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Preface

The Sixth International Conference on Automatic Differentiation (AD2012) held
July 23–27, 2012, in Fort Collins, Colorado (USA), continued this quadrennial
conference series. While the fundamental idea of differentiating numerical programs
is easy to explain, the practical implementation of this idea for many nontrivial
numerical computations is not. Our community has long been aware of the
discrepancy between the aspiration of an automatic process suggested by the name
automatic differentiation and the reality of its practical use, which often requires
substantial effort from the user. New algorithms and methods implemented in dif-
ferentiation tools improve their usability and reduce the need for user intervention.
On the other hand, the demands to compute derivatives for numerical models
on parallel hardware, using a wide variety of libraries and having components
implemented in different programming languages, pose new challenges, particularly
for the efficiency of the derivative computation. These challenges, as well as new
applications, have been driving research for the past four years and will continue to
do so. Despite retaining automatic differentiation in the conference name, the editors
purposely switched to algorithmic differentiation (AD) in the proceedings title.
Thus, the conference proceedings follow somewhat belatedly the more appropriate
naming chosen by Andreas Griewank for the first edition of his seminal monograph
covering our subject area. This name better reflects the reality of AD usage and the
research results presented in the papers collected here.

The 31 contributed papers cover the application of AD to many areas of science
and engineering as well as aspects of AD theory and its implementation in tools.
For all papers the referees, selected from the program committee and the wider AD
community, as well as the editors have emphasized accessibility of the presented
ideas also to non-AD experts.

In the AD tools arena new implementations are introduced covering, for example,
Java and graphical modeling environments, or join the set of existing tools for
Fortran. New developments in AD algorithms target: efficient derivatives for matrix-
operation, detection and exploitation of sparsity, partial separability, the treatment
of nonsmooth functions, and other high-level mathematical aspects of the numerical
computations to be differentiated.
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vi Preface

Applications stem from the Earth sciences, nuclear engineering, fluid dynamics,
and chemistry, to name just a few. In many cases the applications in a given area
of science or engineering share characteristics that require specific approaches
to enable AD capabilities or provide an opportunity for efficiency gains in the
derivative computation. The description of these characteristics and of the tech-
niques for successfully using AD should make the proceedings a valuable source
of information for users of AD tools.

The image on the book cover shows the high-harmonic emission spectrum of a
semiconductor quantum dot for different excitation conditions. To favor specific fre-
quencies one has to find an appropriate input pulse within a large parameter space.
This was accomplished by combining a gradient-based optimization algorithm with
AD. The data plots were provided by Matthias Reichelt.

Algorithmic differentiation draws on many aspects of applied mathematics and
computer science and ultimately is useful only when users in the science and
engineering communities become aware of its capabilities. Furthering collabora-
tions outside the core AD community, the AD2012 program committee invited
leading experts from diverse disciplines as keynote speakers. We are grateful to
Lorenz Biegler (Carnegie Mellon University, USA), Luca Capriotti (Credit Suisse,
USA), Don Estep (Colorado State University, USA), Andreas Griewank (Humboldt
University, Germany), Mary Hall (University of Utah, USA), Barbara Kaltenbacher
(University of Klagenfurt, Austria), Markus Püschel (ETH Zurich, Switzerland),
and Bert Speelpenning (MathPartners, USA) for accepting the invitations.

We want to thank SIAM and the NNSA and ASCR programs of the US
Department of Energy for their financial support of AD2012.

Albuquerque, Chicago Shaun Forth
Paderborn, Shrivenham Paul Hovland
April 2012 Eric Phipps

Jean Utke
Andrea Walther
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Laurent Hascoët INRIA, Sophia-Antipolis, France, Laurent.Hascoet@inria.fr

Paul Hovland Mathematics and Computer Science, Argonne National Laboratory,
Argonne, IL, USA, hovland@mcs.anl.gov

John Junkins Aerospace Engineering, Texas A&M University, College Station,
TX, USA, junkins@tamu.edu

jieqchen@mcs.anl.gov
b.christianson@herts.ac.uk
tfcoleman@uwaterloo.ca
hlcm@mcs.anl.gov
benoit.delinchant@grenoble-inp.fr
moritz.diehl@esat.kuleuven.be
moritz.diehl@esat.kuleuven.be
bbye@anl.gov
jfike@stanford.edu
S.A.Forth@cranfield.ac.uk
gauger@mathcces.rwth-aachen.de
agebreme@purdue.edu
Ralf.Giering@FastOpt.com
vgoel@us.ibm.com
griewank@
math.hu-berlin.de
g.kr.abhishek@gmail.com
Laurent.Hascoet@inria.fr
hovland@mcs.anl.gov
junkins@tamu.edu


Contributors xv

Kamil A. Khan Process Systems Engineering Laboratory, Department of Chem-
ical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,
kamil@mit.edu

Kshitij Kulshreshtha Institut für Mathematik, Universität Paderborn, Paderborn,
Germany, kshitij@math.upb.de

Claire Lauvernet Irstea, Lyon, France, claire.lauvernet@irstea.fr
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A Leibniz Notation for Automatic
Differentiation

Bruce Christianson

Abstract Notwithstanding the superiority of the Leibniz notation for differential
calculus, the dot-and-bar notation predominantly used by the Automatic Differen-
tiation community is resolutely Newtonian. In this paper we extend the Leibniz
notation to include the reverse (or adjoint) mode of Automatic Differentiation, and
use it to demonstrate the stepwise numerical equivalence of the three approaches
using the reverse mode to obtain second order derivatives, namely forward-over-
reverse, reverse-over-forward, and reverse-over-reverse.

Keywords Leibniz • Newton • Notation • Differentials • Second-order •
Reverse mode

1 Historical Background

Who first discovered differentiation?1 Popular European2 contenders include Isaac
Barrow, the first Lucasian Professor of Mathematics at Cambridge [5]; Isaac
Newton, his immediate successor in that chair [21]; and Godfrey Leibniz, a librarian
employed by the Duke of Brunswick [19]. The matter of priority was settled in
Newton’s favour by a commission appointed by the Royal Society. Since the report

1Archimedes’ construction for the volume of a sphere probably entitles him to be considered the
first to discover integral calculus.
2Sharaf al-Din al-Tusi already knew the derivative of a cubic in 1209 [1], but did not extend this
result to more general functions.
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2 B. Christianson

of the commission [2] was written by none other than Isaac Newton himself3 we
may be assured of its competence as well as its impartiality. Cambridge University
thenceforth used Newton’s notation exclusively, in order to make clear where its
loyalties lay.

However, if instead we ask, who first discovered automatic differentiation, then
Leibniz has the best claim. In contrast with Newton’s geometric and dynamical
interpretation, Leibniz clearly envisaged applying the rules of differentiation to the
numerical values which the coefficients represented, ideally by a mechanical means,
as the following excerpts [18, 19] respectively show:

Knowing thus the Algorithm (as I may say) of this calculus, which I call differential
calculus, all other differential equations can be solved by a common method. . . . For any
other quantity (not itself a term, but contributing to the formation of the term) we use
its differential quantity to form the differential quantity of the term itself, not by simple
substitution, but according to the prescribed Algorithm. The methods published before have
no such transition.4

When, several years ago, I saw for the first time an instrument which, when carried,
automatically records the number of steps taken by a pedestrian, it occurred to me at once
that the entire arithmetic could be subjected to a similar kind of machinery . . .

Although Leibniz did devise and build a prototype for a machine to perform
some of the calculations involved in automatic differentiation [18], the dream
of a mechanical device of sufficient complexity to perform the entire sequence
automatically had to wait until 1837, when Charles Babbage completed the design
of his programmable analytical engine [20]. Babbage, who was eventually to
succeed to Newton’s chair, had while still an undergraduate been a moving force
behind the group of young turks5 who forced the University of Cambridge to change
from the Newton to the Leibniz notation for differentiation. Babbage described this
as rescuing the University from its dot-age [3].

There is no doubt that by the time of Babbage the use of Newton’s notation was
very badly hindering the advance of British analysis,6 so it is ironic to reflect that
we in the automatic differentiation community continue to use the Newton notation
almost exclusively, for example by using a dot to denote the second field of an active
variable.

3Although this fact did not become public knowledge until 1761, nearly 50 years later.
4The word Algorithm derives from the eponymous eighth century mathematician Al-Khwarizmi,
known in Latin as Algoritmi. Prior to Leibniz, the term referred exclusively to mechanical
arithmetical procedures, such as the process for extraction of square roots, applied (by a human) to
numerical values rather than symbolic expressions. The italics are in the Latin original: “Ex cognito
hoc velut Algorithmo, ut ita dicam, calculi hujus, quem voco differentialem.”
5The Analytical Society was founded by Babbage and some of his friends in 1812. So successful
was their program of reform that 11 of the 16 original members subsequently became professors
at Cambridge.
6Rouse Ball writes [4] “It would seem that the chief obstacle to the adoption of analytical methods
and the notation of the differential calculus arose from the professorial body and the senior
members of the senate, who regarded any attempt at innovation as a sin against the memory of
Newton.”
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2 The Leibniz Notation

Suppose that we have independent variables w; x and dependent variables y; z given
by the system

y D f .w; x/ z D g.w; x/

2.1 The Forward Mode

In Newton notation we would write the forward derivatives as

Py D f 0w PwC f 0x Px Pz D g0w PwC g0x Px

It is quite straightforward to turn this into a Leibniz notation by regarding the
second field of an active variable as a differential, and writing dx; dy etc in place of
Px; Py; etc.

In Leibniz notation the forward derivatives become7

dy D @f

@w
dwC @f

@x
dx d z D @g

@w
dwC @g

@x
dx

where dw; dx are independent and dy; d z are dependent differential variables.8

2.2 The Reverse Mode

For the reverse mode of automatic differentiation, the backward derivatives are
written in a Newton style notation as

Nw D Nyf 0w C Nzg0w Nx D Nyf 0x C Nzg0x
This can be turned into a Leibniz form in a similar way to the forward case. We

introduce a new notation, writing by; bz in place of the independent barred variables
Ny; Nz, and bw; bx in place of the dependent barred variables Nw; Nx.

7Since y � f .w; x/ we allow ourselves to write @f

@x
interchangeably with @y

@x
.

8Actually the tradition of treating differentials as independent variables in their own right was
begun by d’Alembert as a response to Berkeley’s criticisms of the infinitesimal approach [6], but
significantly he made no changes to Leibniz’s original notation for them. Leibniz’s formulation
allows for the possibility of non-negligible differential values, referring [19] to “the fact, until
now not sufficiently explored, that dx, dy, dv, dw, dz can be taken proportional [my italics] to the
momentary differences, that is, increments or decrements, of the corresponding x, y, v, w, z”, and
Leibniz is careful to write d.xv/D xdvC vdx, without the term dxdv.
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bw D by @f
@w
C bz

@g

@x
bx D by @f

@w
C bz

@g

@x

We refer to quantities such as bx as barientials. Note that the bariential of a
dependent variable is independent, and vice versa. Differentials and barientials will
collectively be referred to as varientials.

The barientials depend on all the dependent underlying variables so, as always
with the reverse mode, the full set of equations must be explicitly given before the
barientials can be calculated.

2.3 Forward over Forward

Repeated differentiation in the forward mode (the so-called forward-over-forward
approach) produces the Newton equation

Ry D f 00ww Pw PwC 2f 00wx Pw Px C f 00xx Px Px C f 0w RwC f 0x Rx

and similarly for Rz. This has the familiar9 Leibniz equivalent

d2y D @2f

@w2
dw2 C 2 @

2f

@w@x
dwdx C @2f

@x2
dx2 C @f

@w
d2wC @f

@x
d2x

and similarly for d2z.

2.4 Forward over Reverse

Now consider what happens when we apply forward mode differentiation to the
backward derivative equations (the so-called forward-over-reverse approach). Here
are the results in Newton notation

PNw D PNyf 0w C Nyf 00ww PwC Nyf 00wx Px C PNzg0w C Nzg00ww PwC Nzg00wx Px

and here is the Leibniz equivalent

9The familiarity comes in part from the fact that this is the very equation of which Hademard
said [15] “que signifie ou que représente l’égalité? A mon avis, rien du tout.” [“What is meant,
or represented, by this equality? In my opinion, nothing at all.”] It is good that the automatic
differentiation community is now in a position to give Hadamard a clear answer: .y; dy; d2y/ is
the content of an active variable.
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dbw D dby @f
@w
C by @

2f

@w2
dwC by @

2f

@w@x
dxC dbz

@g

@w
C bz

@2g

@w2
dwC bz

@2f

@w@x
dx

with similar equations for PNx and dbx respectively.
What happens when we repeatedly apply automatic differentiation in other

combinations?

3 Second Order Approaches Involving Reverse Mode

For simplicity, in this section we shall consider the case10 of a single independent
variable x and a single dependent variable y D f .x/.

3.1 Forward over Reverse

Here are the results in Newton notation for forward-over-reverse in the single
variable case. The reverse pass gives

y D f .x/ Nx D Nyf 0

and then the forward pass, with independent variables x and Ny, gives

Py D f 0 Px PNx D PNyf 0 C Nyf 00 Px

The Leibniz equivalents are

y D f .x/ bx D by @f
@x

and

dy D @f

@x
dx dbx D dby @f

@x
C by @

2f

@x2
dx

10The variables x and y may be vectors: in this case the corresponding differential dx and bariential
by are respectively a column vector with components dxj and a row vector with components byi ;
f 0 is the matrix J ij D @j f

i D @f i=@xj , and f 00 is the mixed third order tensor Ki
jk D @2jkf

i D
@2f i=@xj @xk .



6 B. Christianson

3.2 Reverse over Forward

Next, the corresponding results for reverse-over-forward. First the forward pass in
Newton notation

y D f .x/ Py D f 0 Px
then the reverse pass, applying the rules already given, and treating both y and Py
as dependent variables. We use a long bar to denote ADOL-C style reverse mode
differentiation [13], starting from Py and y

x D y f 0 C Py f 00 Px Px D Py f 0

In Leibniz notation the forward pass gives

y D f .x/ dy D @f

@x
dx

and for the reverse pass we treat y and dy as the dependent variables. We denote
the bariential equivalent of the long bar by the letter p for the moment, although we
shall soon see that this notation can be simplified. This gives

px D py @f
@x
C pdy @

2f

@x2
dx pdx D pdy @f

@x

3.3 Reverse over Reverse

Finally we consider reverse over reverse. The first reverse pass gives

y D f .x/ Nx D Nyf 0

the dependent variables are y and Nx. We denote the adjoint variables on the second
reverse pass by a long bar

x D y f 0 C Nyf 00 Nx Ny D f 0 Nx

and we shall see shortly that the use made here of the long bar is consistent with that
of the previous subsection. In Leibniz notation, the first reverse pass corresponds to

y D f .x/ bx D by @f
@x

with the dependent variables being y and bx. Denoting the barientials for the second
reverse pass by the prefix p, we have
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px D py @f
@x
C by @

2f

@x2
pbx pby D @f

@x
pbx

In general we write differentials on the right and barientials on the left, but pbx
is a bariential of a bariential, and so appears on the right.11

4 The Equivalence Theorem

By collating the equations from the three previous subsections, we can immediately
see that all three of the second-order approaches involving reverse differentiation
produce structurally equivalent sets of equations, in which certain pairs of quantities
correspond. In particular, where v is any dependent or independent variable,

v D PNv Pv D Nv Nv D Pv

or, in Leibniz notation

pv D dbv pdv D bv pbv D dv

allowing the use of p-barientials to be eliminated.
However, we can say more than this. Not only are the identities given above

true for dependent and independent varientials,12 the correspondences also hold
for the varientials corresponding to all the intermediate variables in the underlying
computation. Indeed, the three second-order derivative computations themselves are
structurally identical.

This can be seen by defining the intermediate variables vi in the usual way [14]
by the set of equations

vi D �i .vj Wj�i /
and then simulating the action of the automatic differentiation algorithm, by using
the rules in the preceding subsections to successively eliminate the varientials
corresponding to the intermediate variables, in the order appropriate to the algorithm
being used.

In all three cases, we end up computing the varientials of each intermediate
variable with exactly the same arithmetical steps

pbvi D dvi D
X

j Wj�i

@�i

@vj
dvj pdvi D bvi D

X

kWi�k
bvk

@�k

@vi

11If x is a vector then pbx is a column vector.
12Recall that this term includes all combinations of differentials and barientials.
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and

pvi D dbvi D
X

kWi�k

8
<

:dbvk
@�k

@vi
C bvk

X

j Wj�k

@2�k

@vi @vj
dvj

9
=

;

We therefore have established the following

Theorem 1. The three algorithms forward-over reverse, reverse-over-forward, and
reverse-over-reverse are all numerically stepwise identical, in the sense that they
not only produce the same numerical output values, but at every intermediate
stage perform exactly the same floating point calculations on the same intermediate
variable values.

Although the precise order in which these calculations are performed may depend
on which of the three approaches is chosen, each of the three algorithms performs
exactly the same floating point arithmetic. Strictly speaking, this statement
assumes that an accurate inner product is available as an elemental operation to
perform accumulations, such as those given above for dvi ; bvi ; dbvi , in an order-
independent way.

A final caveat is that the statement of equivalence applies only to the floating
point operations themselves, and not to the load and store operations which surround
them, since a re-ordering of the arithmetic operations may change the contents of
the register set and cache.

Historically, all three of the second-order methods exploiting reverse were
implemented at around the same time in 1989 [11]: reverse-over-reverse in PADRE2
by Iri and Kubota [16, 17]; reverse-over-forward in ADOL-C by Griewank and
his collaborators [12, 13]; and forward-over-reverse by Dixon and Christianson in
an Ada package [7, 10]. The stepwise equivalence of forward-over-reverse with
reverse-over-reverse was noted in [9] and that of forward-over-reverse with reverse-
over-forward in [8].

The stepwise equivalence of the three second order approaches involving the
reverse mode nicely illustrates the new Leibniz notation advanced in this paper, but
also deserves to be more widely known than is currently the case.
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Sparse Jacobian Construction for Mapped Grid
Visco-Resistive Magnetohydrodynamics

Daniel R. Reynolds and Ravi Samtaney

Abstract We apply the automatic differentiation tool OpenAD toward constructing
a preconditioner for fully implicit simulations of mapped grid visco-resistive
magnetohydrodynamics (MHD), used in modeling tokamak fusion devices. Our
simulation framework employs a fully implicit formulation in time, and a mapped
finite volume spatial discretization. We solve this model using inexact Newton-
Krylov methods. Of critical importance in these iterative solvers is the development
of an effective preconditioner, which typically requires knowledge of the Jacobian
of the nonlinear residual function. However, due to significant nonlinearity within
our PDE system, our mapped spatial discretization, and stencil adaptivity at physical
boundaries, analytical derivation of these Jacobian entries is highly nontrivial. This
paper therefore focuses on Jacobian construction using automatic differentiation.
In particular, we discuss applying OpenAD to the case of a spatially-adaptive
stencil patch that automatically handles differences between the domain interior and
boundary, and configuring AD for reduced stencil approximations to the Jacobian.
We investigate both scalar and vector tangent mode differentiation, along with
simple finite difference approaches, to compare the resulting accuracy and efficiency
of Jacobian construction in this application.

Keywords Forward mode • Iterative methods • Sparse Jacobian construction
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1 Introduction

In this paper, we examine application of the Automatic Differentiation (AD) tool
OpenAD [12–14] toward fully implicit simulations of mapped grid visco-resistive
magnetohydrodynamics (MHD). These simulations are used to study tokamak
devices for magnetically-confined fusion plasmas. However, such problems are
indicative of a much more expansive class of large-scale simulations involving
multi-physics systems of partial differential equations (PDEs), and most of the
work described herein will apply in that larger context. We note that similar
efforts have been made in Jacobian construction within the context of compressible
fluid dynamics [6, 11], and the current study complements that work through our
investigation of an increasingly complex PDE system with more significant nonzero
Jacobian structure.

This paper addresses using OpenAD to generate Jacobian components required
within iterative solvers for nonlinear implicit equations arising from our PDE
model. We begin by describing the model (Sect. 1.1), and our discretization and
solver framework (Sect. 1.2). We then describe three competing approaches for
Jacobian construction (Sect. 2): scalar mode AD, vector mode AD, and simple finite
difference approximation, as well as the variety of code modifications that were
required to enable these techniques. We then describe our experimental tests on
these approaches and the ensuing results (Sect. 3), and conclude with some proposed
optimizations for Jacobian construction in similar applications.

1.1 Model

We study visco-resistive MHD in cylindrical, .r; '; z/, coordinates [15],

@tUC 1

r
@r .rF.U//C @zH.U/C 1

r
@'G.U/ D S.U/Cr � Fd .U/; (1)

where U D �
�; �ur ; �u'; �uz; Br ; B'; Bz; e

�
, with plasma density �, velocity u D�

ur ; u'; uz
�
, magnetic induction B D �

Br ; B'; Bz
�
, total energy e, and radial

location r . Here, the hyperbolic fluxes are given by

F D
�
�ur ; �u2r C Qp � B2

r ; �uru' � BrB'; �uruz � BrBz; 0;

urB' � u'Br ; urBz � uzBr; .e C Qp/ur � .B � u/Br
�
;

(2)

G D
�
�u'; �uru' � BrB'; �u2' C Qp � B2

'; �uzu' � BzB';

u'Br � urB'; 0; u'Bz � uzB'; .e C Qp/u' � .B � u/B'
�
;

(3)
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η

ξ

ϕ

ϕ

z

r

Fig. 1 Left: tokamak domain (a slice has been removed to show the poloidal cross-section). Note
the coordinate singularity at the torus core. Cells near the core exhibit a loss of floating-point
accuracy in evaluation of J in (6). Right: mapping between cylindrical and shaped domains

H D
�
�uz; �uruz � BrBz; �uzu' � BzB'; �u2z C Qp � B2

z ;

uzBr � urBz; uzB' � u'Bz; 0; .e C Qp/uz � .B � u/Bz

�
;

(4)

where Qp D pC B�B
2

and pressure p D 2e
3
� �u�u

3
� B�B

3
. In this model, S.U/ is a local

source term resulting from the cylindrical coordinate system,

S D �0; B2
z � �u2z � Qp; 0; �uruz � BrBz; 0; 0; uzBr � urBz; 0

�
=r: (5)

A similar cylindrical divergence is applied to the diffusive terms r � Fd .U/,

r�Fd .U/ D
�
0; r��; r�.�uC �rT C B � .�.r � B/// ; �r�.�.r � B// ; 0

�
;

where stress tensor � D �.ruC .ru/T / � 2
3
�.r � u/I , temperature T D 2p

�
, �, �

and � are input parameters for the plasma viscosity, resistivity and heat conductivity.
We map (1) to a shaped grid corresponding to the toroidal tokamak geometry

(see Fig. 1). These mappings are encoded in the functions

� D �.r; z/; � D �.r; z/; ' D ' (cylindrical! mapped);

r D r.�; �/; z D z.�; �/; ' D ' (mapped! cylindrical); (6)

J D .@�r/.@�z/ � .@�r/.@�z/; J �1 D .@r�/.@z�/ � .@r�/.@z�/:

Under this mapping, we rewrite the visco-resistive MHD system as

@tUC 1
J r

h
@�.r QF.U//C @�.r QH.U//C @'. QG.U//

i
D S.U/Cr � QFd .U/; (7)

where QF D J .@r� FC @z� H/ D @�z F � @�r H; QG D J G;
QH D J .@r� FC @z� H/ D �@�z FC @�r H:

Similar transformations are performed on the diffusive fluxes r � QFd .U/. We also
employ a 2D version of this model for simulations within the poloidal, .�; �/, plane.


