1.3.3. Assume that the proposition holds for  , # , and their negations.

Let ' D :: . Assume Mb; vb ˆ :: . Then Mb; vb ˆ  , hence by the
induction hypothesis  62 b. Suppose :: 2 b. By the completion condition
Cpl(RS:),  2 b, a contradiction.

Let ' D 8x .x/. Assume that Mb; vb ˆ 8x .x/. Then for every z 2 U b ,
Mb; vb ˆ  .z/, thus by the induction hypothesis, .z/ 62 b. Suppose 8x .x/ 2 b.
By the completion condition Cpl(RS8), for some z 2 U b , .z/ 2 b, a contradiction.

Let ' D :8x .x/. Assume Mb; vb ˆ :8x .x/. Then for some z 2 U b ,
Mb; vb 6ˆ  .z/. Suppose that :8x .x/ 2 b. By the completion condition
Cpl(RS:8), for every z 2 U b , : .z/ 2 b. Thus, by the induction hypothesis,
Mb; vb ˆ  .z/, a contradiction.

In the remaining cases the proofs are similar. ut
Given a branch model Mb, we define the quotient model Mb

q D .U bq ; m
b
q/ as

follows:

� U bq D fkxk W x 2 U bg, where kxk is the equivalence class ofmb.D/ determined
by x;

� mbq.P / D f.kx1k; : : : ; kxkk/ 2 .U bq /
k W .x1; : : : ; xk/ 2 mb.P /g, for every

k-ary predicate symbol P , k � 1.

Since the branch model satisfies the extensionality property, the definition ofmbq.P /

is correct, i.e., if .x1; : : : ; xk/ 2 mb.P / and .x1; y1/; : : : ; .xk ; yk/ 2 mb.D/, then
.y1; : : : ; yk/ 2 mb.P /.

Let vbq be a valuation in Mb
q such that vbq.x/ D kxk, for every x 2 OV F.

Proposition 1.3.6.

1. The model Mb
q is a standard F-model;

2. For every F-formula ', Mb; vb ˆ ' iff Mb
q; v

b
q ˆ '.

Proof.

1. We have to show that mbq.D/ is the identity on U bq . Indeed, we have:

.kxk; kyk/ 2 mbq.D/ iff .x; y/ 2 mb.D/ iff kxk D kyk:

2. The proof is by an easy induction on the complexity of formulas. For example, for
the formulas of the form x D y we have: Mb; vb ˆ .x D y/ iff .x; y/2mb.D/
iff .kxk; kyk/ 2 mbq.D/Mb

q; v
b
q ˆ .x D y/. ut
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Proposition 1.3.7. If a formula ' is true in all standard F-models, then ' is
RS-provable.

Proof. Suppose there is no any closed RS-proof tree of '. Consider a complete
RS-proof tree with ' at its root. Let b be an open branch in this tree. Since ' 2 b,
by Proposition 1.3.5, Mb; vb 6ˆ '. Therefore, by Proposition 1.3.6(2.), we have
Mb

q; v
b
q 6ˆ '. Since Mb

q is a standard F-model, we get a contradiction. ut
In this proof the branch model is constructed from a failed proof search.

Corollary 1.3.2. If a formula ' is F-valid, then ' is RS-provable.

Summarizing, RS-system provides a deduction tool for the logic F which has the
same power as the Hilbert-style axiomatization, namely we have the following
theorem which results from Corollaries 1.3.1 and 1.3.2, Propositions 1.3.2 and 1.3.7.

Theorem 1.3.1 (Soundness and Completeness of the RS-system). Let ' be an
F-formula. The following conditions are equivalent:

1. ' is F-valid;
2. ' is true in all standard F-models;
3. ' is RS-provable.

Example. Consider the following F-formula:

8x.' _  .x//! .' _ 8x .x//:

It can be equivalently presented in the form:

:8x.' _  .x// _ .' _ 8x .x//:

This formula is F-valid. In Fig. 1.1 its RS-proof is presented.

:8x.' _  .x//_ .' _8x .x//
�

(RS_) twice

:8x.' _  .x//; ';8x .x/
�(RS8) with a new variable z

:8x.' _  .x//; ';  .z/
�(RS:8) with z

:.' _  .z//; ';  .z/; : : :
��� ���(RS:_)

:'; '; : : :
closed

: .z/;  .z/; : : :
closed

Fig. 1.1 An RS-proof of the formula 8x.' _  .x//! .' _8x .x//
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Throughout the book, in each node of proof trees presented in the examples we
underline the formulas which determine the rule that has been applied during the
construction of the tree and we indicate which rule has been applied. If a rule intro-
duces a variable, then we write how the variable has been instantiated. This concerns
both the rules which introduce a new or an arbitrary variable. Furthermore, in each
node we write only those formulas which are essential for the application of a rule
and the succession of these formulas in the node is usually motivated by the reasons
of formatting.

1.4 Tableau System for Classical First-Order Logic
with Identity

In this section we present a tableau system for the logic F formulated in a way
analogous to the formulation of the RS-system. In particular, we indicate explicitly
in the rules the repetition of a decomposed formula if needed, in order to make
the rules semantically correct. In the original presentation of Smullyan [Smu68] the
repetition is shifted to a strategy of building a proof tree. Therefore in our case the
Smullyan notation for the rules (˛; ˇ; �; ı-rules) cannot be applied directly.

The rules of the tableau system preserve and reflect unsatisfiability of the sets
of formulas which are their conclusions and premises. There are many versions of
tableau systems. They were studied for example in [Fit90]. The specific rule for
identity presented here differs from that known in the literature. Such a choice of
the rules enables us to see an analogy between tableau and dual tableau treatment of
identity (see Sect. 1.8).

Let ' and  be any F-formulas. The tableau system for the logic F consists of
decomposition rules of the following forms:

(T_)
' _  
' j  

(T:_)
:.' _  /
:';: 

(T^)
' ^  
'; 

(T:^)
:.' ^  /
:' j : 

(T:)
::'
'

(T8)
8x'.x/

'.z/;8x'.x/ (T:8)
:8x'.x/
:'.z/

z is any variable z is a new variable

(T9) 9x'.x/
'.z/

(T:9) :9x'.x/
:'.z/;:9x'.x/

z is a new variable z is any variable
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and the specific rule of the following form:

(TD)
:'.x/

x ¤ z;:'.x/ j :'.z/;:'.x/

where z is any variable, '.x/ is an atomic formula, and '.z/ is obtained from '.x/

by replacing all the occurrences of x in '.x/ with z.
A finite set of formulas is T-axiomatic whenever it includes a subset of the form

(TAx1) or (TAx2):

(TAx1) fx ¤ xg, where x is any variable;
(TAx2) f';:'g, where ' is any formula.

A finite set of formulas f'1; '2; : : : ; 'ng is said to be a T-set whenever the con-
junction of its elements is unsatisfiable, that is for every F-model M and for every
valuation v in M there exists i 2 f1; : : : ; ng such that M; v 6ˆ 'i . It follows that in
this case comma in the rules is interpreted as conjunction.

A rule of the form ˚.x/
˚0.x0;z/

(resp. ˚.x/
˚0.x0;z/ j˚1.x1;z/

) is T-correct whenever for
every finite set X of F-formulas,X [˚.x/ is a T-set if and only if X [˚0.x0; z/ is
a T-set (resp. X [˚0.x0; z/ and X [˚1.x1; z/ are T-sets). That is branching in the
rules is interpreted as disjunction. Thus T-rules preserve and reflect unsatisfiability
of the sets of formulas. The classical tableau system for first-order logic presented in
[Smu68] has also the property of preserving and reflecting unsatisfiability. Although
this fact is not provable directly from the definition of the classical tableau rules, it
can be proved under the additional assumptions on repetition of some formulas in
the process of application of the rules. In the classical tableau system this assump-
tion is hidden, it is shifted to a strategy of building the proof trees. In our T-system
the required repetitions are explicitly indicated in the rules.

It is easy to show that all the rules of T-system for the logic F are T-correct,
and all its axiomatic sets are T-sets. These facts follow from the semantics of the
propositional operations and quantifiers as in the case of the RS-system.

A proof in the T-system has the form of a finitely branching tree whose nodes are
finite sets of formulas. Let ' be an F-formula. A T-proof tree for ' is a tree with the
following properties:

� The formula :' is at the root of this tree;
� Each node except the root is obtained by the application of a T-rule to its prede-

cessor node;
� A node does not have successors whenever its set of formulas is a T-axiomatic

set or none of the rules is applicable to its set of formulas.

A branch of a T-proof tree is said to be closed whenever it contains a node with a
T-axiomatic set of formulas. A T-proof tree is closed whenever all of its branches
are closed. A formula ' is T-provable whenever there is a T-closed proof tree for '
which is then referred to as its T-proof.
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Completion conditions and the branch model are defined in a similar way as in
the RS-proof system. For instance, the completion conditions determined by the
rules (T_), (T:_), (T8), and (T:8) are:

Cpl(T_) If ' _  2 b, then either ' 2 b or  2 b;
Cpl(T:_) If :.' _  / 2 b, then both :' 2 b and : 2 b;
Cpl(T8) If 8x'.x/ 2 b, then for every individual variable z, '.z/ 2 b;
Cpl(T:8) If :8x'.x/ 2 b, then for some individual variable z, :'.z/ 2 b.

Given an open branch b of a T-proof tree, we define a branch structure
MbD .U b; mb/ as follows:

� U b D OV F;
� mb.P / D f.x1; : : : ; xk/ 2 .U b/k W :P.x1; : : : ; xk/ 2 bg, for every k-ary

predicate symbol P 2 PF; k � 1.

In a similar way as in RS-dual tableau, the following can be proved:

Proposition 1.4.1. For every open branch b of a T-proof tree, Mb is an F-model.

Proposition 1.4.2. For every open branch b of a T-proof tree and for every
F-formula ', if Mb; vb ˆ ', then :' 62 b.

The proof of soundness and completeness of the tableau proof system is based on
the same idea as in the RS-proof system. Then, we have:

Theorem 1.4.1 (Soundness and Completeness of the T-system). Let ' be an
F-formula. Then the following conditions are equivalent:

1. ' is F-valid;
2. ' is true in all standard F-models;
3. ' is T-provable.

1.5 Quasi Proof Trees

Let P 2 fRS, Tg be one of the proof systems. Our aim is to define a transformation
of a proof tree in one of the systems into a proof tree in the other system. For that
purpose it is useful to modify the concept of a proof tree by defining a quasi proof
tree. A quasi proof tree is in fact a proof tree modulo the double negation rule.

An F-formula is said to be positive whenever negation is not its principal
operation. Let n � 0 and let ' be a positive F-formula. We define:

:0' dfD 'I
:nC1' dfD :.:n'/:
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We define the rules (P:/�:
(P:/� :n'

:nmod2'

where n � 0 and ' is a positive formula.
As usual, this rule is applicable to a set X of formulas whenever :n' 2 X for

some n � 0 and for a positive formula '. Its application to a set X may be seen as
the iteration of applications of rule .P:/.

Let # 2 f_;:_;^;:^;8;:8; 9;:9;Dg. Let .P#:�/ be a rule defined as a
composition of the rules .P#/ and .P:/� treated as maps on the family of finite
subsets of formulas and returning a finite subset of formulas (or a pair of subsets in
case .P#/ is a branching rule).

.P#:�/ dfD .P:/� ı .P#/

This rule is applicable to a set X of formulas whenever the rule .P#/ is applicable
to X . Let X0 (resp. X0 and X1 if .P#/ is a branching rule) be the set(s) obtained
from X by an application of rule .P#/. Given a finite set Z of formulas, by Zmod2

we mean the set of formulas obtained from Z by replacing every formula of the
form :l', where l � 0 and ' is a positive formula, by the formula :l mod2'. Then
the result of application of rule .P#:�/ to X is the set X0mod2 (resp. X0mod2 and
X1

mod2 if .P#/ is a branching rule), whereX0 (resp.X0 andX1) is (are) the result(s)
of application of rule (P#) to X .

Let :n' be an F-formula, where n � 0 and ' is a positive formula. A P-quasi
proof tree for :n' is a tree with the following properties:

� Its root consists of the formula  , where:

 D
� :nmod2'; if P=RS,
:.nC1/mod2'; if P=T;

� Each node except the root is obtained by the application of a rule .P#:�/ to its
predecessor node;

� A node does not have successors if its set of formulas is a P-axiomatic set or none
of the rules is applicable to its set of formulas.

An example of an RS-quasi proof tree is presented in Fig. 1.2, while Fig. 1.3 presents
a T-quasi proof tree for the same formula. Observe that in a diagram of Fig. 1.2, after
applying the rule (RS:9) to the set Z1 D f:9x9y:.x ¤ y _ y D x/g we obtain
the set f:9y:.x1 ¤ y _y D x1/g to which the rule (RS:/� is applied with n D 1.
Thus, the application of the rule (RS:9:�) to Z1 results in Z2. Then, we apply
the rule (RS:9) to Z2, so that we obtain the set f::.x1 ¤ x2 _ x2 D x1/g to
which we apply the rule (RS:/�. Since f::.x1 ¤ x2 _ x2 D x1/gmod2 D Z3, the
application of the rule (RS:9:�) toZ2 results inZ3. The application of rule (RS_)
toZ3 results inZ4 such thatZmod2

4 D Z4. Therefore,Z4 is the result of application
of the rule (RS_:�) to Z3. Similarly, the application of rule (RSD) to Z4 results in


