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Leon Ehrenpreis at Stockholm



Preface

Like many other mathematicians around the world, we were saddened and shocked
when news reached us that Leon Ehrenpreis had passed away on 16 August 2010.
Our first instinct was to collect a volume of mathematical contributions by his many
friends and collaborators as well as by many mathematicians whose mathematical
career has been influenced by Leon’s work. We are very appreciative for the imme-
diate support that Springer and Dr. Francesca Bonadei have given to our idea and
for the enthusiastic response of the many authors who have agreed to participate in
what we consider as an act of respect, friendship, and affection for Leon. We are
also indebted to Leon’s daugther, Yael Ehrenpreis Meyer, who has shared with us
the beautiful picture of Leon in Stockholm, a picture that so perfectly reflects Leon’s
zest for life. Finally, we are grateful to Professor Malgrange for sharing with us a
personal letter that Leon wrote to him in June 1960 and which is appended to this
volume.

As a way of introduction to the volume, we include, in the next few pages, three
short essays that focus on three different periods of Leon Ehrenpreis’ mathematical
life.

Irene Sabadini
Daniele C. Struppa

Milan, Italy
Orange, USA
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Introduction to the Volume



Leon Ehrenpreis: Some Old Souvenirs

Bernard Malgrange

In the years 1952–1953, I had finished my studies at École Normale Supérieure, and
I had a position of research in CNRS, under the supervision of Laurent Schwartz.
His book on the theory of distributions had been recently published; this book and
his paper on mean periodic functions were full of open problems on linear differ-
ential equations, especially with constant coefficients and convolution equations.
I was mainly interested in the problem of “elementary solutions”: given a differen-
tial polynomial P with constant coefficients, does there exist a distribution f on R

n

verifying Pf = δ, δ the Dirac measure?
Schwartz suggested to solve this problem by finding a “tempered” f : by Fourier

transform, this is equivalent to the problem of “division of a distribution” by a poly-
nomial. I tried this method, but unsuccessfully (the problem was solved several
years later, independently by Hörmander and Łojasiewicz). But I found that one
can bypass the division of distributions: by duality, one is reduced to the following
problem: if a family {Pϕα} (ϕα , functions C∞ with compact support) tend to zero
in a suitable sense, then the {ϕα} tend also to zero. Now, by Fourier transform P

is transformed into a polynomial, and ϕα into an entire function with some growth
conditions at infinity described by the Paley–Wiener theorem. And a simple argu-
ment of maximum modulus gave the required result.

There are a lot of convergence conditions which can be chosen. The simplest is
perhaps the following one: if the ϕα’s have a bounded support and if the Pϕα tend
to zero in L2, then the ϕα tend also to zero in L2.

The same method, with a little more work, gives also the following results:

(i) Let f be a C∞ function (resp. a distribution of finite order) in R
n; then there

exists another one g with Pg = f .
(ii) The exponential-polynomial solutions of Pf = 0 are dense in the C∞, or in the

distributions solutions.

B. Malgrange (�)
Institut Fourier, BP 74, 38402 Saint Martin d’Hères, France
e-mail: bernard.malgrange@ujf-grenoble.fr

I. Sabadini, D.C. Struppa (eds.), The Mathematical Legacy of Leon Ehrenpreis,
Springer Proceedings in Mathematics 16,
DOI 10.1007/978-88-470-1947-8_1, © Springer-Verlag Italia 2012
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4 B. Malgrange

Furthermore, the same results are true for Rn replaced by an open convex set.
I published notes in Comptes Rendus de l’Académie des Sciences on these results.

A short time later somebody, I think J. Dieudonné, told me that a young American
mathematician, named Leon Ehrenpreis, had obtained also the same results. They
were published in American Journal in 1954 under the title “Solution of some prob-
lems of division I”.

This was the beginning of a kind of emulation, although this was essentially
the only one time where we obtained independently similar results. To this emu-
lation, I can perhaps add the name of Lars Hörmander, who namely reproved the
existence theorem in his thesis by proving the required L2 inequality directly with
energy integrals, without Fourier transform; this permitted to him to get by the same
method existence theorems for some equations with variable coefficients (“equa-
tions of principal type”), which could not be obtained by our complex methods.

Concerning the next period, I will mention mainly the series of papers by Ehren-
preis “Solution of some problem of division”, especially the numbers III and IV. Let
me indicate briefly the main results of these papers.

In III, he solves a problem left open by the preceding works: given a differential
polynomial P with constant coefficients, and a distribution f in R

n (not necessarily
of finite order), there exists another one g with Pg = f . The proof consists in a
very precise analysis in terms of Fourier transform of the topology of the space D of
Schwartz (i.e. the space of C∞ functions with compact support). Later, I interpreted
this analysis as giving a theorem of propagation of regularity for the solutions of
equations with constant coefficients. For a more systematic study of this point of
view, I refer to the book “Linear partial differential operators” by Hörmander.

I was much impressed by this paper. But I was even more impressed by the next
one, number IV. This paper is devoted to convolutions equations μ ∗ f = g, μ a
given distribution with compact support, f and g C∞ functions or distributions.
The main results are the following:

(i) A necessary and sufficient condition for μ∗ to be surjective in the space of C∞
functions, or distributions, in R

n. The condition, called by Ehrenpreis “slowly
decreasing”, is as follows:

If μ̂ is the Fourier transform of μ (which is an entire function in C
n), there

exists a > 0 such that for each real z, there exists another z′ with |z′ − z| ≤
a log(1+ |z|) and |μ̂(z′)| ≥ (a + |z|)−a (here |z| is any norm in C

n).
If we replace “distribution” by “distribution of finite order”, one needs a

stronger condition: the first inequality should be replaced by |z′ − z| ≤ a.
(ii) A necessary and sufficient condition for “hypoellipticity” (called “ellipticity”

after Schwartz): all distributions f verifying μ ∗ f = 0 are C∞ functions.
The condition generalizes the one obtained for differential polynomials by

Hörmander in his thesis; but Ehrenpreis says that his own result was obtained
independently.

The condition is the following: first, μ̂ should be slowly decreasing; further-
more, on the variety of zeros of μ̂, one has an inequality | Im z| ≥ a log(1+|z|).
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But Ehrenpreis was soon after that work interested by a much more general sit-
uation: the overdetermined linear systems with constant coefficients. In 1960, he
announces general results in this context.

For simplicity, I limit myself to systems with one unknown (the general case
is similar). Also, I consider only the case of C∞ functions in R

n; in the case of
distributions and convex open sets, the results are similar.

We give P1, . . . ,Pm, linear differential operators with constant coefficients. Then
the results are as follows:

(i) Given functions f1, . . . , fm C∞, there exists a g C∞ verifying Pig = fi if and
only if the fi ’s verify the “trivial compatibility conditions”: if Q1, . . . ,Qm are
differential polynomials with constant coefficients satisfying ΣQiPi = 0, then
one has ΣQifi = 0

(ii) The exponential-polynomial solutions of P1g = · · · = Pmg = 0 are dense in all
solutions.

Actually, Ehrenpreis gives a much more precise statement, called “fundamental
principle”: roughly speaking, the C∞ solutions of the system are Fourier transforms
or “integrals” (in a suitable sense) of measures with support the complex variety of
zeros of ̂P1(z)= · · · = ̂Pm(z)= 0, ̂Pi the polynomial associated to Pi .

I will just explain roughly how one can get (i) and (ii) (the fundamental principle
requires some more work). By duality and Fourier transform, the problem is reduced
to the following:

Let μ be a distribution with compact support, and μ̂ its Fourier transform. Ac-
cording to Paley–Wiener theorem, μ̂ is an entire function of exponential type with
polynomial growth in any strip | Im z| ≤ a, a ∈R, and conversely.

Now, suppose that, at every point z0 ∈ C
n, μ̂ is in the ideal of formal series in

(z− z0) generated by ̂P1, . . . , ̂Pm. Then, one has μ̂=Σ̂Piν̂i , where νi are Fourier
transforms of distributions with compact support (or, to abbreviate, entire functions
with Paley–Wiener growth).

It is classical that, with these hypotheses, one has locally in C
n, μ̂=Σ̂Pifi , fi

germs of holomorphic functions. Now the theory of Cartan–Oka proves that, in fact,
one has a global result, i.e. μ̂=Σ̂Pifi , fi entire. The problem is to prove that one
can choose the fi with Paley–Wiener growth.

The idea is to copy more or less the method of Cartan: first, get local bounds.
Then, to globalize the result, use a theorem of vanishing of cohomology “with
Paley–Wiener bounds”. Note that, at this time, the idea of cohomology with bound
was absolutely new.

As I said, these results were announced in 1960, in the paper “The fundamental
principle for linear constant coefficients partial differential equations”. A little more
details were given in some monographed notes of lectures at Stanford. But it takes
about 3 years to have a complete manuscript; and the final book “Fourier analysis
in several complex variables” was not published before 1970. Needless to say that
the book contains many more results on ellipticity, Cauchy problem, quasi-analytic
classes, etc.

The 1960 announcement interested very much the (few) experts of the subject. At
the first time, I was extremely surprised, may be a little bit sceptical. But, after two



6 B. Malgrange

years, in the absence of complete proofs, I tried to give my own version. It differs
from that of Ehrenpreis in two points:

First, I use a Dolbeault cohomology with bounds, instead of Čech cohomology as
Ehrenpreis. In fact, a theorem of vanishing of Dolbeault cohomology “with Paley–
Wiener growth” is surprisingly simple, much more that Čech cohomology with the
same bound. Some time later, Hörmander got practically definitive results on Dol-
beault cohomology with growth condition given by any plurisubharmonic function;
he gave also an exposition of Ehrenpreis theory using this theorem.

The second difference, less important, is that I used (local) estimates on C∞ func-
tions, instead of holomorphic ones (the use of Dolbeault cohomology permits it).
These estimates come from a development of the theory of division of distributions.

I note also that Palamodov gave also a version of the theory (his version is more
close to that of Ehrenpreis).

These works finish essentially the subject. One could think of an extension to
general systems of convolution equations, but this seems very difficult, or even al-
most impossible. The only one reasonable result to be expected was the density of
exponential polynomials for general systems of homogeneous equations, a result
obtained for one variable by Schwartz in his theory of mean periodic functions. But,
in 1974 Gurevitch proved that the result is not true for several variables.

Let me finish by a few words about our personal relations. Actually, we met for
the first time in Paris, in 1958 (if my memory is correct); this was a rather long time
after our first works. Before that meeting, I thought of Ehrenpreis, with a little bit of
tension, as a rather abstract person with whom I was more one less in competition.
But, at our first meeting, he was so open and friendly that all tension disappeared
totally. We became friends, although we did not meet so often. I remember espe-
cially a visit he made in Tunis, in 1970, where I stayed for one year. I think he was
very pleased with this visit, except that the Jewish Tunisian food seemed not to fit
him. Later, I met him several times in New-York, where I come often for familial
reasons. He came to some lectures I gave to Courant Institute.

More recently, not a long time before his death, I had the surprise and pleasure
to see him at a lecture I gave at Kolchin Seminar, in CUNY. I was especially happy,
since I had not seen him since a rather long time, and we took the opportunity to
remember old souvenirs. When leaving him, I could not imagine that it was our last
meeting.



Leon Ehrenpreis, a Unique Mathematician

Daniele C. Struppa

1 Introduction

What made Ehrenpreis’ mathematics so unique was his bold approach to classical
problems, and his interest in finding an overarching and unifying framework for a
variety of apparently unrelated problems. In this note I will try to highlight this char-
acteristic, by looking at some of Ehrenpreis’ papers which are not, strictly speaking,
connected with either the Fundamental Principle or the Radon Transform.

Malgrange’s section on the work that he, Hörmander, and Ehrenpreis accom-
plished in the context of systems of linear constant coefficient partial differential
operators has illuminated a particularly intense period in the history of modern anal-
ysis: in this context, the contribution of Ehrenpreis is almost completely summarized
in his first full length book [8].

The section authored by Kuchment, on the other hand, gives a beautiful picture
of Ehrenpreis’ involvement with integral geometry and its far reaching work on the
Radon transform, as described in his pioneering work [15].1

My own involvement with Ehrenpreis stemmed from me being (from 1978 to
1981) a doctoral student of Carlos Berenstein, who himself was a former student
of Leon. As such I came to meet Ehrenpreis many times during his frequent vis-
its to College Park, Maryland. What I remember most from our conversations, and
from his talks, was his overarching belief that one should consider the theory of
holomorphic functions (in several complex variables) as a special case of a more

1As a somewhat amusing and personal note, I should mention that in the late 1980s I had founded
a small publishing company in southern Italy, Mediterranean Press was its name; at that time
Ehrenpreis was visiting my department, and he had accepted my invitation to write a book on the
Radon transform for my company. During the next several years, I therefore saw several prelim-
inary versions of the book, but by the mid-1990s I had left Italy, sold my equity in the company,
and Ehrenpreis had found a much more appropriate outlet for his work.

D.C. Struppa (�)
Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
e-mail: struppa@chapman.edu

I. Sabadini, D.C. Struppa (eds.), The Mathematical Legacy of Leon Ehrenpreis,
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8 D.C. Struppa

general theory of overdetermined systems. As for the theory of holomorphic func-
tions in one variable, one should be trying to think of it as a special case of a more
general theory of mean-periodic functions. His belief in this general approach was
illustrated by some of his most original and beautiful work. In this short note, I
would like to focus on three specific instances in which his worldview allowed him
to recreate classical theorems in a much more general setting, thus opening the way
to fruitful and unexpected generalizations.

2 The Hartogs’ Theorem

I will begin with the beautiful proof that Ehrenpreis gave in 1961 for the well-
known Hartogs’ theorem on the removability of compact singularities for holomor-
phic functions of more than one complex variable. The theorem states that if K
is a compact set in C

n, with n ≥ 2, every holomorphic function outside of K can
be extended (in a unique way) to a holomorphic function inside of K . This result,
which was originally proved by Hartogs [17] in 1906 and was probably the first
to demonstrate the unique flavor of complex analysis in several variables, has been
given many different proofs and has been generalized to many settings [26, 28]. But
it was only with Ehrenpreis’ surprising [7] that it became clear that the result has
little to do with holomorphic functions, but it is rather a consequence of an essen-
tially algebraic property of the Cauchy–Riemann system. The actual statement of
Ehrenpreis is as follows:

Theorem 1 Let K be a compact set in R
n, and let P1, . . . ,Pr be r polynomials

in n complex variables with no common factors. Denote by Pi(D) the differential
operator that is obtained by replacing the complex variable z = (z1, . . . , zn) in P
by the formal differential operator D = (−i∂/∂x1, . . . ,−i∂/∂xn). Then every in-
finitely differentiable function on R

n \K which is a solution, in R
n \K , of the sys-

tem P(D)f = 0, namely P1(D)f = · · · = Pr(D)f = 0, can be extended uniquely
to an infinitely differentiable function on R

n, solution everywhere of the same sys-
tem. The new solution coincides with f on R

n \Kε , where Kε indicates a small ε
neighborhood of K .

The proof of the result is a brilliant (and early) example of the use of cohomol-
ogy vanishing arguments. Essentially, one extends f in some arbitrary way to an
infinitely differentiable function g and then notices that the collection {Pi(D)g} is
a compactly supported 1-cocycle with coefficients in the sheaf R of solutions of
the system P(D)f = 0. Using the Ehrenpreis–Malgrange division theorem [6, 23]
(which essentially states that an entire quotient between a holomorphic function
and a polynomial has the same growth order as the original holomorphic function),
Ehrenpreis shows that the first cohomology group with compact support and with
coefficients in the sheaf R vanishes, and therefore the 1-cocycle is a 1-coboundary,
and the correction that this provides is sufficient to modify the original extension g
into a global solution of the system.
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This proof is beautiful on several counts: it is very simple (in fact, it can be
given in full detail in just a few lines), it takes advantage of the equally beautiful
Ehrenpreis–Malgrange lemma (in itself a powerful statement on the nature of poly-
nomials), and finally it uncovers the fundamentally algebraic nature of the problem.
The extension to the case of a rectangular system is technically more complicated
and was given in detail, for example, in [25], as well as sketched in Ehrenpreis’
own [8]. But the structure of the proof is so easy that it is in fact possible to gener-
alize it further to infinite-order differential operators (see, for example, [20]) as well
as to convolution equations as in [24]. We refer the reader to [26, 28] for a rather
complete history of the various developments surrounding the various proofs of the
Hartogs’ theorem, and where more complete references (including the works of
Kawai concerning the case of systems of variable coefficient differential equations)
are given.

3 The Edge-of-the-Wedge Theorem

A second instance in which the theory of several complex variables is reinterpreted
in a larger context is offered by Ehrenpreis’ interest in a general approach to the
question of extension of holomorphic functions. Clearly Hartogs’ theorem is an
example of such an interest, but Ehrenpreis was interested in a more general issue,
in which the extension was not necessarily across a compact set. To this problem
Ehrenpreis devoted a series of papers, [9–11, 13, 14, 16], whose focus, in a sense, is
on the extension of the edge-of-the-wedge theorem, from the case of holomorphic
functions to the case of more general solutions to overdetermined systems of linear
constant coefficient differential equations.

This is not the place for a full discussion of the problem, but it is probably worth
sketching at least the fundamental setting, which Ehrenpreis considered in his papers
beginning with [9], but whose intellectual origins can once again be traced back
to [8]. Consider s (not necessarily) different open sets Ω1, . . . ,Ωs in R

n and r

differential operators (once again not necessarily different) Dj = (Dj1, . . . ,Djs)

with constant coefficients. Suppose, furthermore, that there is a set X contained
in every closed set Ωj , which can be used to parameterize the solutions (in some
suitable Analytically Uniform space) of Dj fj = 0 on each Ωj . We use this term
to indicate, in accordance with Chap. IX of [8], that a suitable Cauchy problem
(determined by the operators Dj and initial values on X) is well posed. Suppose
now that the solutions fj satisfy on X some differential relations

∑

ij

aij ∂ifj = 0

generated by suitable constant coefficient differential operators ∂i . Then one may
ask what kind of consequences can be derived regarding the fj . In particular, is it
possible to extend them to being solutions of those same operators Dj on larger sets
(this is a removability of singularities problem, of a very different nature from the
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one we examined in the section on the Hartogs’ theorem, since the singularities are
not confined, in this case, to compact sets)?

The study of such general Cauchy problems, and more precisely the conditions
under which the problem is well posed (conditions on the spaces of functions in-
volved, on the geometrical properties of the varieties associated to the operators,
and on the specific geometry of X) are discussed in [8], but while the results of
Ehrenpreis are extremely general, they are somewhat difficult to apply to specific
conditions.

In the papers that begin with [9], however, Ehrenpreis fixes his attention on the
way in which these results are far reaching generalizations of well-known function
theory theorems. For example, if s = 1, Ω = {(x1, . . . , xn) ∈ R

n : x1 > 0}, and if
r = 1, with D being now the Laplacian, then one can consider a very special differ-
ential relation, say

∂f

∂x1
= 0,

and then any general theorem will end up being a generalization of what is known as
the reflection theorem, namely the theorem that states that harmonic functions in the
half-space {(x1, . . . , xn) ∈R

n : x1 > 0}, which satisfy ∂f/∂x1 = 0, can be extended
to harmonic functions on all of Rn.

By the same token, the edge-of-the-wedge theorem can be seen in this context.
Take all the differential operators to be the Cauchy–Riemann systems in n variables,
and take two open sets Ω1,Ω2 to be complex tubes over two convex cones in the
real space. Then the differential relation is actually the request that the two functions
f1, f2, holomorphic respectively on Ω1 and Ω2, coincide on the real boundary of
the two tubes. The conclusion of the edge-of-the-wedge theorem then is that there
is a holomorphic function f which extends the f ′j s to the convex hull of Ω1

⋃

Ω2.
Once again, Ehrenpreis shows us here a very general approach to a variety of

different problems in which holomorphicity (or harmonicity) are just special cases
of functions which are solutions to more general systems of differential equations.
I can only leave it to the reader to further explore these ideas in the articles cited in
the references.

4 Infinite-Order Differential Operators and the Fabry Gap
Theorem

Finally, I want to go back to the interest of Ehrenpreis in convolution equations, and
in the role they could play in understanding some classical properties of holomor-
phic functions in one complex variable. As Malgrange has observed in his note, a
full extension of the Ehrenpreis–Palamodov Fundamental Principle to (systems of)
convolution equations is not possible, essentially because of the example of Gure-
vich to which Malgrange makes reference. This said, Ehrenpreis never abandoned
the possibility that at least for some classes of convolutors, it may be possible to
prove what is essentially a version of the Fundamental Principle. He first showed



Leon Ehrenpreis, a Unique Mathematician 11

how to obtain a weak version of the Fundamental Principle in Chap. 11 of [8], but
his result was somewhat hard to apply, and the restrictions on the convolutors are
hard to decipher. But his intuition was in fact correct. That this was the case was
shown first by Berenstein and Dostal [1] in a very special case, and later on by
Berenstein and Taylor [5], at least for the case of systems of convolution equations
with one unknown function. What Berenstein and Taylor show in [5] is that it is
possible to construct a class of convolutors (which they call slowly decreasing, fol-
lowing a terminology already used by Ehrenpreis to indicate the condition that is
necessary to establish surjectivity in suitable spaces) for which a reasonable ana-
logue of the Fundamental Principle holds. Their theory was further extended to the
case of rectangular systems of convolution equations in all LAU spaces in my dis-
sertation [27]. It is worth pointing out (and in fact it is necessary in view of what
will follow) that infinite-order differential operators on the space of holomorphic
functions offer an example of slowly decreasing convolutors, and therefore the the-
ory developed in [5, 27] can be applied to solutions of (systems of) such operators.
One of the consequences of these extensions of the Fundamental Principle consists
in the fact that convergent exponential sums, both in one and in several variables,
can be considered as solutions to systems of slowly decreasing convolution equa-
tions and in particular (when holomorphic functions are considered) to systems of
infinite-order differential equations.

This leads us to one of the most intriguing contributions of Ehrenpreis to classical
complex analysis. In Chap. 12 of his monograph [8], as well as in [12], Ehrenpreis
reconsiders the classical Fabry gap theorem. In brief, the theorem can be stated as
follows: let z denote the complex variable, and, for complex numbers cj and real
numbers aj , consider the series

+∞
∑

j=1

cj e
iaj z.

Assume that, in the strip |Im z < 1|, the series converges, uniformly on compact sets,
to a function f (z) which can be analytically continued to a neighborhood of some
point z0 on the boundary of the strip itself. Then, if the sequence {aj } is lacunary in
the sense that

n

an
→ 0 as n→∞

and there exists a positive constant c such that
|an − am| ≥ c|n−m|,

the function f can actually be continued analytically to an entire strip containing z0,
and, on the compact subsets of this new strip, the series

∑+∞
j=1 cj e

iaj z converges to
the continuation of f (z). There are several ways to look at this theorem, and maybe
the most important classical reference is Levinson’s important [22]. But Ehrenpreis
offers in Chap. 12 of [8] two very unconventional approaches. One consists in notic-
ing that every exponential eiaj z is itself a solution of the particular differential equa-
tion

df

dz
− iaj f = 0,
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and therefore it is not unreasonable to think of the series
∑+∞

j=1 cj e
iaj z as a series of

solutions to different differential equations. Since exponentials, in several variables,
appear as solutions to overdetermined systems of differential equations, this offers
Ehrenpreis a way toward a very powerful generalization. More precisely, Ehrenpreis
considers a sequence {Dj } of differential operators, with Dj = (Dj1, . . . ,Djn), and
then seeks conditions on such operators that allow us to study overconvergence
properties of the series

∑

fj , where the summands in the series are solutions to
Dj fj = 0. The results that Ehrenpreis obtained in this direction are somewhat tech-
nical and probably ripe for further analysis. As far as I know, they have not yet been
explored with the depth they seem to deserve.

But Ehrenpreis also offers another way of interpreting the series
∑+∞

j=1 cj e
iaj z;

specifically he points out that if f (z)=∑+∞
j=1 cj e

iaj z, then f can be thought of as
a solution of the convolution equation S ∗ f = 0, where S is the convolutor whose
Fourier transform is, up to some converging factor, the entire function Π(1− z/aj ).
It was this beautiful intuition that proved to be most fruitful and opened the way
for a variety of interesting generalization. Most notable is probably Kawai’s work
[18, 19] on what he called the Fabry–Ehrenpreis gap theorem, and which stemmed
from the interpretation of S as an infinite-order differential operator. Kawai’s work
is also extremely beautiful and brings into the picture the theory of hyperfunctions,
as the natural environment for the study of infinite-order differential operators. As
it often happens, new results open new doors, and Berenstein and the author pushed
further some of these ideas and applied them to what they called now the Fabry–
Ehrenpreis–Kawai gap theorem in a series of papers, which exploited the original
intuition of Ehrenpreis and found its most general formulation in [2, 3, 21] and
finally in [4]. In those papers, we believe that the original vision of Ehrenpreis on
the role that convolution equations can play in understanding the overconvergence
behavior of Dirichlet series (and generalized Dirichlet series) is carried out to a great
extent.
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Leon Ehrenpreis, Recollections from the Recent
Decades

Peter Kuchment

Leon Ehrenpreis was an outstanding world-class mathematician and a wonderful,
warm person. I had a privilege to consider myself his friend for the last two decades.
It is hard to do justice to his manifold mathematics and personality, but I will try to
at least add some recollections to this tribute volume.1

Leon Ehrenpreis has been one of my mathematical heroes for about 40 years.
I first encountered his, Lars Hörmander’s, Bernard Malgrange’s, and Victor Palam-
odov’s fundamental and beautiful works on systems of linear constant coefficient
PDEs in early 1970s, when I was an undergraduate student and then a PhD candi-
date. They have had a profound impact on me, in particular when working on the
Floquet theory of periodic PDEs, which we with Leonid Zelenko started developing
in a few years. I am sure that Bernard Malgrange and Daniele Struppa have de-
scribed this part of Leon’s legacy much better than I ever could. I will only address
some of the research Leon pursued in the last two decades of his life, which I was
lucky to witness.

Some time around 1988, a medical industry contract forced me to learn the ba-
sics of a fascinating topic that I had never heard of before, the so-called computed
tomography. This turned out to be fateful. Our research group in Voronezh found
the mathematics of tomography so challenging and exciting that in the following
decades several of us have being devoting a significant part of time working on
tomographic problems. Appearance in the 1980s of the Russian translation of the
cornerstone book on this topic by Frank Natterer [52] also helped. Interestingly
enough, I discovered that several mathematicians whom I admired for their work
in completely different areas (e.g., Carlos Berenstein, Simon Gindikin, and Victor
Palamodov) had already been working on tomography-related issues. This is an in-
stance of a strange effect that I have observed several times in my life, when several

1One can also read the AMS Notices article [30] for recollections of several Leon’s friends and
colleagues. A volume on tomography [10] is also dedicated to Leon’s memory.
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people working in closely related areas suddenly and independently make a sharp
turn to the same new direction.

The end of the 1980s was a fascinating time in the former Soviet Union, when
contacts with the West have started to become somewhat possible. In particular,
the existence of some of famous mathematicians could be checked experimentally
(before that, the names like L. Ehrenpreis, L. Hörmander, P. Lax, L. Nierenberg,
and many others seemed to me to belong to some deities rather than real people).
In 1989 I had my first chance to travel abroad, and I spent about a month in the
USA going to various universities and to an AMS tomography conference in Arcata,
California. This is where I saw for the first time some of my scientific heroes (e.g.,
L. Ehrenpreis, S. Helgason, F. Natterer) in flesh.2

Meeting Leon in Arcata was a big surprise to me, since I had no clue that he had
become interested in integral geometry or tomography. This was another instance
of the simultaneous change of direction. He showed a polite interest in what I told
him about my PDE work related to his, but it was clear that he was thinking in
somewhat different (although not orthogonal) direction now. This was the first time
when I heard Leon mentioning his book on Radon transform, which was “nearly
finished.” It did appear . . . in 2003 [28]. In the 13–14 years in between, Leon had
been sending generously the nth versions of his manuscript to anyone interested,
and the ideas and problems contained in these texts have influenced many of us.

After emigrating later in 1989 to the USA, I found employment at the Wichita
State University in Kansas. The year 1990 was a tough time for finding employ-
ment for a middle-age emigree mathematician with mediocre, at best, command of
English. Having recommendation letters from colleagues such as L. Ehrenpreis was
crucial, and I am indebted forever to them and many other mathematicians who
supported me in various ways in these difficult times.

Settling down in Wichita was rather pleasant. My family loved the city. The math-
ematics department was quite good, including several prominent people in the areas
of my interest, in particular in inverse problems (Victor Isakov and Ziqi Sun). When
I started bringing in speakers and collaborators, Leon Ehrenpreis was one of the first
invitees, and since then he had become a constant visitor of our department and then
of the Mathematics department of Texas A&M, where I moved in 2001. His lec-
tures and discussions that I and my graduate students had with him were extremely
interesting, scientifically rewarding, and personally enjoyable.

I will skip some personal recollections, which one can find in [30] and concen-
trate rather on mathematics. One of the first topics that we discussed was a strange
byproduct of the papers [48, 49] published a couple of years before. There we with
S. Lvin described the range of the so-called exponential Radon transform, which

2The Arcata meeting was also the place where I met for the first time other colleagues, whom
I now consider as long-time friends (J. Boman, D. Finch, A. Markoe, E. T. Quinto, G. Uhlmann,
and many others). I could not even imagine that twelve years later I would have a privilege to work
at the same department at Texas A&M with another group of researchers whose work I studied and
admired as a young mathematician in Russia, such as Ron Douglas, Ciprian Foias, Carl Pearcy,
and Gilles Pisier.



Leon Ehrenpreis, Recollections from the Recent Decades 17

arises in the Single Photon Emission Computed Tomography (SPECT), an impor-
tant medical imaging method [52]. I will not burden the reader with technicalities
and just describe the result on a hand-waving level. It is known [34–36, 42, 43, 52]
that the ranges of Radon-type transforms are usually of infinite codimension in nat-
ural function spaces. Knowing the description of the range plays an important role
in integral geometry and tomography. After range conditions are found, it is usu-
ally straightforward to go back and check their necessity,3 while a proof of their
completeness is usually technical. Thus, when the conditions of [48] were found,
we expected that reproving their necessity should be a piece of cake: just plug the
transform of a function into these conditions and see immediately that they are sat-
isfied. However, when we did this, we discovered an infinite and totally nonobvious
to us set of nonlinear differential identities for the standard sine function: for any
odd natural n,

n
∑

k=0

(

n

k

)(

d

dx
− sinx

)

◦
(

d

dx
− sinx + i

)

◦ · · · ◦
(

d

dx
− sinx + (k − 1)i

)

× (

(sinx)n−k
)= 0, (1)

where i is the imaginary unit, and ◦ denotes the composition of differential opera-
tors. The attempt to prove these identities directly (i.e., without any integral geom-
etry and Fourier analysis) succeeded [49] but took a significant time. We are still
puzzled by the meaning of these identities [50]. Several integral geometry and to-
mography experts devoted their time and effort to trying to understand better the
meaning of these range conditions. This is also what we set out to do with my
PhD student Valentina Aguilar and Leon Ehrenpreis. We succeeded in the following
sense: we showed, in particular, that these identities are equivalent to an interesting
theorem of separate analyticity type.

Theorem 1 ([8]) Let D be a disk in R
2, and f be a function in the exterior of D.

Suppose that when restricted to any tangent line L to D, the function f |L, as a
function of one real variable, extends to an entire function on the complexification
of L. Then f , as a function on R

2 \D, extends to an entire function on C
2.

Well, this fact also did not look obvious to us. Analyticity of f in a complex
neighborhood of R2 \D follows from the old (and not that well-known) separate
analyticity theorem by S. Bernstein (see [9]); however this theorem cannot produce
statement about f being an entire function. Thus, since proving the above theorem,
a couple of things about it kept bothering us for several years. First of all, this is
a fact of several complex variables, while our proof did not look like an SCV ar-
gument at all. Is there a truly complex analysis proof? Another, related, question
is whether such a theorem can be proven for a different convex body instead of a

3For instance, when the so-called moment conditions [35, 42] for the standard Radon transform
are written, checking their necessity boils down to noticing that the kth power (x ·ω)k of the inner
product of two vectors is a homogeneous polynomial of degree k with respect to each of them.
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disk D? An SCV proof was later provided in [54], although it was rather compli-
cated and was not generalizable (at least, easily) to other convex curves. Leon has
worked out some other examples of convex algebraic curves (unpublished), but gen-
eral picture remained unclear to us. Finally, A. Tumanov presented recently [59] a
beautiful short proof based on attachment of analytic disks (where Tumanov is a
great expert), which works for any strictly convex body D with a mild condition on
the smoothness of its boundary.

Another issue that we addressed with Leon and my Master student Alex Panchen-
ko also originated from emission tomography. The exponential Radon transform in
SPECT depends upon an “attenuation” parameter μ≥ 0. In [29], we introduced and
studied a “mother” exponential Radon transform, which had no free parameters, but
by different restrictions of which one can obtain the exponential Radon transforms
corresponding to all possible values of the attenuation. We also obtained the range
description there, which was based upon the F. John’s differential equations. In this
particular case, the (ultrahyperbolic) John’s equation could be recast as a boundary
Cauchy–Riemann equation.

Although we have not done any joint research since 2000, we kept discussing
(in person and by e-mail) various integral-geometric and PDE issues. One was the
fascinating and surprisingly hard “strip problem” [1, 2, 4, 6, 37, 38, 57, 58], to
which Leon has contributed [27, 28] and which he extended to a more general PDE
setting (see, e.g., [6, 27, 28]). It was eventually resolved due to efforts of several
mathematicians, including M. Agranovsky, J. Globevnik, and A. Tumanov (see the
reference above).

Leon was also very much interested in the activity concerning the “restricted
spherical means” operator, i.e., a version of Radon transform that integrates a given
function over spheres of arbitrary radii, but with the centers restricted to a hyper-
surface S. The study of such operators was very active since the beginning of the
1990s, due first to needs of approximation theory , then self-sustained just due to the
beauty and complexity of arising problems (see [3, 7] and references therein), and
finally it received a huge boost in the last decade, due to the discovered relations to a
newly developing method of medical imaging, the so-called thermo-/photo-acoustic
tomography (see the surveys [5, 31–33, 47, 60] and references there).

The restricted spherical mean problem happens to be a very particular case of one
of the questions raised by Leon in his book [28]. This brings us from the “small”
problems discussed above to the much more general thinking Leon has been doing
on transforms of Radon type and their very wide generalizations. This was reflected
in his papers of the period and in the monograph [28]. The title of this book,“The
Universality of the Radon Transform,” and the wealth of topics and ideas covered
and variety of open problems suggested shows how deeply Leon believed in wide
range importance of this approach. He was not the first to realize such widespread
applicability of transforms of Radon type, although probably the first to give such
a bold name to a book. Fritz John in his book [46] showed how important this
circle of ideas is for PDEs. Israel Gelfand, Simon Gindikin, Sigurdur Helgason,
Victor Palamodov, and many other mathematicians studied in detail applications
to PDEs, harmonic analysis, group representation theory, special functions, mathe-
matical physics, etc. (e.g., [34–36, 42–45, 55]). Still, Leon’s book is rather unique
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in terms of many nonstandard issues raised there. Leon also was unique in his writ-
ing style, introducing new notations and names for well-known objects, which does
not help a reader. However, after getting through these hurdles, one opens a treasure
chest of ideas.

The variety of things that Leon addressed in the book [28] and his other pub-
lications of the time [11–27], and which he considered inter-related, is enormous:
“exotic” boundary-value problems for PDEs, Poisson summation formulas, Eisen-
stein and Poincare series on SL(2,R) and SL(3,R), various number-theoretic prob-
lems, Hartogs–Lewy extension, FBI transform (although it carries an unrecogniz-
able name in [28], being an instance of what he called “nonlinear Fourier trans-
form”), edge-of-the-wedge theorems, Phragmén–Lindelöf type theorems for PDEs,
special functions, among others.

Notwithstanding the overarching title, a wide variety of topics covered, and large
volume, [28] is neither a textbook on the “usual” Radon transform nor a compre-
hensive historical survey or reference manual; it is not designed for reading by an
uninitiated; it does not cover many important developments, techniques, and re-
sults that one can find in [34–36, 39–45, 55, 56], such as curved manifolds case,
κ-operator approach, Radon transforms of differential forms and tensors, projective
geometry setting, most of the group representation relations, etc. At Leon’s request,
Todd Quinto and I contributed the appendix [51] to [28] devoted to a brief survey
of some tomographic applications. Due to the natural size limitations, it also cannot
be considered comprehensive. One can find a thorough discussion of tomographic
issues in [52, 53].

In spite of all these omissions, this unique book [28] should occupy a space
on the bookshelf of anyone working on PDEs, Fourier analysis, several complex
variables, and integral geometry. I am sure it will be a source of inspiration for
many mathematicians, who will take their time to get through the text.

The memory of Leon Ehrenpreis will stay with all who encountered his amazing
mathematics and experienced his friendship. I am grateful to the fate for giving me
the chance and privilege to meet Leon and to collaborate with him.
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Analyticity on Curves

Mark Agranovsky and Lawrence Zalcman

Abstract Under what conditions can one conclude that a continuous function on a
plane domain Ω is holomorphic, given that its restrictions to a collection of Jordan
curves in Ω which cover Ω admit holomorphic extensions? We survey progress on
this problem over the past 40 years, with an emphasis on recent results.

1 Introduction

The circle of ideas discussed in this paper originates with the following:

Question Let f ∈ C(R2) and suppose that for each circle γ of (fixed) radius r > 0
in the plane, the restriction of f to γ has a continuous extension to the closed
disc Dγ bounded by γ which is analytic in the open disc Dγ . Must f be an entire
function?

It is well known (and easy to see) that f extends from γr(w)= {z : |z−w| = r}
continuously to a function analytic on Dγr(w) if and only if

∫

γr (w)

f (z)zn dz= 0, n= 0,1,2, . . . , (1)

We dedicate this paper to the memory of our friend Leon Ehrenpreis. Leon was fascinated by the
strip problem, contributed to its solution [13], and led the way in generalizing it from a result
concerning analytic functions to solutions of elliptic equations [14]. Indeed, one of his last major
addresses, the opening lecture of the conference Integral Geometry and Tomography, delivered at
Stockholm University on August 12, 2008, was entitled “The Strip Theorem for PDE”; see [15,
II–IV].
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