


SpringerWienNewYork 



CISM COURSES AND LECTURES

Series Editors:

The Rectors
Friedrich Pfeiffer - Munich

Franz G. Rammerstorfer - Wien
Jean Salençon - Palaiseau

The Secretary General
��������	
�������		�����

Executive Editor
�����	
������		�����

The series presents lecture notes, monographs, edited works and
�����������	��	���	����	��	����������	������������	��������	
������

and Applied Mathematics.
�������	��	���	������	��	��	����	���!�	��	���	�������������	���������
and technical community results obtained in some of the activities

������"��	#$	�%
��	���	%������������	������	���	����������	
�������&



%'(�)'*(%+'*/	��'()�	0+)	���1*'%�*/	
�%�'��


�+�)
�
	*'2	/��(�)�
		'�&	343

5*)%*(%+'*/	�+2�/
	*'2	��(1+2

	%'


+/%2	*'2	0/�%2	���1*'%�


�2%(�2	�6

0)*'��
�+	2�//7%
+/*
�'%5�)
%(8	9/*	
*�%�';*<�	)+�*�	%(*/6


�)=�6	=*5)%/6�>	
�+/6(��1	�*)
�%//��	0)*'��

SpringerWienNewYork 



This volume contains 63 illustrations  

This work is subject to copyright.
All rights are reserved,

whether the whole or part of the material is concerned
����������$	�����	��	������������	�����������	�����	��	��������������

broadcasting, reproduction by photocopying machine
or similar means, and storage in data banks.

© 2011 by CISM, Udine
Printed in Italy
SPIN 80124210

All contributions have been typeset by the authors.

%
�'	OQV4QXOYXOVZ4	
�������[���'�!6���



PREFACE

For this would be agreed by all:
that Nature does nothing in vain
nor labours in vain

Olympiodorus, Commentary on
Aristotle’s Meteora translated by

Ivor Thomas in the Greek
Mathematica Works Loeb

Classical Library

La nature, dans la production de
ses effets, agit toujours par les
voies les plus simples

Pierre de Fermat

The CISM course C-1006 ”Variational models and methods in solid
and fluid mechanics” was held July 12-16, 2010 in Udine, Italy.
There were about forty five participants from different european coun-
tries. The papers included in this volume correspond to the content
of five mini-courses of 6 hours each which have been delivered during
this week.

Variational formulation of the governing equations of solid and
fluid mechanics is a classical but a very challenging topic. Varia-
tional methods give an efficient and elegant way to formulate and
solve mathematical problems that are of interest for scientists and
engineers. This formulation allows for an easier justification of the
well-posedness of mathematical problems, the study of stability of par-
ticular solutions, a simpler implementation of numerical methods.
Often, mechanical problems are more naturally posed by means of a
variational method. Hamilton’s principle of stationary (or least) ac-
tion is the conceptual basis of practically all models in physics. The
variational formulation is also useful for obtaining simpler approxi-
mate asymptotical models as done in the theory of homogeneization.
In many problems of mechanics and physics, the functionals being
minimized depend on parameters which can be considered as random



variables. Variational structure of such problems always brings con-
siderable simplifications in their study.

In this course, three fundamental aspects of the variational for-
mulation of mechanics will be presented: physical, mathematical and
applicative ones.

The first aspect concerns the investigation of the nature of real
physical problems with the aim of finding the best variational formu-
lation suitable to those problems. A deep knowledge of the physical
problems is needed to determine the Lagrangian of the system and the
nature of the variations of its motions which may be considered ad-
missible. Actually one could say that all knowledge which is available
about a system is resumed by the choice of:
• a configuration space used to describe mathematically the system
• a set of admissible motions used to describe the different ways
in which the system may evolve

• a Lagrangian functional which once minimized supplies evolu-
tion equations and boundary conditions

The second aspect is the study of the well-posedeness of those mathe-
matical problems which need to be solved in order to draw previsions
from the formulated models. It is relatively simple to conjecture prop-
erties to be required to the Lagrangian functional in order to be as-
sured the well-posedness of the corresponding evolution system. Much
more complex is to get such results of well-posedness studying some
evolution equations which are obtained with euristic schemes different
from those based on Hamilton’s principle. In fact always, when one
needs to study mathematically a set of evolution equations, the first
move is to try to put them in a variational form. It is then advisable
and wiser to try to use a variational principle at the beginning of the
formulation of a mathematical model.

The third aspect is related to the direct application of variational
analysis to solve real engineering problems. Variational principles
supply very powerful tools for getting qualitative previsions about the
behaviour of the studied systems, but also for formulating effective
numerical methods to get quantitative previsions.

The following problems have been presented and studied during
the course :
• Rayleigh-Hamilton’s Principle for establishing governing equa-
tions and boundary conditions for second gradient models for
heterogeneous deformable bodies ;



• A variational approach to multiphase flow problems and de-
scription of diffuse solid-fluid interfaces;

• New variational models of brittle fracture mechanics and some
related problems ;

• The methods of stochastic calculus of variations and their ap-
plications to the homogenization problems and modeling of mi-
crostructures and their evolution ;

• Dynamical problems in damping generation and control in the
situations where the energy initially conferred to a system un-
dergoes a principle of irreversible energy confinement into a
small region ;

We are extremely grateful to all participants of the course for
creating a nice atmosphere for scientific discussions. We would like
also to express our thanks to the CISM staff for their assistance in
the running of the course.

Francesco dell’Isola, University of Rome ”La Sapienza”

Sergey Gavrilyuk, University of Aix-Marseille
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Variational principles are a powerful tool also
for formulating field theories

Francesco dell’Isola *‡ and Luca Placidi †‡
* University of Roma “La Sapienza”

† International Telematic University “Uninettuno”
‡ International Research Centre on “Mathematics & Mechanics of Complex

Systems” M& MOCS

Abstract Variational principles and calculus of variations have al-
ways been an important tool for formulating mathematical models
for physical phenomena. Variational methods give an efficient and
elegant way to formulate and solve mathematical problems that are
of interest for scientists and engineers and are the main tool for the
axiomatization of physical theories.

1 Introduction and historical background

1.1 Metrodoron and his followers

The ideas we want to evocate in this lecture are very old and were put
forward already in the hellenistic period: for a detailed discussion about this
point the reader is referred to the beautiful book by Lucio Russo (2003). In
that book it is established that “modern” science actually was born in the
hellenistic era, when Metrodoron lived. Metrodoron was a pupil of a famous
greek philosopher, Epicurus, and, in our opinion, the following Metrodoron’s
sentence is a statement (the first?) belonging to the modern philosophy of
science:

����������	


“Always remember that you were born mortal and such is your
nature and you were given a limited time: but by means of your
reasonings about Nature you could rise to infinity and to eternity
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and you indeed contemplate “the things that were, and that
were to be, and that had been before””. Metrodoron

Gnomologium Epicureum Vaticanum X (fr.37 Alfred Körte, Metrodori

Epicurei Fragmenta, “ Jahrbücher für classiche Philologie”, Suppl.

XVII, 1890, p. 557).

This dictum, following Körte, comes from a lost letter or book by Metrodoron
(the Epicurean philosopher) addressed to Menestratos who was presumably
one of his pupils. The words quoted in bold are a citation from Iliad, I 70
(the translation into English of the sentence in boldface is ours; except for
this citation the translation has been taken from Homer by Murray (1924),
see the ref. (14)).

In different words, Metrodoron states that by using (the right!) equa-
tions you can forecast future behavior of physical systems.

1.2 Why Variational Principles and Calculus of Variation?

In recent time, a lost Archimedes’ book (19) has been rediscovered. Some
authors claim that Archimedes seems to have solved, in this book and us-
ing a variational principle, the technological problem of finding the optimal
shape of a boat. Archimedes seems to have chosen, as optimality crite-
rion, that the vertical position must be a “very” stable configuration (see
Rorres (2004)). In the book of Russo (21) it is demonstrated in even a
more convincing way that many optimization techniques were well-known
in hellenistic science. In particular Russo proves that the problem of the
determination of the regular polygon having maximal area has been solved
in that period. Thus, the use of a variational principle and optimization
methods to solve technological problems is less recent than it is usually be-
lieved. In general, variational formulation of the governing equations of solid
and fluid mechanics is a classical but very challenging topic. This kind of
formulation allows for an easier proof of the well-posedness of mathematical
problems, for an easier investigation of the study of stability of particular
solutions, and for a simpler implementation of numerical methods. Often
(but one who believes in Russo’s vision about the birth of science could say
instead “always”), mechanical problems are more naturally posed by means
of variational methods. Hamilton’s principle of stationary (or least) Action
is the conceptual basis of practically all models in physics. The variational
formulation is also useful for obtaining simpler approximate asymptotical
models as it is done in the theory of homogenization.

We want simply to state here that the Principle of Virtual Works and
the Principle of Least Action have roots much deeper than many scientists
believe (see Vailati, 1897). Although many histories of science claim dif-
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ferently, most likely the majority of physical theories were first formulated
in terms of these Principles, and only subsequently they were reconsidered
from other points of view. In our opinion the Principle of Least Action,
which supplies a “geometric” version of mechanics was indeed the tool used
by the true founders of mechanics (i.e. the scientists of the hellenistic pe-
riod) to establish it. As argued also by Colonnetti (5) and Netz and Noel
(19)) surely also Archimedes and ancient greek scientists were accepting
such a point of view.

The epigones of the hellenistic science, who were not able to understand
the delicate mathematical arguments used by the first scientists, however
could understand the minimality conditions obtained by their “maitres” (i.e.
the conditions corresponding to those which we call now Euler-Lagrange
equations and boundary conditions) and could grasp the “physical” argu-
ments used to interpret them. This phenomenon is perfectly clear to ev-
eryone who is ready to consider carefully -for instance- the evolution of the
theory of Euler-Bernoulli Beam (a useful reference about this point is the
book of Benvenuto (1981)). Euler postulated a Principle of Least Action
for the Elastica, and gets the celebrated equilibrium differential equation
and boundary conditions for the equilibrium of beams by using the calcula-
tion procedure due to Lagrange (which is the departing idea of Calculus of
Variations). Then Navier prepared his lectures for the Ecole Polytechnique
and resumed the results obtained by Euler deciding to “spare” to the (en-
gineering) students the difficulties of the calculus of variations. He started
directly from the equilibrium equation, obtained by means of an “ad hoc”
principle of balance of force and couple, and imposed boundary conditions
based on “physical” assumptions. As a consequence, for a long while, gen-
erations of engineers believed that the beam equations were to be obtained
in this way. Only when numerical simulations became popular, then they
(actually, some of them) became aware of variational “principles”. However
these principle were proven as theorems starting from “balance postulates”
and were considered simply as a mathematical (rather abstruse) tool and
not as a fundamental heuristic concept. And this attitude is not changed
even when it became clear that every serious advancement of mechanical
science has been obtained using variational principles. Indeed the so called
“physical sense” (a gift that many claim to posses but which nobody can
claim to be able to master or to teach) is not very useful to postulate the
right “balance principles” when one is in “terra incognita”. For instance,
when Lagrange and Sophie Germain wanted to find the plate equations they
needed to employ a variational principle (and they could find the (right!)
natural boundary conditions). Again when Cosserat brothers wanted to
improve Cauchy Continuum Mechanics they “rediscovered” the right tech-
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nique: i.e. the Principle of Least Action. Also QuantumMechanics has been
developed starting from a Variational Principle (see e.g. the references of
Feynman (11), Lagrange (15) and Lanczos (16)).

Therefore an important warning is due to young researcher: refrain from
trying to extend available models by means of “ad hoc” adaptations of avail-
able theories: always look for the right Action functional to be minimized!

1.3 The problem of including dissipation

One useful tool for handling complicated situations is used in Continuum
Mechanics by Paul Germain when formulating second gradient theories:
the Principle of Virtual Powers. Again, as remarked always in the history
of the development of ideas, when this history can be reconstructed, the
effective way to be used to proceed is that which starts from a Principle
of Least Action, eventually generalized into a Principle of Virtual Powers.
For a long time the opponents to Second Gradient Theories argued about
its lack of consistency, due to the difficulties they claim to find in “getting”
boundary conditions. This is a really odd statement. Indeed variational
principles easily produce mathematically correct boundary conditions. So
maybe what those opponents want to say is that as they are not so clever as
Navier, they do not manage to interpret physically the boundary conditions
found via a (correct and meaningful) variational principle. Of course if one
refuses to use the Principle of Least Action he can find very difficult the
job of determining some set of boundary conditions which are compatible
with the (independently postulated!) bulk evolution equations. If instead
one accepts the Archimedean (the reader will allow us to dream, without
definitive evidence that such was the point of view of Archimedes) approach
to mechanics then all these problems of well-posedness of mathematical
models completely disappear.

Variational Principles always produce intrinsically well-posed mathemat-
ical problems, if the Action functional is well behaving. Of course passing
from Lagragian systems (the evolution of which are governed by a Least
Action functional) to non-Lagragian systems (for which such a functional
may not exist) maybe difficult. This problem is related (but is not com-
pletely equivalent) to the problem of modelling dissipative phenomena. It
is often stated that dissipation cannot be described by means of a Least
Action Principle. This is not exactly true, as it is possible to find some Ac-
tion functionals for a large class of dissipative systems. However it is true
that not every conceived system can be regarded as a Lagragian one. This
point is delicate and will be only evocated here. In general a non-Lagragian
system can be regarded as Lagragian in two different ways: i) because it
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is an “approximation” of a Lagrangian system (see the case of Cattaneo
equation for heat propagation), and this approximation leads to “cancel”
the lacking part of the “true” Action Functional ii) because the considered
system is simply a subsystem of a larger one which is truly Lagrangian. The
assumption that variational principle can be used only for non-dissipative
systems is contradicted by, e.g., the work presented in this book by Prof.
Frankfort (12), where you find variational principles modelling dissipative
systems. Indeed it is often stated that a limit of the modelling procedure
based on variational principles consists in their impossibility of encompass-
ing “nonconservative” phenomena. We do not believe that this is the case:
however in order to avoid to be involved in a problem which is very difficult
to treat, when dealing with dissipative systems, we will assume a slightly
different point of view, usually attributed to Hamilton and Rayleigh.

2 Finding a mathematical model for natural
phenomena

2.1 Principle of Least Action

We want to discuss here about the problem of finding a mathematical
model for natural phenomena. We start with an epistemological Principle:

“The Principle of Least Action tells us how to construct a math-
ematical model to be used for describing the world and for pre-
dicting the evolution of the phenomena occurring in it”.

In the following modeling scheme, we give the right heuristic strategy to
be used for finding an effective model using the Principle of Least Action.
The recipe includes the following ingredients:

1. Establish the right kinematics needed to describe the physical phe-
nomena of interest, i.e. the kinematical descriptors modeling the state
of considered physical systems.

2. Establish the set of admissible motions for the system under descrip-
tion, i.e. establish the correct model for the admissible evolution of
the system.

3. Employ the “physical intuition” to find the right Action functional to
be minimized, i.e. modeling what Nature wants to minimize.

We start by finding the kinematical descriptors, because of the need of
modeling the states of the considered system. Then we introduce motion,
in such a way we model the evolution of the system to be described. Finally
we ask Nature what is the quantity to minimize. Keeping this quantity in
mind, we introduce the Action functional. To start with, it is necessary
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to focus the attention on a specific class of systems and on phenomena
occurring to them. A configuration is the mathematical object used to
model the state of considered systems: the set of possible configurations
will be denoted by C. The motion is the mathematical model describing
the evolution of considered systems: it is a C-valued function defined on
time interval (t0, tf ); the set of all admissible motions will be denoted by
M. The Action is a real-valued function, defined on M, which models the
“preferences” of nature.

Finally, to use the Principle of Least Action one needs three steps further,

4. Find the Euler-Lagrange conditions which are consequence of the pos-
tulated Least Action Principle

5. Interpret these condition on a physical ground
6. Determine, in terms of the postulated Action functional, the numerical
integration scheme to be used to get the previsions needed to drive,
by means of our theory, our experimental, technological or engineering
activity.

2.2 The Rayleigh-Hamilton principle

When postulating an extended Rayleigh-Hamilton principle, the point
4 of the previously presented heuristic strategy will be further divided into
two steps as follows:

4a. Once the quantities which expend power on the considered velocity
fields are known in terms of postulated Action, introduce a suitable
definite positive Rayleigh dissipation functional

4b. Equate the first variation of Action functional to the Rayleigh dissipa-
tion functional and get the evolution equations (including boundary
conditions) which govern the motion of the system

Although in the literature the choice of including a Rayleigh-Hamilton
principle in the class of variational principles is sometimes considered inap-
propriate, we will follow what seems to us the preference of the majority
of the authors: therefore we do call “variational” also the strategy which
we just described, not limiting the use of this adjective to the models using
exclusively the Least Action Principle.

2.3 La Cinèmatique d’Abord !

According to Metrodoron, mathematical and physical objects are two
different concepts. Indeed, equations are necessary for modeling physical
systems but they refer to mathematical objects. When one solves the equa-
tions formulated in the framework of his model then he has to transform the
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obtained equations into previsions valid for the physical system he is study-
ing. A good modeling procedure uses mathematics for finding the motion
which minimizes Action. If this mathematics gives a reasonable forecasting
of the observed evolution, then the model is valid. However, not every-
thing is described by a given model. A model is always focused on a set of
phenomena.

The set of phenomena that are focused by a model is established by the
kinematics:

La Cinèmatique d’Abord !

In the previous scheme it is clear that the most “fundamental” step
concerns the choice of the set of configurations used for characterizing the
“accessible” states of the system. When constructing a mathematical model
using the discussed epistemological principle, one must start with a precise
and clear determination of the set C. The second step concerns the deter-
mination of admissible motions which clearly depend on the evolutionary
phenomena one wants to model. A correct modeling process always starts
specifying “admissible” kinematics.

2.4 La Nature agit toujours par les voies les plus simples

After having specified the admissible kinematics, one can wonder about
the desire of Nature. The utility of Nature is a real-valued function defined
on M. Following Maupertuis, we will call Action this “utility”. Also Nature
must consider which is the contingent situation: not all admissible motions
are accessible by a physical system under given specific conditions. There-
fore we must specify a subset MA of the setM: the set of accessible motions.
The real motion will be chosen by the system minimizing the Action in the
subset MA. Indeed:

La Nature agit toujours par les voies les plus simples.

2.5 Two possible choices for the set of admissible and accessible
motions

In the famous textbook of Arnold (1) the author, following the tradi-
tion, does not “try” to explain Maupertuis’ Principle of Least Action. We
instead dare to try to deal with this. In the process of minimization of
the Action, we need to specify the set of motions among which we look for
minima. The choice of Lagrange is that of isochronous motions. Two mo-
tions are isochronous when they both start, at the given instant t0, from a
given configuration C0 and arrive, at the same instant tf , at the same final
configuration Cf . On the other hand, the choice of Maupertuis is to focus
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on the set of motions with a “fixed energy content” and which are starting
from the same configuration C0 and ending (the instants of start and stop
are not specified!) at the configuration Cf . In the set of admissible motions
an “energy” functional must then be introduced: i.e. a functional which
associates an energy content to any motion and any time instant t. The
set of accessible motions is constituted by all motions from C0 to Cf which
have a constant energy content. The choice of Maupertuis, if not suitably
modified, seems to limit the range of applicability of variational principles
to non dissipative phenomena.

2.6 Further famous quotes

Many books in Calculus of Variations and/or Variational Principles, see
e.g. that of Lanczos (1970), start with a preface, introduction or introduc-
tory chapter dealing with historical prolegomena and sometimes end with a
philosophical chapter. In presenting this lecture notes, we did not dare to
break with tradition.

“For this would be agreed by all: that Nature does nothing in
vain nor labours in vain”. Olympiodorus, Commentary on Aristo-
tle’s TMMeteora translated by Ivor Thomas in the Greek Mathemat-

ical Works Loeb Classical Library

“La nature, dans la production de ses effets, agit toujours
par les voies les plus simples”. Pierre de Fermat.

Now, the problem is:

What is utility?

3 In other words: How to find “Real Motions”?

Up to now no mathematical structure has been assumed for MA. Indeed,
Action functional is simply a real-valued map defined on MA. “Practical”
problems require the calculation of real motions by means of introduced
model. Following Lagrange (15), we introduce a particular class of Action
functionals in terms of a Lagrangian Action density function: so construct-
ing in a particular way Action functional to obtain so called “Lagrangian
functionals”.

We need to introduce a topological structure in MA, i.e. we need to
clearly define what we mean when we say that “two motions are close”. If
we want to find minima of a real-valued function, then we need to estimate
derivatives and equate these derivatives to zero. Action is a function defined
in the set of motions (not real numbers!). Thus, we need
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• to understand what is an infinitesimal variation of motion,
• to find a differential of a functional and
• to estimate the order of infinitesimal of its remainder.
In other words, we need to learn how to find a first order Taylor expansion

for a Lagrangian functional by establishing the meaning of the expressions
:

• Infinitesimal variation of motion.
• Differential of a functional.
• Order of infinitesimals for remainders.
This implies the need of Frechèt and Gateaux derivatives in manifolds

with charts in Banach spaces. This is the right mathematical frame for
studying this subject. However, Lagrange did not know that he was using
such a mathematical frame and did not know anything about Frechèt and
Gateaux derivatives. Thus, in this notes we try to go around the related
mathematical difficulties and follow the original approach of Lagrange.

The motion minimizing Action will be searched among the mo-
tions for which the first variation of Action vanishes.

For Lagrangian functionals this condition is equivalent to a partial dif-
ferential equation which is called Euler-Lagrange condition relative to the
given Action functional. This procedure generalizes the corresponding one
used for real-valued functions of several real variables. One serious problem
with papers that start from balance equations and “play” with forces is that
they do not “find” boundary conditions. In these references ((7; 8; 9)) one
can find examples of modelling procedures in which one finds simultaneously
bulk and boundary conditions.

From an historical point of view, in the theory of beam we deal with
contact actions (normal and shear forces and momenta) because Navier
has written lecture notes for l’Ecole Polytechique, trying to produce a text
for students that was as simple as possible. He wrote final equations and
explain not only bulk but also boundary conditions with the aid of “physical
sense”. However, it is very difficult in general to find evolution equations
and boundary conditions with physical sense. On the other hand, variational
principles give boundary conditions automatically and without the help of
any physical sense.

Thus, Variational Principles allow Science to unveil Nature and for un-
veiling Nature you need a Lagrangian functional.

4 Lagrangian Action Functionals: technical details

We follow Landau and Lifshitz (1977) and Moiseiwitsch (1966).
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Let Ψσ(xμ) be any set of n tensor fields defined on Rm, (σ being a
multi-index and μ = 1, 2, ...,m). We define the Lagrangian density as:

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
. (1)

We can then introduce the Action functional as

A =

∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
(2)

Where T is a hyper-volume in the m−th dimensional space determined by
the coordinates xμ. When we will want to derive the theory of second
gradient materials, this approach will not be appropriate, because we would
need to add the dependence on the second gradient of Ψσ in (1).

4.1 Variation of the Action Functional

We now consider small variations εησ(xμ) of the considered fields Ψσ(xμ):

Ψ̃σ(xμ) = Ψσ(xμ) + εησ(xμ), (3)

where the ησ(xμ) are any set of linearly independent functions of the xμ
which vanish on the part ∂dT (∂dT ⊆ ∂T ) of the boundary ∂T of the hyper-
volume T , on which the kinematical condition are prescribed. The variation
of the Action functional can then be computed as:

ΔA =

∫
T

L

(
xμ, Ψ̃σ,

∂Ψ̃σ

∂xμ

)
−
∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
, (4)

where T is a hyper-volume in them-th dimensional space determined by the
xμ. The computation of the variation of the Action functional now proceeds
as follows:

ΔA =

∫
T

L

(
xμ,Ψσ + εησ,

∂Ψσ

∂xμ
+ ε

∂ησ
∂xμ

)
−
∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
+O

(
ε2
)

(5)
which, with a slight abuse of notations, can be written at the first order in
ε as:

δA = ε

∫
T

∑
σ

(
∂L

∂Ψσ
ησ +

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)

∂ησ
∂xμ

)
(6)
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Integrating by parts and recalling that ησ vanish on ∂dT it is easy to get:

δA = ε

∫
T

∑
σ
ησ

(
∂L

∂Ψσ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂ (∂Ψσ/∂xμ)

))
(7)

+ε

∫
∂T/∂dT

∑
σ
ησ

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)
Nμ,

where ∂T/∂dT is the difference between ∂T and ∂dT and Nμ is the external
unit normal of ∂T/∂dT . Imposing δA = 0, the arbitrariness of ησ gives, for
any σ:

∂L

∂Ψσ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂ (∂Ψσ/∂xμ)

)
= 0, ∀xμ ∈ T, (8)

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)
Nμ = 0, ∀xμ ∈ ∂T/∂dT. (9)

In the case of a discontinuity material surface Σ (with unit normal Nμ) the
(9) have to be completed by

m∑
μ=1

[| ∂L

∂ (∂Ψσ/∂xμ)
|]Nμ = 0, ∀xμ ∈ Σ, (10)

where [| (·) |] is the jump of (·) across the surface Σ. These equations are
known as the Euler-Lagrange equations corresponding to the considered
Lagrangian density.

4.2 The Space-Time Case (m = 4)

Let us now consider the particular case in which m = 4. This case
corresponds, for instance, to the case xμ = (x1, x2, x3, t). We have that
ησ(xμ) are any set of linearly independent functions of the xμ which vanish
on the boundary of time type domain,

ησ(x1, x2, x3, t0) = ησ(x1, x2, x3, t1) = 0

and on the part ∂dV of the boundary ∂V of the volume V , on which the
kinematical conditions are prescribed,

ησ(x1, x2, x3, t) = 0, ∀(x1, x2, x3) ∈ ∂dV, ∀t ∈ [t0, t1] .
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It is easy to show that in this particular case eq. (7) yields

δA = ε

∫ t1

t0

dt

∫
V

∑
σ
ησ[

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
(11)

− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
]

+ε

∫
∂V/∂dV

∑
σ
ησ

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk

+

∫
Σ

∑
σ

[∣∣∣∣∣ησ
3∑

k=1

∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣∣
]
Nk

The stationarity δA = 0 of the Action implies, for any σ = 1, 2, ..., n,

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
= 0, ∀xk ∈ V, (12)

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk = 0, ∀xμ ∈ ∂V/∂dV, (13)

3∑
k=1

[∣∣∣∣ ∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣]Nk = 0, ∀xμ ∈ Σ. (14)

Which are the standard Euler-Lagrange equations. We will see in the next
chapters of this book how to generalize (14) when Σ can move freely.

5 Principle of Virtual Power and Principle of Least
Action

The principle of least Action, when formulated for Action functionals admit-
ting first differentials, can be regarded as a particular form of the principle
of virtual powers. Indeed, if

A = Aint + Aext + Aine (15)

then
δA = 0 ⇐⇒ δAint + δAext + δAine = 0. (16)

Identifying

δAint = Pint δAext = Pext, δAine = Pine, (17)
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we get

Pint +Pext +Pine = 0. (18)

Which is the standard form of principle of virtual powers.
Is the principle of virtual power more general than principle of least

Action? First answer: the principle of virtual powers involves differentials
which are not exact, in general. Therefore, once fixed the kinematics, the
principle of virtual power is actually more general. In both Pint and Pext

one can include dissipative terms, which cannot, in general, be derived from
an Action functional. However, it is not clear if, suitably extending the space
of configurations and the set of admissible motions, one can introduce an
Action functional also for systems which, in a restricted kinematics, appear
as dissipative. Controversies in the literature about this subject are not yet
solved.

6 Hamilton-Rayleigh Approach

We propose to use the Hamilton-Rayleigh compromise. We introduce an
Action functional and a Dissipation Rayleigh functional and, by means of
them, we formulate the Principle of Virtual Work. Rayleigh dissipation
functional R is defined as a linear functional on the set of velocities, not
on the set of motions as A. Therefore, δR is defined as a linear functional
of the variation δṁ. The principle of virtual works formulated following
Hamilton-Rayleigh takes the form: (the lack of the upper dot on RHS is
not a mistake!)

δA (δm) = R (δm) . (19)

7 Conclusions

We recall an ancient and useful recipe for building theories for describing
effectively physical phenomena:

“In Nomina est Natura Rerum”. Anonymous

This statement (passed to us by the middle age tradition) is formu-
lated for defending mathematical formalism. This sentence claims that it
is impossible to talk about any mathematical model without using the ap-
propriate language. So, for instance, it is impossible to say clearly what is
the first variation of Action using simply “words” from natural language,
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i.e. without writing integrals on T and, to proceed, we need to give “pre-
cisely” names to things. Therefore, to specify precisely how our models are
constructed we need to introduce symbols and formulas.

However, we can also say that

“Nomina sunt Consequentia Rerum.” Iustinianus, Institutiones
Liber II,7,3

This because we are not blindly building our mathematical model. We
get informations about physics and from these informations we actually
formulate our models.

We can finally state that the “old” method of basing the formulation of
mathematical models on the variational approach works: indeed it works
very well.

Bibliography

[1] Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer,
2nd edition, May 16, 1989.

[2] Benvenuto, E., La scienza delle costruzioni e il suo sviluppo storico,
Sansoni, Firenze, 1981.

[3] Berdichevsky V., Variational Principles of Continuum Mechanics,
Springer, 2009.

[4] Bourdin, B., Francfort, G.A., Marigo, J.-J., The variational approach
to fracture, J. Elasticity, 91, 1-3, 1-148, 2008. (The paper also appeared
as a Springer book: ISBN: 978-1-4020-6394-7).

[5] Colonnetti, G., Scienza delle costruzioni, Torino, Edizioni scientifiche
Einaudi, 3rd ed., 1953-57.

[6] Cosserat, E., Cosserat, F., Sur la Théorie des Corps Déformables, Her-
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Abstract The most general and elegant axiomatic framework on
which continuum mechanics can be based starts from the Principle
of Virtual Works (or Virtual Power). This Principle, which was
most likely used already at the very beginning of the development
of mechanics (see e.g. Benvenuto (1981), Vailati (1897), Colonnetti
(1953), Russo (2003)), became after D’Alembert the main tool for
an efficient formulation of physical theories. Also in continuum
mechanics it has been adopted soon (see e.g. Benvenuto (1981),
Salençon (1988), Germain (1973), Berdichevsky (2009), Maugin
(1980), Forest (2006)). Indeed the Principle of Virtual Works be-
comes applicable in continuum mechanics once one recognizes that
to estimate the work expended on regular virtual displacement fields
of a continuous body one needs a distribution (in the sense of
Schwartz). Indeed in the present paper we prove, also by using
concepts from differential geometry of embedded Riemanniam man-
ifolds, that the Representation Theorem for Distributions allows
for an effective characterization of the contact actions which may
arise in N−th order strain-gradient multipolar continua (as defined
by Green and Rivlin (1964)), by univocally distinguishing them in
actions (forces and n − th order forces) concentrated on contact
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surfaces, lines (edges) and points (wedges). The used approach re-
considers the results found in the pioneering papers by Green and
Rivlin (1964)-(1965) , Toupin (1962), Mindlin (1964)-(1965) and
Casal (1961) as systematized, for second gradient models, by Paul
Germain (1973). Finally, by recalling the results found in dell’Isola
and Seppecher (1995)-(1997), we indicate how Euler-Cauchy ap-
proach to contact actions and the celebrated tetrahedron argument
may be adapted to N−th order strain-gradient multipolar continua.

1 Introduction

In a forthcoming review paper the authors will try to describe why, how and
when many theories were conceived to go beyond the conceptual framework
established for continuum mechanics in the Euler and Cauchy era. In this
introduction are formulated only few comments about some papers which
seem to be the starting point of the most modern studies in continuum
mechanics. In this field -among the many available in the literature- the
textbooks which we have found more instructive are those of Paul Ger-
main and Jean Salençon. In them, without any loss of mathematical rigour,
what nowadays seems the most effective approach to the axiomatization of
mechanics is presented to the students of the École polytechnique. This
approach is based on the Principle of Virtual Works. Paul Germain re-
search paper on second gradient continua (1972) shows how fruitful is the
aforementioned approach. Most likely one of the most illuminating paper
in modern continuum mechanics is due to Green and Rivlin (1964): it is
entitled ”Simple force and stress multipoles” and formulates what the au-
thors call ”multipolar continuum mechanics”. Indeed Green and Rivlin start
there the foundation of what has been later called also the theory of general-
ized continua. They also address the problem of establishing simultaneously
the bulk evolution equations and the correct boundary conditions for gen-
eralized continua: equations and boundary conditions which they find by
postulating the Principle of Virtual Work. In this aspect their theory is
perfectly orthodox with respect to the paradigm put forward, many years
earlier, by Cosserat brothers, in their fundamental textbooks (1908)-(1909).
Of great importance for understanding the relationship between Cosserat
continua and higher order gradient continua studied by Green and Rivlin
is the short but very clear paper by Bleustein (1967), where the boundary
conditions found by Toupin in a previous work are interpreted also from a
physical point of view. We must also cite here the papers by Mindlin, who
also contributed greatly to the development of important generalizations of
Euler-Cauchy continuum models. In particular in Mindlin (1965) is started
the study of third gradient continua, which is developed in a great extent.
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However in all cited papers the Cauchy cuts considered are very regular:
therefore the cited authors refrain from the consideration of contact actions
concentrated on edges and wedges. Instead Germain considers Cauchy cuts
in which the normal can suffer discontinuities of the first kind: he therefore
needs to consider contact actions concentrated on edges. However Germain
limits his treatment to second gradient continua: in his theory there are not
wedge contact actions. Also in Toupin’s strain-gradient theory (1962) the
consideration is limited to second gradient continua. In cited paper Toupin
limits himself to the consideration of a particular class of second gradient
continua: those in which only a particular class of contact double-forces
(using the nomenclature by Germain) can be exerted: the class constituted
by ”couple-stresses”.

Those which are called by many authors (see e.g. Maugin (2010) and
Forest (2005)-(2006)) generalized continua actually strictly include higher
gradient continua which we consider here. In generalized continua together
with the placement field one can introduce many other kinematical de-
scriptors, which are other fields defined in the material configuration of
considered continuum. The first example of such a set further kinematical
descriptors is given by Cosserats who add to the placement field also a field
of ”changes of attitude”, i.e. a field of rotations, which describe a large class
of ”microscopically structured” continua. As clarified by Bleustein (1967)
Toupin’s continua are a class of Cosserat continua in which an internal con-
straint has been introduced. In the following sections, while commenting
some papers recently published in the field, it is discussed how the approach
used by Germain can be reconciled with an approach which parallels more
strictly the one used, for first gradient continua, by Cauchy.

It is not easy (but this analysis will be attempted in the aforementioned
review paper) to explain why the foundation of continuum mechanics ”à
la Cauchy” has been considered ”more physically grounded” than the ax-
iomatization based on the Principle of Virtual Powers. In the present work
we prove that .at least for higher gradient continuum theories, the two ap-
proaches are completely equivalent.

Variational Principles and Calculus of Variations have always been an
important tool in formulating mathematical models for physical phenomena.
Among many others the textbook by Berdichevsky (2009) clearly shows that
this statement holds, in particular, for Continuum Mechanics.

We are sure that the Principle of Virtual Works and the Principle of
Least Action have roots much deeper than many scientists believe. (see e.g.
Vailati (1897)). One can conjecture that the majority of physical theories
were first formulated in terms of these Principles, and only subsequently re-
considered from other points of view. The Principle of Least Action, which
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supplies a ”geometric” (see Russo (2003)) version of mechanics, is likely to
be indeed the tool used by the true founders of mechanics (i.e. the scientists
of the Hellenistic period) to establish it. As conjectured also by Colonnetti
(1953) and Rorres (2004) Archimedes himself was basing his mechanical
investigations on the Principle of Virtual Works. More recently, as already
stated above in a more detailed way, Green, Rivlin, Toupin, Mindlin, Casal,
and Germain formalized various versions of the theory of generalized con-
tinua basing them on the Principle of Virtual Powers: however the most
illuminating treatises in this subject remain those due to Cosserat brothers
(1908)-(1909).

For a long time some opponents to second gradient theories argued about
its ”lack of consistency”, due to the difficulties in ”interpreting” boundary
conditions. However it has to be remarked that if one refuses to use the
Principle of Virtual Powers he can find very difficult the job of finding
some set of boundary conditions which are compatible with the (indepen-
dently postulated!) bulk evolution equations. Actually it happens that
many epigones, after having initially refused to use this principle also in
continuum mechanics, have later rephrased with different notations many
of the results already available in the literature.

If instead one accepts the D’Alembertian approach to mechanics all these
problems of well-posedness of mathematical models completely disappear.

2 Second and Higher Gradient Continuum Theories

In the last fifty years it has been widely recognized that in order to de-
scribe a wealth of physical phenomena it is needed to introduce mechanical
theories which take into account contact actions more complex than those
considered in the format given by Cauchy to continuum mechanics. Some
well-known contributions in this regard are given in the papers listed in the
references by Toupin, Mindlin, Green, Rivlin, Maugin, Forest, Germain,
Suiker, Sokolowski, Triantafyllidis among many others.

More recently it has been recognized that second or even higher gradient
models are needed when continuum models are introduced for describing
systems in which strong inhomogeneities of physical properties are present
at eventually different length scales (see e.g. Abu et al. (2008), Alibert et al.
(2003), Polizzotto (2007), Pideri and Seppecher (1997), Trianttafyllidis et al.
(1986)-(1998), Yang and Misra (2010), Yang et al. (2011)), and may be of
great importance also in continuum systems in which some ”microscopical”
degrees of freedom can ”capture” a relevant amont of deformation energy
(see e.g. Carcaterra (2005) or Carcaterra et al. (2006)).

Actually, immediately after the development of the Cauchy format of



Contact Actions in N-th Gradient Generalized Continua 21

continuum mechanics, a first relevant generalization in the aforementioned
direction was conceived by Eugène and François Cosserat, but their efforts
were not continued until late in XX century. Cosserat described continuum
bodies in which contact actions were to be modelled not only by means
of surface forces, but also by means of surface couples. The conceptual
differences between Cauchy-type continuum mechanics and Cosserat-type
continuum mechanics were relevant, and the second one could not be ob-
tained by means of simple modifications of the first one. The remarkable
mathematical difficulties confronted by Cosserat rendered their work diffi-
cult to be accepted, and for a long period their results were nearly com-
pletely ignored. This circumstance can be easily understood: the structure
of Cosserat contact actions is complex. Indeed in Cosserat continua one
needs, together with Cauchy stress tensor also a Couple stress tensor, for
representing contact Couples.

2.1 A first method for extending Cauchy model for continuous
bodies

In order to develop continuum mechanics by going beyond the Cauchy
format it is possible to use at least two different approaches.

The most simple of them, used also by Cosserats, starts by postulating
how the power expended by internal actions in a body depends on the ”vir-
tual” velocity field and its gradients. Starting from this postulate one can
deduce, by means of a successive application of the theorem of divergence,
i.e. by means of several iterative integrations by parts, which are the contact
actions which can be exerted at the boundary of the considered body. Hence,
this method starts from the notion of stress tensors and deduces from it the
concept of contact actions. It is based on the D’Alembert Principle of Vir-
tual Work and has been resumed by Green and Rivlin, Mindlin, Casal and
subsequently by Paul Germain, in his enlightening papers (1972-1973). This
Principle is undoubtedly a great tool in Mechanics which has not been im-
proved since its original first and ”standard” formulation, differently to what
stated in Fried and Gurtin (2006)-(2008) and in Podio-Guidugli (2009). It is
not clear why these last authors consider as ”non-standard” a formulation of
the Principle of Virtual Powers which can be found stated ”word-for-word”
for instance in the textbooks of Jean Salençon..

Indeed other authors (e.g. the paper by Degiovanni, Marzocchi, Musesti
(1999)-(2010) in the references ) stated that:

In particular, the approach by means of the theory of distributions, men-
tioned by Germain himself but not fully developed, is here adopted from the
beginning. Clearly, in order to obtain deeper results such as the Cauchy
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Stress Theorem, some extra regularity has to be assumed. Note that a power
depends in general from two variables, the velocity field and the subbody. So
it is a bit more complex than a mere distribution.

In the same spirit in dell’Isola and Seppecher (1995)-(1997) the starting
assumptions concerning contact actions are: i) for every subbody of consid-
ered body the power expended by contact actions on a generic velocity field
is a distribution (i.e. a linear and continuous functional on velocity fields)
ii) the power expended by contact actions is quasi-balanced (generalizing
the assumption used in Noll and Virga (1990)). Then in aforementioned pa-
pers by using different polynomial test velocity fields and different families
of subbodies, the Cauchy construction for stress tensors is obtained.

The works of Green and Rivlin, Mindlin and Germain have been taken
up again and again, (e.g. in Fried and Gurtin (2006)-(2008)) often rephras-
ing them without introducing any notable amelioration and often second
gradient continua are somehow confused with Cosserat continua.

Paul Germain, following a tradition set in France by André Lichnerow-
icz, uses the original version (and more efficient) absolute notation due to
Levi-Civita. This version, at least in this context, is the most adapted, as
many objects of different tensorial order are to be simultaneously handled.
Sometimes those who are refraining from using the most sophisticated ver-
sion of Levi-Civita absolute Calculus are lead to refer to the needed stress
tensors and the related contact actions indistinctly using the names ”hy-
perstresses” and ”hypertractions”. On the contrary Germain (following the
spirit of Green and Rivlin) tries to convey through the nomenclature chosen
the physical meaning to be attached to the new mathematical objects which
he is introducing: for instance he calls ”double forces” the actions which are
expending powers on the velocity gradient in the directions which are nor-
mal to the surfaces of Cauchy cuts. Germain then decomposes these ”double
forces” into ”couples” and ”symmetric double forces” recognizing (following
Bleustein) that couples were already introduced by Cosserats. Germain’s
notation supports the mechanical and physical intuition contrarily to what
does a generic nomenclature based on some ”hyper” prefixes.

2.2 A second method for extending Cauchy model and its rela-
tionship with the first

The second method starts by postulating the type of contact action
which can be exerted on the boundary of every ”regular” part of a body
and then proceeds by proving a ”representation” theorem for the considered
class of contact actions: the existence of stress tensors is then deduced from
the postulated form of contact actions with the addition of a ”balance-type”


